Schwarzian derivatives of rational functions

Alex Eremenko*

August 7, 2012

1. Properties of the Schwarzian derivative,

$$
\{y, z\}=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2}, \quad \text { where } \quad{ }^{\prime}=\frac{d}{d z}
$$

1.1 Consider the second order linear differential equation

$$
\begin{equation*}
w^{\prime \prime}+G w=0 . \tag{1}
\end{equation*}
$$

If w and w_{1} are two linearly independent solutions of (1), then $y=w_{1} / w$ satisfies

$$
\begin{equation*}
\{y, z\}=2 G . \tag{2}
\end{equation*}
$$

To verify this, we recall that the Wronskian $w_{1}^{\prime} w-w_{1} w^{\prime}=c$ is constant. So we have

$$
y=\frac{w_{1}}{w}, \quad y^{\prime}=\frac{c}{w^{2}}, \quad y^{\prime \prime}=-2 c \frac{w^{\prime}}{w^{3}},
$$

and

$$
y^{\prime \prime \prime}=-2 c \frac{w^{\prime \prime} w-3 w^{\prime 2}}{w^{4}}
$$

so

$$
\{y, z\}=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2}=-2 \frac{w^{\prime \prime}}{w}=2 G
$$

In the opposite direction, if y satisfies (2) then

$$
w=\frac{1}{\sqrt{y^{\prime}}} \quad \text { and } \quad w_{1}=\frac{y}{\sqrt{y^{\prime}}}
$$

[^0]satisfy (1), which is verified by direct computation.
1.2 As a corollary we obtain
$$
\left\{y_{1}, z\right\}=\left\{y_{2}, z\right\} \quad \text { if and only if } \quad y_{1}=L \circ y_{2}
$$
where L is a fractional-linear transformation.
1.3 If y is a meromorphic function of z then $\{y, z\}$ is meromorphic, moreover, it is holomorphic except at the critical points of y, where it has poles of exactly second order. This can be verified directly, or using 1.1.
2. Regular singular points of the equation (1). A point z_{0} is called singular if G is not holomorphic at z_{0}. A singular point is regular (see $[5,6]$) if G has a pole of order at most 2 at this point. Making the change of variable $w(z)=v(1 / z), G(z)=H(1 / z)$, and $\zeta=1 / z$, we obtain
\[

$$
\begin{equation*}
\zeta^{4} v^{\prime \prime}+2 \zeta^{3} v^{\prime}+H(\zeta) v=0 \tag{3}
\end{equation*}
$$

\]

and the singular point at ∞ is regular iff

$$
\begin{equation*}
G(z)=O\left(z^{-2}\right), \quad z \rightarrow \infty \tag{4}
\end{equation*}
$$

If one solution of (2) is meromorphic in some domain D then all solutions are meromorphic in D (because all solutions are obtained from one of them by a fractional-linear transformation), and all singularities of (1) in D are regular in this case.
2.1 Suppose that 0 is a regular singular point of the equation (1). To use the general theory of regular singular points (see, for example, $[5,6]$) we write the equation in the form

$$
\begin{equation*}
z^{2} w^{\prime \prime}+P(z) w=0, \quad \text { where } \quad P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots \tag{5}
\end{equation*}
$$

Put $F(r)=r(r-1)+a_{0}$, this is called the characteristic polynomial of (5), corresponding to the point 0 . Let r_{1} and r_{2} be the two solutions of the indicial equation

$$
\begin{equation*}
F(r)=r(r-1)+a_{0}=\left(r-r_{1}\right)\left(r-r_{2}\right)=0 . \tag{6}
\end{equation*}
$$

The following cases may occur:
a) If $r_{1}-r_{2}$ is not an integer, equation (5) has two linearly independent convergent power series solutions of the form $w_{j}(z)=z^{r_{j}} Q_{j}(z), j=1,2$. Here Q_{j} are McLauren series (containing only non-negative integral powers of z.)
b) If $r_{1}-r_{2}$ is an integer, then r_{1} and r_{2} are real, because $r_{1}+r_{2}=1$ by Vieta's theorem. We label them so that $r_{1} \geq r_{2}$. Then, if $r_{1}-r_{2} \neq 0$, there are two linearly independent solutions of the form

$$
w_{1}(z)=z^{r_{1}} Q_{1}(z) \quad \text { and } \quad w_{2}=z^{r_{2}} Q_{2}(z)+C w_{1}(z) \log z
$$

where C is a constant, Q_{1} and Q_{2} are McLauren series. If $r_{1}=r_{2}$ there are two linearly independent solutions of the form

$$
w_{1}(z)=z^{r_{1}} Q_{1}(z) \quad \text { and } \quad w_{2}(z)=w_{1}(z) \log z+z^{r_{1}} Q_{2}(z)
$$

so a logarithm is always present in the general solution in this case.
2.2 We are interested in the case, when

$$
\begin{equation*}
r_{1}=r_{2}+2, \quad \text { and } \quad C=0 \tag{7}
\end{equation*}
$$

(The conditions that $r_{1}-r_{2}$ is a positive integer, and $C=0$ are necessary and sufficient for the ratio of two linearly independent solutions to be meromorphic at 0 . The additional condition $r_{1}-r_{2}=2$ ensures that this meromorphic ratio has a simple critical point at 0 .)

