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The following system of algebraic equations was derived in [3], in the
study of the linear differential equations whose all solutions are polynomials:

x2

k =
∑

j 6=k

xj − xk

aj − ak
, k = 1, . . . , n (1)

Here a = (a1 . . . , an) is a vector of parameters with all coordinates distinct.
It follows from the results of [2] (see also [3] where simpler proofs are given)
that this system has the following properties:

(i) If all ak are real, then all solutions (x1, . . . , xn) are real.

(ii) All solutions vary analytically, as functions of parameters in the region
D = {a : a1 < a2 < . . . < an} ⊂ Rn.

(iii) All solutions satisfy x1 + . . .+ xn = 0, and

(n+ 1)2 − 4
n

∑

k=1

xkak = s2,

where s is an integer such that n+ s is odd.

Boris Shapiro, while experimenting with the system (1) on a computer,
made the following empirical observations:
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a) Solutions occur with multiplicities s, where s is defined in (iii).

b) The number of solutions of multiplicity s is

2s

n+ s+ 1

(

n
(n+ s− 1)/2

)

,

c) If the equation x1 + . . . + xn is added to the system, then all solutions
become simple.

Observation (b) can be visualized in the form of a table, which is called
Catalan’s triangle (with zeros):

n s = 1 2 3 4 5 6 7 8 9

0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1
5 0 5 0 4 0 1
6 5 0 9 0 5 0 1
7 0 14 0 14 0 6 0 1
8 14 0 28 0 20 0 7 0 1

The rows of this table correspond to n = 0, 1, 2 . . ., and the columns to
s = 1, 2 . . .. The numbers show how many distinct solutions of multiplicity
s the system has. The non-zero entries of the first and second columns are
Catalan numbers. The table has the property that each entry is the sum of
two entries of the previous row, one on the left and one on the right, so it is
similar to Pascal’s triangle. This can be easily seen from the expression in
b). It follows that the sum of multiplicities of all solutions for a given n is
2n, as predicted by the Besout theorem.

The purpose of this paper is to explain Shapiro’s observations a), b) and
c). It turns out that the question is related to linear differential equations
whose general solution is an elementary entire function, a sum of polynomials
multiplied by exponentials.

Consider a linear differential equation

Ay′′ − A′y′ + Cy = 0, where A(z) = (z − a1) . . . (z − an), (2)

2



with distinct ak, and C is a polynomial, degC ≤ degA.
If all solutions y are entire functions, then there is a basis of solutions of

the form (R1(z)e
λz, R2(z)e

−λz), where Ri are polynomials. This is a theorem
of Halphen [5], see also [6, 15.5].

Suppose that A is a given polynomial of degree n with distinct roots, and
let us try to find all polynomials C of degree at most n, with given leading
coefficient −c, and such that there exists a pair of linearly independent entire
solutions without common zeros. Let us denote

P (z) := −A′

A
=

n
∑

k=1

−1

z − ak
, and Q(z) =

C

A
= −c+

n
∑

k=1

xk

z − ak
. (3)

Equation (2) has regular singularities at the points ak, and the condition that
there are two linearly independent entire solutions without common zeros
implies that in a neighborhood of each singularity there exists a holomorphic
solution y of the form

y(z) = 1 + c1(z − ak) + c2(z − ak)
2 +O(z − ak)

3. (4)

Writing the equation in the canonical form in a neighborhood of ak, as

(z − ak)y
′′ + Pk(z)y

′ +Qk(z)y = 0, (5)

where

Pk(z) = −1 + pk(z − ak) +O(z − ak)
2, where pk =

∑

j 6=k

1

aj − ak
,

and

Qk(z) = xk + qk(z − ak) +O(z − ak)
2, where qk = −c−

∑

j 6=k

xj

aj − ak
,

and substituting (4) into (5), we obtain

c1 = xk,

and
pkc1 + xkc1 + qk = 0, (6)

so
x2

k = −pkxk − qk.
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Recalling the expressions for pk, qk, we obtain the following necessary con-
dition for the equation (2) to have two linearly independent entire solutions
without common zeros:

x2

k =
∑

j 6=k

xj − xk

aj − ak
+ c, k = 1, . . . , n. (7)

This is a generalization of (1) that we need.

