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1. Properties of the Schwarzian derivative,

{y, z} =
y′′′

y′
− 3

2

(

y′′

y′

)2

, where ′ =
d

dz
.

1.1 Consider the second order linear differential equation

w′′ +Gw = 0. (1)

If w and w1 are two linearly independent solutions of (1), then y = w1/w
satisfies

{y, z} = 2G. (2)

To verify this, we recall that the Wronskian w′
1
w − w1w

′ = c is constant. So
we have

y =
w1

w
, y′ =

c

w2
, y′′ = −2c

w′

w3
,

and

y′′′ = −2c
w′′w − 3w′2

w4
,

so

{y, z} =
y′′′

y′
− 3

2

(

y′′

y′

)2

= −2
w′′

w
= 2G.

In the opposite direction, if y satisfies (2) then

w =
1√
y′

and w1 =
y√
y′
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satisfy (1), which is verified by direct computation.

1.2 As a corollary we obtain

{y1, z} = {y2, z} if and only if y1 = L ◦ y2,

where L is a fractional-linear transformation.

1.3 If y is a meromorphic function of z then {y, z} is meromorphic, moreover,
it is holomorphic except at the critical points of y, where it has poles of
exactly second order. This can be verified directly, or using 1.1.

2. Regular singular points of the equation (1). A point z0 is called
singular if G is not holomorphic at z0. A singular point is regular (see [5, 6])
if G has a pole of order at most 2 at this point. Making the change of variable
w(z) = v(1/z), G(z) = H(1/z), and ζ = 1/z, we obtain

ζ4v′′ + 2ζ3v′ +H(ζ)v = 0, (3)

and the singular point at ∞ is regular iff

G(z) = O(z−2), z → ∞. (4)

If one solution of (2) is meromorphic in some domain D then all solutions
are meromorphic in D (because all solutions are obtained from one of them
by a fractional-linear transformation), and all singularities of (1) in D are
regular in this case.

2.1 Suppose that 0 is a regular singular point of the equation (1). To use the
general theory of regular singular points (see, for example, [5, 6]) we write
the equation in the form

z2w′′ + P (z)w = 0, where P (z) = a0 + a1z + a2z
2 + . . . . (5)

Put F (r) = r(r − 1) + a0, this is called the characteristic polynomial of (5),
corresponding to the point 0. Let r1 and r2 be the two solutions of the
indicial equation

F (r) = r(r − 1) + a0 = (r − r1)(r − r2) = 0. (6)

The following cases may occur:
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a) If r1 − r2 is not an integer, equation (5) has two linearly independent
convergent power series solutions of the form wj(z) = zrjQj(z), j = 1, 2.
Here Qj are McLauren series (containing only non-negative integral powers
of z.)

b) If r1 − r2 is an integer, then r1 and r2 are real, because r1 + r2 = 1 by
Vieta’s theorem. We label them so that r1 ≥ r2. Then, if r1 − r2 6= 0, there
are two linearly independent solutions of the form

w1(z) = zr1Q1(z) and w2 = zr2Q2(z) + Cw1(z) log z,

where C is a constant, Q1 and Q2 are McLauren series. If r1 = r2 there are
two linearly independent solutions of the form

w1(z) = zr1Q1(z) and w2(z) = w1(z) log z + zr1Q2(z),

so a logarithm is always present in the general solution in this case.

2.2 We are interested in the case, when

r1 = r2 + 2, and C = 0. (7)

(The conditions that r1−r2 is a positive integer, and C = 0 are necessary and
sufficient for the ratio of two linearly independent solutions to be meromor-
phic at 0. The additional condition r1−r2 = 2 ensures that this meromorphic
ratio has a simple critical point at 0.)

The first of these conditions (7), together with r1 + r2 = 1, imply that

r2 = −1/2, r1 = 3/2 and thus by (6) (8)

a0 = P (0) = −3/4. (9)

To find the necessary and sufficient condition for C = 0 in (7) in terms of
coefficients aj of P in (5), we plug the power series w(z) = zr(c0 + c1z + . . .)
with r = r2 = −1/2 and c0 = 1 into (5), where a0 = −3/4, according to (8).
We obtain

r(r − 1) + a0 = 0, (10)

[(r + 1)r + a0]c1 = −a1c0, (11)

[(r + 2)(r + 1) + a0]c2 = −a2c0 − a1c1, (12)

. . . ,
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and in general

F (r + n)cn = polynomial in c0, . . . , cn−1, n = 0, 1, 2, . . . , (13)

where F is defined in (6). Equation (10) is satisfied because r = −1/2, and
a0 = −3/4. Equation (11) (with r = −1/2, a0 = −3/4 and c0 = 1) then
implies c1 = a1, and equation (12), whose left hand side is 0, implies

a2
1
+ a2 = 0. (14)

Thus if (5) has a power series solutions with properties (7), then (9) and
(14) are satisfied. The converse is also true: if these two conditions are
satisfied, than all coefficients cj can be successively found from (13), because
F (r + n) 6= 0 for n ≥ 3. Thus we have

Proposition. In order that the ratio of two linearly independent solutions of

(5) be meromorphic at 0, and have a simple critical point there, it is necessary

and sufficient that conditions (9) and (14) be satisfied.

