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In the early 1990s, Bessis and Zinn-Justin experimentally
discovered the surprising fact that all eigenvalues of the boundary
value problem

−w ′′ + ix3w = Ew , w(±∞) = 0

are real. To explain this, Bender and Boettcher (1998) noticed
that the potential V (x) = ix3 has the following symmetry property
V (−x) = V (x), which is called PT-symmetry. All PT-symmetric
problems have eigenvalues symmetric with respect to complex
conjugation, but they are non necessarily real. To understand what
happens in this case, Bender and Boettcher proposed to study
one-parametric family of PT-symmetric equations boundary value
problems

−w ′′ + x2M(ix)εw = Ew , w(x) → 0, x → ∞, x ∈ Γ.

Here ε and the principal branch is used, so the branch cut is the
positive imaginary ray.



When the normalization contour is the real line, and ε = 0, the
problem is self-adjoint and we have a sequence of real eigenvalues
tending to +∞. For sufficiently small |ε| Bender and Bottcher
observed interesting phenomena: all eigenvalues remain real when
ε > 0 while only finitely many are real for ε < 0.
For larger values of |ε| the normalization contour must be
continuously deformed to ensure eigenvalues vary continuously
with ε, as explained below.
Notice that:
(M, ǫ) = (1, 0) gives harmonic oscillator, (M, ǫ) = (2, 0) a quartic
oscillator, both with real positive spectra, while
(M, ǫ) = (1, 1) is the cubic oscillator of Bessis and Zinn-Justin.
When ǫ = −M we have no eigenvalues at all.



The Stokes rays

are those rays in the complex plane on which V (z)dz2 < 0, and
the sectors between them are called the Stokes sectors. The theory
of ODE says that for each Stokes sector S we have a
one-dimensional family of solutions which tend to 0 exponentially
on rays in S , while all other solutions grow exponentially on rays in
S . Those which tend to zero in S are called subdominant in S . No
non-trivial solution can be subdominant in adjacent sectors. For
two non-adjacent sectors, the condition that there is a non-trivial
solution subdominant in both of them can be considered as a
boundary condition: such solution exists only when the spectral
parameter E takes some discrete values. So we have a spectrum
associated with any pair of non-adjacent Stokes sectors. The
number of full sectors between these two normalization sectors is
called the level of the PT-symmetric problem. If the normalization
sectors contain the positive and negative rays, and ε = 0, the level
equals M.





When ε0 6= 0 we choose the normalization contour so that it tends
to the real line by continuous deformation when ε changes from ε0
to 0. This means that the level of our boundary value problem is
always M.
We start with a problem of level M, ε = 0, Γ = R. When ε
increases, the contour Γ bends down, and the computation of
Bender and Boettcher shows that all eigenvalues remain real.
When ε decreases, the contour Γ bends up, and almost all
eigenvalues become non-real, except when ε is a negative integer
> −M at this moment they suddenly become all real again. When
ǫ → −M, all eigenvalues tend to ∞ and disappear (Airy’s
equation).
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Figure: Case M = 1. Real eigenvalues as functions of ǫ.
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Figure: Case M = 2.
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Figure: Case M = 3.



Known results.

1. When ε is an integer, and M + ǫ > 0, all eigenvalues are real
(K. Shin, 2005).
2. When ε > 0, all eigenvalues are real (Dorey, Dunning, Tateo,
2007)
Both results contain the conjecture of Bessis and Zinn-Justin
((M, ε) = (1, 1)), which was originally proved by Dorey, Dunning
and Tateo (2001) and all known reality proofs are based on
extension their method.
We will prove that all but finitely many eigenvalues are non-real
when ε ∈ (−M, 0) and ǫ is not an integer.



Theorem.

If M = 1, ǫ ∈ (−1, 0), almost all eigenvalues are non-real. Their
arguments accumulate to

±π
ǫ

4 + ǫ
.