Example 1 If n = 1, we have x2

1
= c, so x1 = ±√

c. Suppose that c is
positive, and denote the positive square root of c by λ. Choosing a1 = 0 we
obtain two differential equations

zy′′ − y′ − (λ2z ± λ)y = 0.

Taking the plus sign in parentheses we easily find two linearly independent
solutions

y1(z) = (2λz − 1)eλz, y2(z) = e−λz.

Minus sign in parentheses gives a pair (y1(−z), y2(−z)). If c = 0, we have
only one equation,

zy′′ − y′ = 0,

with a pair of linearly independent solutions (z2, 1).
The ratio (y1 + y2)/(λ

2y2) is a meromorphic function

λ−2
(

(2λz − 1)e2λz + 1
)

,

which tends to 2z2 as λ → 0.

Example 2 If n = 2, we take a1 = −1 and a2 = 1. Then

x2

1
= (x2 − x1)/2 + c, x2

2
= (x2 − x1)/2 + c,

so x2

1
= x2

2
. This gives us four solutions and four differential equations:

If x1 = x2 = ±√
c = ±λ, then the differential equations are

(z2 − 1)y′′ − 2zy′ − (λz ± 1)2y = 0.

If x1 = −x2, we obtain x1 = −1/2±
√

1/4 + λ2, and the differential equations
are

(z2 − 1)y′′ − 2zy′ − (λ2(z2 − 1) + z ±
√
1 + 4λ2)y = 0.
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Proposition 1 Condition (7) is necessary and sufficient for a differential
equation (2) to have two linearly independent entire solutions of the form
y(z) = R(z)eλz, where λ = ±√

c, and R a polynomial.
In particular, condition (7) with c = 0 is necessary and sufficient for the

equation (2) to have a basis of polynomial solutions.

Proof. It remains to prove sufficiency. From (5) we conclude that all
singular points in C are regular, with exponents 0 and 2. Condition (6)
guarantees that there is a power series solution corresponding to the smaller
exponent. This implies that there are two linearly independent holomorphic
solutions in a neighborhood of each singular point. Thus all solutions are
entire functions. By the theorem of Halphen mentioned in the beginning,
there is a basis of solutions of the form R(z)eλz. Substituting this form to
the equation we find that λ = ±√

c. This proves the proposition. ✷

Proposition 2 If c = 0, then every solution of the system (7) has the fol-
lowing properties:

n
∑

k=1

xk = 0, (8)

(n+ 1)2 − 4
n

∑

k=1

xkak = s2, (9)

where s is an integer such that n+ s is odd, and 1 ≤ s ≤ n+ 1. In addition,

if all ak are real then all xk are real. (10)

The integer s is the local degree at infinity of the rational function y1/y2.

This was proved in [3].

Comments. System (7) with c = 0 has a trivial solution x1 = . . . = xn = 0
which corresponds to the polynomial of degree n + 1 with critical points
a1, . . . , an. In this case s = n + 1. The opposite case is that s = 1 (possible
only when n is even) and we have rational functions with n prescribed simple
critical points. This case is characterized by the condition

q∗ = (n2 + 2n)/4.

Now we recall some relevant facts from [2, 3]. Let c = 0, and let all aj be
real. Solutions of (7) are parametrized by their nets. A net is the preimage of
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the real line under the real rational function f = y1/y2, where y1 and y2 are
real linearly independent real solutions of (2). There is a natural equivalence
relation on the nets. The points aj are simple critical points of those rational
functions f . If n is even, there are solutions of degree n/2 + 1 whose only
critical points are the aj. In addition, there are solutions which correspond
to rational functions having a critical point at infinity. If n is odd, there
is always a critical point at infinity. The critical point at infinity can be
multiple. For given real a1, . . . , an, there is a unique solution with given net.
So distinct solutions can be counted by counting the nets.