3. Schwarzian derivatives of rational functions. We say that a finite
critical point z0 of a rational function f is simple if f ′′(z0) 6= 0. (If f(z0) = ∞,
this has to be modified to (1/f)′′(z0) 6= 0.)

Theorem 1. Suppose that f is a rational function whose finite critical points

z1, . . . zn are simple. Then

1

2
{f, z} = −3

4

n
∑

k=1

1

(z − zk)2
+

n
∑

k=1

xk

z − zk
, (15)

where

x2

m +
∑

k 6=m

xk

zm − zk
=

3

4

∑

k 6=m

1

(zm − zk)2
, m = 1, . . . , n. (16)

Remark. Substitution

xm = ym − 1

2

∑

k 6=m

1

zm − zk

simplifies equations (16) to

y2m =
∑

k 6=m

yk − ym
zk − zm

.
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This equivalent form of equations (16) was obtained in [3].

Proof. Let f be a rational function with simple finite critical points
z1, . . . , zn. Put G = (1/2){f, z}. Then G is a rational function with only
poles at zk, all these poles are double by 1.4, and G satisfies (4). In particular,
G has the form

G(z) =
n
∑

k=1

bk
(z − zk)2

+
xk

z − zk
.

Now the ratio of two linearly independent solutions of (1) with this G has
to be a rational function. An inspection of the cases a) and b) in section
2.1 shows that this will be the case only if at each singular point zk we have
r1 − r2 an integer and C = 0 (so that there are no logarithms). From the
additional condition that each zm is a simple critical point of f we deduce that
r1−r2 = 2. Thus we have (9) with a0 = bm and (14) with a0 = −3/4, a1 = xm

for each singular point zm. This gives bm = −3/4 and (16).

Theorem 2. Let z1, . . . , zn be distinct complex numbers, (x1, . . . , xn) a so-

lution of (16) and G(z) the rational function defined by the right hand side

of (15). Then:
n
∑

k=1

xk = 0, (17)

and
n
∑

k=1

xkzk −
3

4
n =

1− q2

4
, (18)

where q is a positive integer.

Furthermore, the general solution of equation (11) with this G is a rational

function of degree (n+q+1)/2 having simple critical points at z1, . . . , zn and

a critical point of multiplicity q − 1 at infinity.

Proof. If (16) is satisfied then the differential equation (2) defines a mero-
morphic function y is C. All critical points of y in C are simple and occur
exactly at z1, . . . , zn. By definition of G, we have

G(z) ∼ c/z, z → ∞.

Suppose first that c 6= 0. Then, by the well-known asymptotic analysis of
the equation (1) (see, for example, [5]) we conclude that y is a meromorphic
function of order 1/2 and has one asymptotic value. In addition, it has
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finitely many critical points. It is clear that such function cannot exist. The
conclusion is that c = 0, which is equivalent to (4). Computing this c from
(15) we obtain (17).

Remark. We proved that (16) implies (17). Can one prove this fact in a
more direct way?

As infinity is now a regular singular point of (1), we conclude that our
meromorphic function y cannot have an essential singularity, so it is rational.
This implies for the equation (3), that the difference between the exponents
r1 and r2 is a positive integer, and there are no logarithms in the formal
solutions. Let limz→∞ z2G(z) = a. The indicial equation of (3) at infinity is

r2 + r + a = 0,

and its solutions are

r1 =
−1 +

√
1− 4a

2
and r2 =

−1−
√
1− 4a

2
.

Now q = r1 − r2 is a positive integer and we conclude that

a = (1− q2)/4.

Computing a from (15) we obtain(18).
The critical point of y at infinity has order q − 1, so the total number of

critical points on the Riemann sphere is n+q−1, so y has degree (n+q+1)/2.

4. Let us call two rational functions f1 and f2 equivalent if f1 = L ◦ f2
for some fractional-linear L by 1.2. Two rational functions are equivalent
if they have the same Schwarzian derivative. An equivalence class contains
a real function if and only if the Schwarzian derivative of functions of this
class is real. Indeed, if there is a real function in a class than its Schwarzian
derivative is real. In the opposite direction, suppose that the Schwarzian
derivative G/2 of a class is real. Then the differential equation

{y, z} = G/2

has at least one real solution y0 (take any real initial conditions to solve
the Cauchy problem). This means that there is a real function in the class,
namely y0.
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5. Suppose that q = 1 in (18). Then a = 0, and the condition of absence of
logarithms in the formal solution at infinity gives

n
∑

k=1

xkz
2

k =
3

2

n
∑

k=1

zk.

It is clear that q ≤ n + 1, as a rational function cannot have more than
half of its critical points at infinity. In the extremal case, q = n + 1, y is a
“polynomial” (up to a fractional-linear transformation) of degree n+ 1, and
such solution of (16) is unique. The number of solutions with any fixed q can
be counted using the method of [2], for example, it is the Catalan number for
q = 1. In general, for a fixed ≥ 2 and n, it is the number of chord diagrams
(degenerate nets, using the terminology of [2]) with n + 1 vertices on the
unit circle, each vertex except one is the endpoint of exactly one chord, and
the exceptional vertex is the endpoint of q − 2 chords. The sum of all these
numbers, for 1 ≤ q ≤ n+ 1 gives the total number of solutions of (16). If all
zk are real, all these solutions are real by the result of [1].
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