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Abstract

We describe the limit zero distributions of sequences of polynomials

with positive coefficients.
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1 Introduction and results

In this paper we answer the following question of Ofer Zeitouni and Subhro
Ghosh [8], which arises in the study of zeros of random polynomials [4].

Let P be a polynomial. Consider the discrete probability measure µ[P ]
in the plane which has an atom of mass m/ degP at every zero of P of
multiplicity m. It is called the “empirical measure” in the theory of random
polynomials.

Let µn be a sequence of empirical measures of some polynomials with
positive coefficients, and suppose that µn → µ weakly. The question is how
to characterize all possible limit measures µ. We give such a characterization
in terms of logarithmic potentials.

Theorem 1. For a measure µ to be a limit of empirical measures of polyno-

mials with positive coefficients, it is necessary and sufficient that the following

conditions are satisfied:
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µ is symmetric with respect to the complex conjugation, µ(C) ≤ 1, and

the potential

u(z) =

∫

|ζ|≤1

log |z − ζ|dµ(ζ) +

∫

|ζ|>1

log

∣

∣

∣

∣

1 −
z

ζ

∣

∣

∣

∣

dµ(ζ) (1.1)

has the property

u(z) ≤ u(|z|). (1.2)

The potential in Theorem 1 converges for every positive measure with the
property µ(C) <∞ to a subharmonic function u 6≡ −∞. If

∫

|ζ|>1

log |ζ|dµ(ζ) <∞ or

∫

|ζ|<1

log
1

|ζ|
dµ(ζ) <∞,

then the definition of u in Theorem 1 can be simplified to
∫

C

log |z − ζ|dµ(ζ) or

∫

C

log

∣

∣

∣

∣

1 −
z

ζ

∣

∣

∣

∣

dµ(ζ),

respectively. When these integrals exist, they differ from the potential (1.1)
only by additive constants.

Obrechkoff [7] proved that empirical measures of polynomials with non-
negative coefficients satisfy

µ({z ∈ C\{0} : | arg z| ≤ α}) ≤
2α

π
µ(C\{0}), 0 ≤ α ≤ π/2. (1.3)

We call this the Obrechkoff inequality. The limits of these measures also
satisfy (1.3).

Combining our result with Obrechkoff’s theorem we conclude that (1.2)
and symmetry of the measure imply (1.3). In particular we find that Obresch-
koff’s inequality is satisfied not only by polynomials with non-negative coef-
ficients, but more generally by polynomials satisfying

|f(z)| ≤ f(|z|), z ∈ C. (1.4)

The converse does not hold; that is, the inequalities (1.4) and (1.2) do not
follow from Obrechkoff’s inequality. Indeed, let

P (z) = (z2 + 1)m(z2 − 2z cosβ + 1)
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This polynomial has roots of multiplicity m at ±i, and simple roots at
exp(±iβ). Obrechkoff’s inequality is satisfied if β ≥ π/(2m + 2). On the
other hand, P (1) < |P (−1)| for all m and β ∈ (0, π/2).

We note that Obrechkoff’s inequality is best possible [3]. For other results
on the roots of polynomials with positive coefficients we refer to [1].

An important ingredient in our proof is the following theorem of De An-
gelis [2].

Theorem A. Let

f(z) = a0 + . . .+ adz
d, a0 > 0, ad > 0, (1.5)

be a real polynomial. The following conditions are equivalent:

(i) There exists a positive integer m such that all coefficients of fm are

strictly positive.

(ii) There exists a positive integer m0 such that for all m ≥ m0, all coeffi-

cients of fm are strictly positive.

(iii) The inequalities

|f(z)| < f(|z|), z 6∈ [0,∞), (1.6)

and

a1 > 0, ad−1 > 0 (1.7)

hold.

Acknowledgment. We thank Ofer Zeitouni for helpful comments on this
paper, as well as John P. D’Angelo, David Handelman and Alan Sokal for
useful discussions on Theorem A.

2 Proof of Theorem 1

We use some facts about subharmonic functions and potential theory which
can be found in [6]. For the reader’s convenience, they are stated in the
Appendix.

We recall that the Riesz measure of a subharmonic function u is (2π)−1∆u,
where the Laplacian is understood as a Schwartz distribution. In particular
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the empirical measure of a polynomial P of degree d is the Riesz measure of
the subharmonic function (log |P |)/d. For the general properties of conver-
gence of subharmonic functions we refer to [6, Theorem 3.2.13]. This result
will be used repeatedly and is stated for the convenience of the reader as
Theorem B in the Appendix.