Now suppose that c > 0. Now solutions of the differential equation con-
tain real exponentials exp±√

cz. Their ratios are meromorphic functions
which still have all their critical points at aj, all these critical points being
simple. Each of these functions has two real asymptotic values, correspond-
ing to the curves tending to infinity “to the right” and “to the left”. Let
us consider the nets of these meromorphic functions. They are like nets of
the rational functions with two exceptions: the number of edges and faces is
now infinite, and an edge can go from infinity to infinity. We introduce the
following classification of the edges.

Edges beginning and ending on the real line, are of the first kind.
Edges going from a vertex on the real line to infinity are of the second

kind.
Edges going from infinity to infinity are of the third kind.
Evidently, there are finitely many edges of the first and second kind, (no

more than the number of critical points), and infinitely many edges of the
third kind. Our meromorphic functions have two distinct real asymptotic
values, α1 and α2, say α1 on the left, and α2 on the right.

Each end at infinity of each edge of the second or third kind is an asymp-
totic curve. So these ends can be labeled by asymptotic values. Clearly two
ends of one edge of the third kind cannot be labeled by the same asymptotic
value. (f is monotone on each edge!) Speaking a bit informally, every edge
of the third kind goes from left to right. Denote by s−1 the number of edges
of the second kind in the upper half-plane. Every edge of the second kind
goes from its vertex on the real axis either to the left or to the right, that is
on this edge f tends either to α1 or to α2 as z → ∞.

Let b1 < . . . < bs−1 be the vertices on the real line from which the
edges e1, . . . , es−1 of the second kind begin. If some ek goes to the left, then
evidently all edges from bj with j < k go to the left as well. So we introduce
the rightmost edge em of the second kind that goes to the left, it begins at
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Figure 1:

bm, where 0 ≤ m ≤ s− 1. All edges of the second kind on the right of em go
to the right. This number m is the additional parameter which distinguishes
the nets with given edges of the first and second kinds. The net is completely
determined by its edges of the first and second kinds and the numbers m.

When c becomes small, our meromorphic function tends to the rational
function. This rational function has edges of the first and second kind only
(the edges of the third kind disappear at infinity. So exactly s transcendental
nets collide to one rational net.

This explains the observed multiplicities and it remains to prove this.

Proposition 3 For each rational function f0 with n real simple critical points,
and a point at infinity of multiplicity s, and for each sufficiently small pos-
itive c, there are exactly s classes of transcendental meromorphic functions
close to f0, of order one normal type, with n simple critical points close to
the critical points of f0.

Proof. We use the construction from [2] (the simple part of that paper).
To construct a rational function with given net, we used labeling of the net.
Labeling is a function on the set of edges, with positive values, taking equal
values on the edges symmetric with respect to the real line, and satisfying the

7



following relations: for each face, the sum of the labellings of the boundary
edges of this face is equal to 2π. For a rational function, the label of an edge
is just the spherical length of its image.

Whenever any labeling of a net satisfying the conditions stated above is
given, one can construct a function with this net and labeling, unique up to
a fractional linear transformation of the independent variable, and up to a
rotation of the sphere in the image. Similar construction can be performed
in the transcendental case [9]. There is one substantial analytic difficulty
in the transcendental case: the type problem. The construction of a mero-
morphic function with given net and labeling relies on the Uniformization
Theorem. As for a transcendental function the Riemann surface in question
is non-compact, there can be a priori two possible outcomes: a meromorphic
function in the plane, or a meromorphic function in the unit disc. Fortu-
nately, for our simple kind of nets this was solved: it is always the plane.
Three different proofs are available, none of them simple: [8], [1] and [4]. This
result of Nevanlinna not only says that the Riemann surface is of parabolic
type but also that the uniformizing function satisfies a differential equation
(2), that is it is a combination of polynomials with two exponentials.