The first of these conditions (7), together with $r_{1}+r_{2}=1$, imply that

$$
\begin{gather*}
r_{2}=-1 / 2, \quad r_{1}=3 / 2 \quad \text { and thus by }(6) \tag{8}\\
a_{0}=P(0)=-3 / 4 \tag{9}
\end{gather*}
$$

To find the necessary and sufficient condition for $C=0$ in (7) in terms of coefficients a_{j} of P in (5), we plug the power series $w(z)=z^{r}\left(c_{0}+c_{1} z+\ldots\right)$ with $r=r_{2}=-1 / 2$ and $c_{0}=1$ into (5), where $a_{0}=-3 / 4$, according to (8). We obtain

$$
\begin{gather*}
r(r-1)+a_{0}=0 \tag{10}\\
{\left[(r+1) r+a_{0}\right] c_{1}=-a_{1} c_{0}} \tag{11}\\
{\left[(r+2)(r+1)+a_{0}\right] c_{2}=-a_{2} c_{0}-a_{1} c_{1}} \tag{12}
\end{gather*}
$$

and in general

$$
\begin{equation*}
F(r+n) c_{n}=\text { polynomial in } c_{0}, \ldots, c_{n-1}, \quad n=0,1,2, \ldots, \tag{13}
\end{equation*}
$$

where F is defined in (6). Equation (10) is satisfied because $r=-1 / 2$, and $a_{0}=-3 / 4$. Equation (11) (with $r=-1 / 2, a_{0}=-3 / 4$ and $c_{0}=1$) then implies $c_{1}=a_{1}$, and equation (12), whose left hand side is 0 , implies

$$
\begin{equation*}
a_{1}^{2}+a_{2}=0 . \tag{14}
\end{equation*}
$$

Thus if (5) has a power series solutions with properties (7), then (9) and (14) are satisfied. The converse is also true: if these two conditions are satisfied, than all coefficients c_{j} can be successively found from (13), because $F(r+n) \neq 0$ for $n \geq 3$. Thus we have

Proposition. In order that the ratio of two linearly independent solutions of (5) be meromorphic at 0, and have a simple critical point there, it is necessary and sufficient that conditions (9) and (14) be satisfied.
3. Schwarzian derivatives of rational functions. We say that a finite critical point z_{0} of a rational function f is simple if $f^{\prime \prime}\left(z_{0}\right) \neq 0$. (If $f\left(z_{0}\right)=\infty$, this has to be modified to $(1 / f)^{\prime \prime}\left(z_{0}\right) \neq 0$.)

Theorem 1. Suppose that f is a rational function whose finite critical points $z_{1}, \ldots z_{n}$ are simple. Then

$$
\begin{equation*}
\frac{1}{2}\{f, z\}=-\frac{3}{4} \sum_{k=1}^{n} \frac{1}{\left(z-z_{k}\right)^{2}}+\sum_{k=1}^{n} \frac{x_{k}}{z-z_{k}} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{m}^{2}+\sum_{k \neq m} \frac{x_{k}}{z_{m}-z_{k}}=\frac{3}{4} \sum_{k \neq m} \frac{1}{\left(z_{m}-z_{k}\right)^{2}}, \quad m=1, \ldots, n . \tag{16}
\end{equation*}
$$

Remark. Substitution

$$
x_{m}=y_{m}-\frac{1}{2} \sum_{k \neq m} \frac{1}{z_{m}-z_{k}}
$$

simplifies equations (16) to

$$
y_{m}^{2}=\sum_{k \neq m} \frac{y_{k}-y_{m}}{z_{k}-z_{m}}
$$

This equivalent form of equations (16) was obtained in [3].
Proof. Let f be a rational function with simple finite critical points z_{1}, \ldots, z_{n}. Put $G=(1 / 2)\{f, z\}$. Then G is a rational function with only poles at z_{k}, all these poles are double by 1.4 , and G satisfies (4). In particular, G has the form

$$
G(z)=\sum_{k=1}^{n} \frac{b_{k}}{\left(z-z_{k}\right)^{2}}+\frac{x_{k}}{z-z_{k}} .
$$

Now the ratio of two linearly independent solutions of (1) with this G has to be a rational function. An inspection of the cases a) and b) in section 2.1 shows that this will be the case only if at each singular point z_{k} we have $r_{1}-r_{2}$ an integer and $C=0$ (so that there are no logarithms). From the additional condition that each z_{m} is a simple critical point of f we deduce that $r_{1}-r_{2}=2$. Thus we have (9) with $a_{0}=b_{m}$ and (14) with $a_{0}=-3 / 4, a_{1}=x_{m}$ for each singular point z_{m}. This gives $b_{m}=-3 / 4$ and (16).