The function u given by (1.1) satisfies

u(z) ≤ O(log |z|), z → ∞. (2.1)

In turn, it is well known that every subharmonic function u in the plane
which satisfies (2.1) can be represented in the form (1.1) plus a constant.
We will call functions of this form simply “potentials”; see, for example [5,
Theorem 4.2] (case q = 0).

Proof of Theorem 1. For a subharmonic function u we put

B(r, u) = max
|z|≤r

u(z)

and notice that condition (1.2) can be rewritten as

B(r, u) = u(r), r ≥ 0, (2.2)

in view of the Maximum Principle. This implies that u(r) is strictly increas-
ing for non-constant subharmonic functions u satisfying (1.2). Moreover, the
Hadamard Three Circles Theorem implies that u(r) = B(r, v) is convex with
respect to log r, so u(r) is continuous for r > 0.

First we prove the necessity of our conditions. Let fn be a sequence of
polynomials with non-negative coefficients. Then un = log |fn|/ deg fn are
subharmonic functions whose Riesz measures µn are the empirical measures
of fn. As the µn are probability measures, every sequence contains a subse-
quence for which the weak limit µ exists. This µ evidently satisfies µ(C) ≤ 1,
and µ is symmetric with respect to complex conjugation. Consider the po-
tential u defined by (1.1). This is a subharmonic function, u 6≡ −∞, and we
have un + cn → u for suitable constants cn.

For a complete discussion of the mode of convergence here we refer to the
Appendix; what we need is that un(r) + cn → u(r) at every point r > 0 and
for all other points

lim sup
n→∞

un(z) + cn ≤ u(|z|).
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As the polynomials fn have non-negative coefficients, they satisfy (1.4), and
the un satisfy (1.2). Thus u satisfies (1.2).

In the rest of this section we prove sufficiency. We start with a measure
µ such that the associated potential u in (1.1) satisfies (1.2) and

u(z) = u(z). (2.3)

The idea is to approximate u by potentials of the form (log |fn|)/ deg fn,
where the fn are polynomials with real coefficients that satisfy the assump-
tions of Theorem A. Applying Theorem A we find that fm

n has positive co-
efficients for some m. But fm

n has the same empirical measure as fn, which
is close to µ.

If u(z) = k log |z|, then we approximate u with

un(z) = kn log |z| + (1 − kn) log |z + n|,

where kn is a sequence of rational numbers such that kn → k, 0 ≤ kn ≤ 1.
For the rest of the proof we assume that u(z) is not of the form k log |z|.

The approximation of u will be performed in several steps. In each step
we modify the function obtained on the previous step, and starting with u
obtain subharmonic functions u1, . . . , u5. The corresponding Riesz measures
will be denoted by ν1, . . . , ν5. Each modification will preserve the asymptotic
inequality (2.1).

1. Fix ε > 0 and define

u1(z) = max{u(zeiα) : |α| ≤ ε}.

It is easy to see that u is the potential of some finite measure, and that
u1 → u when ε → 0. This implies that the Riesz measure of u1 is close (in
the weak topology) to that of u.

Evidently, u1 satisfies (1.2) and (2.3), and u1(re
iθ) = u(r) for |θ| ≤ ε.

Thus u1(re
iθ) = u(r) does not depend on θ for |θ| ≤ ε.

2. Choose δ ∈ (0, ε) and consider the solution v of the Dirichlet problem in
the sector

D = {z : | arg z| < δ}

with boundary conditions u1(z) and satisfying v(z) = O(log |z|) as z → ∞.
To prove the existence and uniqueness of v, we map D conformally onto the
upper half-plane, and apply Poisson’s formula to solve the Dirichlet problem.
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The growth restriction near ∞ ensures that the solution of the Dirichlet
problem is unique.

Let u2 be the result of “sweeping out the Riesz measure” of u1 out of the
sector D. This means that

u2(z) =

{

v(z) for z ∈ D,
u1(z) otherwise.