Now we explain how to prescribe the labeling. Let p0 be the labeling
of the given rational function f0, and suppose that our rational function is
normalized somehow, using three points on the real line, but normalization
and labeling imply that f0(∞) = ∞. Let e1, . . . , es−1 be the edges in the
upper half-plane which go to infinity, e0 the edge on the real line which
goes to −∞, and m a given integer in [0, s − 1]. We modify the labeling of
edges e0, . . . , em only. The labeling of all other edges will remain the same,
and normalization will remain the same. Namely we shorten the labels of
em, em−2, . . ., of every other edge beginning from em, by ǫ, and make the
labels of em−1, em−3, . . . longer by ǫ. (So, for example, p(e0) becomes shorter
if m is even, and longer if m is odd). Evidently this preserves the labeling
condition for all faces except one, let’s call is G: this is the one adjacent to
em on the right. The sum over the boundary of this face will be 2π − ǫ. To
compensate we add an edge of the third kind inside G, and label it ǫ. This
new edge breaks G into two parts, let G1 be that part whose boundary does
not intersect the real line. We break G1 further into infinitely many faces by
adding infinitely many edges of the third kind, and label all these edges of
the third kind by ǫ. This is the end of the construction.

By the result of Nevanlinna cited above, to any of these nets corresponds
some meromorphic function fm,ǫ which is of the form fm,ǫ(z) = R1(z)e

ǫz +
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R2(z), with rational functions R1 and R2.
Now it should be clear that for ǫ small enough we can achieve any pre-

scribed position of the critical points near those of f0. This proves the propo-
sition.

✷

Now, applying the argument of [3], we obtain the following:

Theorem 4 If a meromorphic function of order one, normal type has finitely
many critical points, all of them real, then it is equivalent to a real function.
All solutions of the system (7) with real a and (any!) positive c are real.
There are exactly 2n of them and they are all simple. For any fixed c > 0,
the solutions vary analytically, as functions of a in the region D.

This also explains observations a) and b) in the beginning. It remains to
explain observation c). We will show that c 6= 0 implies x1+x2+ . . .+xn 6= 0.
Indeed, x1 + . . .+ xn is the sum of the residues of the function

C/A = −y′′/y + (y′/y)A′/A.

we substitute here a solution y(z) = P (z) exp(λz), where P is a polynomial
of the larger degree occurring in solutions, and λ =

√
c 6= 0. We obtain

C/A = −P ′′/P − 2λP ′/P + λ2 + (P ′/P + λ)(A′/A).

As all residues of P ′/P and A′/A are 1, we conclude that the sum of the
residues of C/A over finite poles is λn− 2d, where d = degP . As n ≤ 2d− 2
we conclude that the sum of the residues is not zero.

Remark. Of course, it is strange to use the hard analytic result of Nevan-
linna in this situation, to prove a local result about an algebraic equation. It
is desirable to find fm,ǫ by some explicit perturbation of f0 once we know the
form of this perturbation. But I could only do this in Example 1 above.

2. System (1) can be generalized to m-tuples of linearly independent poly-
nomials. We take m = 3.

Instead of (2) we obtain

Ay′′′ + By′′ + Cy′ +Dy = 0, (11)

where
A = −w(y1, y2, y3), B = −A′, D = w(y′

1
, y′

2
, y′

3
),
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and

C =

∣

∣

∣

∣

∣

∣

y1 y2 y3
y′′
1

y′′
2

y′′
3

y′′′
1

y′′′
2

y′′′
3

∣

∣

∣

∣

∣

∣

.

As earlier, we have

degB < degA, degC < degA degD < degA,

so denoting P = B/A, Q = C/A and R = D/A we obtain

Q(z) =
n

∑

j=1

tj
z − aj

, R(z) =
n

∑

j=1

xj

z − aj
, (12)

and P has the same expression as in (3).
Now we write the conditions on tj and xj which express the fact that all

solutions of the differential equation

y′′′ + Py′′ +Qy′ +Ry = 0 (13)

are polynomials. The derivation is similar to that done before. The resulting
system is

x2

k =
∑

j 6=k

xj − xk

aj − ak
− tk

xktk =
∑

j 6=k

tj − tk
aj − ak

.

For fourth order equations, the corresponding system is:

x2

k =
∑

j 6=k

xj − xk

aj − ak
− 2tk

xktk =
∑

j 6=k

tj − tk
aj − ak

− wk

xkwk =
∑

j 6=k

wj − wk

aj − ak
.

Notice the peculiar feature of these systems: all equations, except the first
group are linear with respect to x, t and w.
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