If M = 2, ǫ ∈ (−2, 0)\{−1}, then almost all eigenvalues are
non-real. Their arguments accumulate to

±π
ǫ

6 + ǫ
.



Auxiliary self-adjoint problem

Eigenvalues of our problems are zeros of an entire function which
we call the spectral determinant. (Usually there is a natural choice
of this function). Let

m = 2M + ǫ

and consider the self-adjoint problem

− y ′′ + (zm + λ)y = 0, (1)

with the boundary conditions y(0) = y(+∞) = 0. This problem is
self-adjoint and its spectral determinant is given by the following
theorem which is essentially due to Sibuya.



Sibuya’s Theorem.

For every λ there exists a unique solution y0 of (1) satisfying

y0(z , λ) = (1 + o(1))z−m/4 exp

(

− 2

m + 2
z

m+2
2 − λ

2−m
z

2−m
2

)

,

as z → +∞, | arg z | < 3π/(m + 2)− δ, δ > 0. The limit
f (λ) = limz→0+ y0(z , λ) exists and is an entire function of λ. Its
order is

ρ =
1

2
+

1

m
.

This entire function f is the spectral determinant of our
self-adjoint problem: its zeros are exactly the negative of the the
eigenvalues. So all these zeros lie on the negative ray.



It turns out that this function f contains complete information on
all other boundary value problems of the type we consider (with
homogeneous boundary conditions at ∞). More precisely, the
spectral determinants of all these problems have expressions in
terms of f .
For example, when M = 1 the spectral determinant C (λ) of the
PT-symmetric problem is

C (λ) =
ω1/2f (ω2λ) + ω−1/2f (ω−2λ)

f (λ)
. (2)

The fact that this fraction is entire (that is that zeros of the
numerator contain the zeros of the denominator) is a highly
restrictive property, and under some mild additional conditions it
determines f uniquely. This fact is the basis of A. Voros’s method
of finding eigenvalues of our (self-adjoint) problem.
Our main object is the zeros of C . To study them, we use an
asymptotic expansion of f .



Theorem 2.

f (λ) = λ−1/4 exp(Kmλ
ρ)Φ(λρ),

where

Φ(µ) = 1 +

[m]
∑

n=1

cnµ
−n +

1

8
Γ(m + 1)µ−m + O(µ−κ),

as |λ| → ∞, | arg λ| < π − δ, δ > 0, κ > m.

In fact there is a full asymptotic expansion in powers of µ = λρ,
but these powers are from the set

Λ = {k1 + k2m : k1, k2 ∈ N>0},

and the crucial fact for our argument is that the first non-integer
power of µ in this expansion occurs with non-zero coefficient.



Derivation of Theorem 1 from Theorem 2
Indicator of an entire function f is defined by

hf (θ) = lim sup
r→∞

log |f (re iθ)|
rρ

.

For all functions considered here, the limit exists, except for finitely
many θ. Indicator helps to visualize he principal term of the
asymptotics. When M = 1, ǫ < 0, m ∈ (1, 2), ρ ∈ (1, 3/2) the
indicator of f looks like this:



Indicators of the summands in the numerator of C :



On the interval |θ| < πǫ/(4 + ǫ) indicators coincide, and we want
to know whether a cancellation happens on this interval.
Substituting our precise asymptotics from Theorem 2, we find that
all terms with integer powers of λρ cancel, but the first non-integer
power does not. This shows that the summands have different
asymptotics on this interval, so there are no zeros in the
corresponding sector.
When ǫ is an integer, then m is also integer, and all terms of the
asymptotics in the numerator cancel in our sector. In fact all zeros
of C are positive according to Shin’s result.