Evidently, u2 is subharmonic in the plane and satisfies (2.3). We shall prove
that u2 also satisfies the strict version of (1.2), namely

u2(z) < u2(|z|) for z /∈ [0,∞). (2.4)

In order to do so, we note first that u1 is not harmonic in any neighborhood
of the positive ray. This follows since u1(r) is not of the form u1(r) = c log r
and u1(re

iθ) does not depend on θ for |θ| ≤ ε. Because u1 is subharmonic and
v is harmonic this implies that v(r) > u1(r) for r > 0. As u1 satisfies (1.2)
we see that u2 satisfies (2.4) for δ ≤ | arg z| ≤ π. In order to prove that u2

satisfies (2.4) also for | arg z| ≤ δ, let G be the plane cut along the negative
ray and define

ψα(z) = zα/π for z ∈ G,

with the branch of the power chosen such that ψ(z) > 0 for z > 0. We claim
that for α ∈ (δ, ε), the function vα = u2 ◦ φα, extended by continuity to
the negative ray, is subharmonic in the plane. Indeed, near the negative ray
this function does not depend on arg z and it is subharmonic at all points
except the negative ray, thus it is also subharmonic in a neighborhood of the
negative ray.

The limit of these subharmonic functions vα as α → δ+ 0 is the function
vδ which is thus subharmonic. But the Riesz measure of this function vδ is
supported on the negative ray, thus

vδ(z) =

∫

1

0

log |z + t|dν(t) +

∫ ∞

1+

log
∣

∣

∣
1 +

z

t

∣

∣

∣
dν(t),

with some non-negative measure ν. It is evident from this expression that
for every r > 0 the function t 7→ vδ(re

it) is strictly decreasing on [0, π].
Thus for every r > 0, our function t 7→ u2(re

it) is strictly decreasing in the
interval [0, δ]. This, together with the fact that u2 satisfies (2.3), completes
the proof that u2 satisfies (2.4).
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3. Now we approximate our function u2 by a function u3 which is harmonic
near 0. We set

u3(z) = u2(z + ε).

Then u3 is harmonic near the origin, and using (2.4) and monotonicity of u2

on the positive ray, we obtain

u3(z) = u2(z + ε) < u2(|z + ε|) ≤ u2(|z| + ε) = u3(|z|)

for z 6= [0,∞), so (2.4) is satisfied by u3.

4. The subharmonic function u3 we constructed has the following properties:

a) it satisfies (2.4),

b) it is harmonic near the origin,

c) it is harmonic in a neighborhood of the positive ray.

To construct a function which, in addition, is also harmonic near ∞ we
consider the function

v(z) = u3(1/z) + k log |z|,

where k = ν3(C). It is easy to see that this function is subharmonic, if we
extend it to 0 appropriately. Notice that v satisfies (2.4), and it is harmonic in
an angular sector containing the positive ray (in fact in the sector | arg z| < δ).
The function w(z) = v(z + ε) also satisfies (2.4) by the same argument that
we used in Step 3 to show that u3 satisfies (2.4). Moreover, it is harmonic
near the origin and near infinity. Thus the function

u4(z) = w(1/z) + k log |z|

has all properties a), b), c) and in addition

d) it is harmonic in a punctured neighborhood of infinity.

5. As u4 is harmonic in a neighborhood of the origin, it has a representation

u4(z) = u4(0) +

∫

log

∣

∣

∣

∣

1 −
z

ζ

∣

∣

∣

∣

dν4(ζ).
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As u4 satisfies (2.3), we can write

u4(x+ iy) = u4(0) + cx+O(z2), z = x+ iy → 0,

where

c =
d

dx

(
∫

log

∣

∣

∣

∣

1 −
x

ζ

∣

∣

∣

∣

dν4(ζ)

)∣

∣

∣

∣

x=0

= −

∫

Re ζ

|ζ|2
dν4(ζ).

Property (2.4) of u4 implies that c ≥ 0. We may achieve c > 0 by adding
to u4 the potential ε log |1 + z|. This procedure changes c to c + ε. This
also makes positive the linear term in the expansion at ∞. Thus we obtain
a function u5, close to our original potential u in the weak topology, which
besides (2.3) and (2.4) also satisfies

u5(x+ iy) = ν5(C) log |z| + b/x+O(z−2), z → ∞, (2.5)

u5(x+ iy) = u5(0) + ax+O(z2), z = x+ iy → 0, (2.6)

with positive constants a and b.

6. In our final step we replace the Riesz measure of u5 by a nearby discrete
probability measure with finitely many atoms, each having rational mass.

Let µ be the Riesz measure of u5. If µ(C) < 1 we change µ to a probability
measure by adding an atom sufficiently far at the negative ray. Evidently,
this procedure does not destroy our conditions (2.3) and (2.4), and we also
still have (2.5) and (2.6) for certain positive constants a and b.