Theorem 2. Let z_{1}, \ldots, z_{n} be distinct complex numbers, $\left(x_{1}, \ldots, x_{n}\right)$ a solution of (16) and $G(z)$ the rational function defined by the right hand side of (15). Then:

$$
\begin{equation*}
\sum_{k=1}^{n} x_{k}=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} x_{k} z_{k}-\frac{3}{4} n=\frac{1-q^{2}}{4} \tag{18}
\end{equation*}
$$

where q is a positive integer.
Furthermore, the general solution of equation (11) with this G is a rational function of degree $(n+q+1) / 2$ having simple critical points at z_{1}, \ldots, z_{n} and a critical point of multiplicity $q-1$ at infinity.

Proof. If (16) is satisfied then the differential equation (2) defines a meromorphic function y is \mathbf{C}. All critical points of y in \mathbf{C} are simple and occur exactly at z_{1}, \ldots, z_{n}. By definition of G, we have

$$
G(z) \sim c / z, z \rightarrow \infty
$$

Suppose first that $c \neq 0$. Then, by the well-known asymptotic analysis of the equation (1) (see, for example, [5]) we conclude that y is a meromorphic function of order $1 / 2$ and has one asymptotic value. In addition, it has
finitely many critical points. It is clear that such function cannot exist. The conclusion is that $c=0$, which is equivalent to (4). Computing this c from (15) we obtain (17).

Remark. We proved that (16) implies (17). Can one prove this fact in a more direct way?

As infinity is now a regular singular point of (1), we conclude that our meromorphic function y cannot have an essential singularity, so it is rational. This implies for the equation (3), that the difference between the exponents r_{1} and r_{2} is a positive integer, and there are no logarithms in the formal solutions. Let $\lim _{z \rightarrow \infty} z^{2} G(z)=a$. The indicial equation of (3) at infinity is

$$
r^{2}+r+a=0
$$

and its solutions are

$$
r_{1}=\frac{-1+\sqrt{1-4 a}}{2} \quad \text { and } \quad r_{2}=\frac{-1-\sqrt{1-4 a}}{2}
$$

Now $q=r_{1}-r_{2}$ is a positive integer and we conclude that

$$
a=\left(1-q^{2}\right) / 4 .
$$

Computing a from (15) we obtain(18).
The critical point of y at infinity has order $q-1$, so the total number of critical points on the Riemann sphere is $n+q-1$, so y has degree $(n+q+1) / 2$.
4. Let us call two rational functions f_{1} and f_{2} equivalent if $f_{1}=L \circ f_{2}$ for some fractional-linear L by 1.2. Two rational functions are equivalent if they have the same Schwarzian derivative. An equivalence class contains a real function if and only if the Schwarzian derivative of functions of this class is real. Indeed, if there is a real function in a class than its Schwarzian derivative is real. In the opposite direction, suppose that the Schwarzian derivative $G / 2$ of a class is real. Then the differential equation

$$
\{y, z\}=G / 2
$$

has at least one real solution y_{0} (take any real initial conditions to solve the Cauchy problem). This means that there is a real function in the class, namely y_{0}.
5. Suppose that $q=1$ in (18). Then $a=0$, and the condition of absence of logarithms in the formal solution at infinity gives

$$
\sum_{k=1}^{n} x_{k} z_{k}^{2}=\frac{3}{2} \sum_{k=1}^{n} z_{k} .
$$

It is clear that $q \leq n+1$, as a rational function cannot have more than half of its critical points at infinity. In the extremal case, $q=n+1, y$ is a "polynomial" (up to a fractional-linear transformation) of degree $n+1$, and such solution of (16) is unique. The number of solutions with any fixed q can be counted using the method of [2], for example, it is the Catalan number for $q=1$. In general, for a fixed ≥ 2 and n, it is the number of chord diagrams (degenerate nets, using the terminology of [2]) with $n+1$ vertices on the unit circle, each vertex except one is the endpoint of exactly one chord, and the exceptional vertex is the endpoint of $q-2$ chords. The sum of all these numbers, for $1 \leq q \leq n+1$ gives the total number of solutions of (16). If all z_{k} are real, all these solutions are real by the result of [1].

References

[1] A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, 155 (2002), 105-129.
[2] A. Eremenko and A. Gabrielov, Wronski map and Grassmannians of real codimension 2 subspaces, Computational Methods and Function Theory, 1 (2001) 1-25.
[3] A. Eremenko and A. Gabrielov, Elementary proof of the B. and M. Shapiro conjecture for rational functions, arXiv:math/0512370.
[4] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnyh uravnenii, M-L, GITTL, 1950.
[5] E. Ince, Ordinary Differential Equations, Oliver and Boyd, Edinburgh, 1939; Dover 1944.
[6] E. T. Whittaker and G. N. Watson, A course of modern Analysis, Cambridge Univ. Press, 1902 (continuously in print since then).

[^0]: *Supported by NSF