To show that there are only finitely many real zeros, it remains to
consider what happens on the negative ray. The picture of
indicators shows that there are zeros of the numerator there, and
we can find their precise asymptotics, using the asymptotics of the
summands. On the other hand, we also know the precise
asymptotics of the zeros of the denominator,
and we know that the ratio is an entire function. This permits to
conclude that almost all zeros of the numerator must cancel with
the zeros of the denominator.
So the only rays to which the zeros of C (λ) can accumulate are
those stated in our theorem.



For M = 2, the formula for the spectral determinant is the
following:

D(λ) =
ωf (ωλ)f (ω3λ) + ω−1f (ω−1λ)f (ω−3λ) + f (ω3λ)f (ω−3λ)

f (ωλ)f (ω−1λ)
.

The indicators of the summands in the numerator are look like this:



Again we have an interval around θ = 0 where two largest
indicators are equal. The presence of a term with non-integer
exponent in the asymptotics implies that there is no cancellation
on this interval, and that the corresponding sector is free of
eigenvalues. There are two other rays near which the numerator
has zeros. But these zeros cancel with zeros of denominator,
except finitely many.
We believe that similar arguments can be used for every M, but
the calculation of spectral determinants and their indicators
becomes more complicated.



Sketch of the proof of Theorem 2.
In the equation

y ′′ = (zm + λ)y ,

we make the change of the variables w(z) = y(λ1/mz) which
reduces it to

w ′′ = µ2(zm + 1)w , µ = λρ.

Following Liouville, we change the independent variable to

ζ = Φ(z) =

∫ z

0

√
tm + 1dt,

and set

u(ζ, µ) = (zm + 1)1/4w(z , µ), z = Φ−1(ζ).

This new function satisfies

u′′ = µ2u + gu,
(

u′′ = d2u/dζ2
)

(3)

with some function

g(ζ) = O(ζ−2), ζ → ∞, g(ζ) =
1

4
m(m − 1)ζm−2, ζ → 0.



Equation (3) is equivalent to the integral equation

u(ζ, µ) = e−µζ +
1

µ

∫

∞

ζ
sinhµ(t − ζ)g(t)u(t, µ)dt.

Finally we set F (ζ, µ) = eµζu(ζ, µ) and the integral equation
simplifies to

F (ζ, µ) = 1 +
1

2µ

∫

∞

ζ

(

1− eµ(ζ−t)
)

g(t)F (t, µ)dt,

which is solved by the usual iteration method:



F = 1+
∞
∑

n=1

(2µ)−nTn
µ[1],

where

Tµ[F ](ζ) =

∫

∞

ζ

(

1− eµ(ζ−t)
)

g(t)F (t)dt.

The principal term with non-integer exponent comes from

Tµ[1](0) =

∫

∞

0
g(t)dt +

∫

∞

0
e−µtg(t)dt.

First summand is constant while the second summand is

1

4
Γ(m + 1)µ1−m + O(µ−m).



It remains to deal with the rest of our iterated integrals, to make
sure that all terms with non-integer exponents coming from them
are smaller than those coming from the principal term.
These integrals are of the form

Tn
µ[1](0) =

∫

∞

0

(

1− e−tµ
)

g(t)

∫

∞

t

(

1− eµ(t−t1)
)

g(t1)×
∫

∞

t1

(

1− eµ(t1−t2)
)

g(t2) . . .

∫

∞

tn−2

(

1− eµ(tn−2−tn−1)
)

g(tn−1) dtn−1dtn−2 . . . dt1dt.



Making the change of the variables

x1 = t, x2 = t1 − t, x3 = t2 − t1 . . . , xn = tn−1 − tn−2

and breaking out integral into 2n summands, we obtain the
integrals of the form

In,J =

∫

∞

0
. . .

∫

∞

0
e−µL(x)g(x1)g(x2) . . . g(x1+. . .+xn) dxn . . . dx1,

where L(x) =
∑

j∈J xj , and J ⊂ {1, . . . , n}. Then we have the
following
Lemma.

µ−nIn,J =

[α]+n+1
∑

k=0

ckµ
−k + O(µ−α−1−n).