By our construction, the support of µ is disjoint from the open set

H = {z : | arg z| < δ} ∪ {z : |z| < δ} ∪ {z : |z| > 1/δ},

and replacing δ by a smaller number if necessary we may assume that this
also holds after the atom on the negative ray was added.

Let µk be any sequence of symmetric discrete measures each having
finitely many atoms of rational mass, supported outside H, and µk → µ
weakly. Let wk be the potential of µk. Clearly the wk satisfy (2.3). We show
that they also satisfy (2.4), provided k is large.

First we consider small |z|, noting that the wk are harmonic for |z| < δ.
For z = reiθ with 0 < r < δ we thus have the expansion

wk(z) =
∞

∑

n=0

an,kr
n cosnθ. (2.7)
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Hence
∂2

∂θ2
wk(z) = −a1,kr cos θ + Φk(z) (2.8)

with

Φk(z) = −
∞

∑

n=2

an,kr
nn2 cosnθ.

As the wk are harmonic for |z| < δ, the convergence to u5 is locally uniformly
there, and ∂2wk/∂θ

2 also converges there locally uniformly to ∂2u5/∂θ
2. For

0 < η < b and large k we thus have a1,k > η by (2.6). Moreover, for 0 < r0 < δ
there exists C > 0 such that |wk(z)| ≤ C for |z| = r0 and all k. By Cauchy’s
inequalities we obtain |an,kr

n
0 | ≤ C1 and hence

|Φk(z)| ≤ C2r
2 for r ≤ r0/2.

This inequality, together with (2.8) shows that wk satisfies (2.4) for |z| < r1
with some r1 independent of k.

The case of large |z| is treated similarly, using (2.5) and the transforma-
tion

u(z) 7→ log |z| + u(1/z), (2.9)

as we did before. Thus there exists r2 > 0 such that wk satisfies (2.4) for
|z| > r2.

We finally consider the case that r1 ≤ |z| ≤ r2. Recall that by the first
statement of Lemma 1, ∂2u/∂θ2 is negative on the positive ray, so we have a
positive constant c such that (∂2/∂θ2)u(reiθ) < −c in some angular sector

S := {z : | arg z| < β, r1 ≤ |z| ≤ r2}.

We conclude that

L(r) := u(r) − u(reiβ) ≥ c1 > 0 for r1 ≤ r ≤ r2.

On the interval [r1, r2] the convergence wk → u is uniform, because u and wk

are harmonic in S. On the other hand, on the compact set

K := {z : r1 ≤ |z| ≤ r2, | arg z| ≥ β}

we have wk(z) ≤ u(z)+ c1/2 for all sufficiently large k. This follows from the
general convergence properties of potentials of weakly convergent measures
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summarized in the Appendix. We conclude that wk satisfies (2.4) also for
r1 ≤ |z| ≤ r2, and hence for all z ∈ C.

Now wk is the empirical measure of some polynomial

f(z) = a0 + a1z + . . . + ad−1z
d−1 + adz

d,

and (2.4) implies that f satisfies (1.6). Clearly, a0 > 0 and ad > 0. Moreover,
since a1,k > 0 in (2.7), we see that a1 > 0. The analogous expansion after the
transformation (2.9) yields that ad−1 > 0. Thus the hypotheses of Theorem A
are satisfied. Hence fm has positive coefficients for some m. As the empirical
measure of f and fm coincide, we see that u5 is a limit of empirical measures
of polynomials with positive coefficients. As we may choose u5 arbitrarily
close to our original potential u by choosing ε sufficiently small, we see that u
is also a limit of empirical measures of polynomials with positive coefficients.
This completes the proof.

Appendix: Convergence of potentials

We frequently used various convergence properties of potentials of weakly
convergent measures which we state here for the reader’s convenience. An
excellent reference for all this material is [6].

Let µn → µ be a sequence of weakly convergent positive measures. This
means that for every continuous function φ with bounded support

∫

φdµn →

∫

φdµ, n→ ∞.

If we restrict here to C∞-functions φ with bounded support, we obtain con-
vergence in the space D′ of Schwartz distributions. Actually, for positive
measures weak convergence is equivalent to D′-convergence.

Now the sequence of subharmonic functions

un(z) =

∫

|ζ|≤1

log |z − ζ|dµn(ζ) +

∫

|ζ|>1

log

∣

∣

∣

∣

1 −
z

ζ

∣

∣

∣

∣

dµn(ζ)

converges in D′ to the potential of the limit measure µ; that is, we have

∫

φ(z)uj(z)dxdy →

∫

φ(z)u(z)dxdy (2.10)
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for every test function φ. For the convenience of the reader we include a
standard argument showing this.

First note that with

K(z, ζ) =

{

log |z − ζ|, |ζ| ≤ 1,

log |1 − z/ζ|, |ζ| > 1.

and

L(ζ) =

∫

|z|≤R

φ(z)K(z, ζ)dxdy

we have
∫

φ(z)uj(z)dxdy =

∫

φ(z)

∫

K(z, ζ)dµj(ζ)dxdy =

∫

L(ζ)dµj(ζ).

Of course, this also holds with uj and µj replaced by u and µ. Thus (2.10)
is equivalent to

∫

L(ζ)dµj(ζ) →

∫

L(ζ) dµ(ζ). (2.11)

Since | log |1 − w|| ≤ 2|w| for |w| ≤ 1/2 we find that if R > 1, then

|K(z, ζ)| ≤
2R

|ζ|
for |z| ≤ R, |ζ| > 2R.

Choosing R such that the support of φ is contained in |z| ≤ R we conclude
that

L(ζ) ≤
C

|ζ|
for |ζ| > 2R

with some constant C.
To show that (2.11) holds we choose ε > 0 and fix R1 > 2R so large

that C/R1 < ε/2. Now L is continuous and we may write L = L1 + L2

with continuous functions L1 and L2, where L1 has compact support and L2

satisfies L2(ζ) = 0 for |ζ| ≤ R1 and |L2(ζ)| ≤ |L(ζ)| ≤ C/|ζ| for |ζ| > R1.
Then

∣

∣

∣

∣

∫

L2(ζ)dµj(ζ) −

∫

L2(ζ) dµ(ζ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

L2(ζ)dµj(ζ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

L2(ζ) dµ(ζ)

∣

∣

∣

∣

≤ 2
C

R1

≤ ε
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since µj(C) ≤ 1 and µ(C) ≤ 1. We also have
∫

L1(ζ)dµj(ζ) →
∫

L1(ζ) dµ(ζ)
by the definition of weak convergence, which is equivalent to convergence
in D′. We obtain (2.11) and hence (2.10).

We cite Theorem 3.2.13 from [6] which says that this convergence of
potentials also holds in several other senses.

Theorem B. Let uj 6≡ −∞ be a sequence of subharmonic functions converg-

ing in D′ to the subharmonic function u. Then the sequence is uniformly

bounded from above on any compact set. For every z we have

lim sup
n→∞

un(z) ≤ u(z). (2.12)

More generally, if K is a compact set, and f ∈ C(K), then

lim sup
n→∞

sup
K

(un − f) ≤ sup
K

(u− f).

If dσ is a positive measure with compact support such that the potential of

dσ is continuous, then there is equality in (2.12) and u(z) > −∞ for almost

every z with respect to dσ. Moreover, ujdσ → u dσ weakly.

In this paper we deal with subharmonic functions satisfying (2.2), so u(r)
is increasing and convex with respect to log r on (0,∞). Choosing the length
element on [0, R] as dσ in Theorem B, we conclude that un → u almost
everywhere on the positive ray. For convex functions with respect to the
logarithm this is equivalent to the uniform convergence on compact subsets
of (0,∞). In particular, un(r) → u(r) at every point r > 0. As the un

satisfy (1.2), we conclude that

lim sup
n→∞

un(reiθ) ≤ u(r).

Choosing the uniform measure on the circle |z| = r as dσ in Theorem B,
we conclude that u(reiθ) ≤ u(r) almost everywhere with respect to dσ. As
u is upper semi-continuous, we conclude that u(reiθ) ≤ u(r). Thus (1.2) is
preserved in the limit.

References

[1] R. Barnard, W. Dayawansa, K. Pearce and D. Weinberg, Polynomials
with non-negative coefficients, Proc. Amer. Math. Soc., 113 (1991), 77–
85.

12



[2] V. De Angelis, Asymptotic expansions and positivity of coefficients for
large powers of analytic functions, Int. J. Math. Math. Sci., 16 (2003),
1003–1025.

[3] A. Eremenko and A. Fryntov, Remarks on the Obrechkoff inequality,
preprint.

[4] S. Ghosh and O. Zeitouni, Large deviations for zeros of random polyno-
mials with i.i.d. exponential coefficients, arXiv:1312.6195.

[5] W. K. Hayman and P. B. Kennedy, Subharmonic functions, vol. I, Aca-
demic Press, London, 1976.
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