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Abstract

A survey of general results on the singularities of inverses to mero-
morphic functions is given, with applications to holomorphic dynam-
ics. This is a lecture delivered at the workshop “The role of complex
analysis in complex dynamics” in Edinburgh on May 22 2013, with
corrected mistakes and updated references.

1. Definition of singularities

Let f : D → G be a non-constant holomorphic map between Riemann
surfaces. Let z0 be a point in D such that f ′(z0) 6= 0. Then by the inverse
function theorem there exists a neighborhood V of the point w0 = f(z0) and
a holomorphic map φ : V → D, such that f ◦ φ = idV .

What happens when we perform an analytic continuation of φ? Let γ :
[0, 1]→ G be a curve from w0 to w1 and suppose that an analytic continuation
of φ along γ is possible for t ∈ [0, 1), and let us see what can happen when
t→ 1.

Consider the image Γ(t) = φ(γ(t)). There are two possibilities:
a) The curve Γ(t) has a limit point z1 ∈ D as t → 1. By continuity we

have f(z1) = w1. Now we conclude that the limit set of Γ(t) must consist
of one point, because otherwise the limit set of the curve Γ would contain a
continuum, while the preimage of a point under f is discrete. Thus Γ ends
at z1. If f ′(z1) 6= 0, then the analytic continuation of φ to w1 is possible, and
if f ′(z1) = 0, then φ has an algebraic singularity (branch point) at w1.
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b) The curve Γ(t) tends to ∞, where ∞ is the added point of the one-
point compactification of D. In this case Γ is an asymptotic curve of f which
means that Γ is a curve in D parametrized by [0, 1), Γ(t) → ∞ as t → ∞,
and f(γ(t)) has a limit in G as t → 1. The limits of f along asymptotic
curves are called asymptotic values.

Thus non-algebraic singularities of the inverse function f−1 correspond
to asymptotic curves of f .

To obtain a one-to-one correspondence, we have to define precisely the no-
tion of singularity, and to introduce some equivalence relation on the asymp-
totic curves. But first we notice the following:

Proposition 1. If G contains no critical values and no asymptotic values,
then f : D → G is a covering map.

We recall that a continuous map f is called a covering if every point w1

in the image has a neighborhood V such that every component of f−1(V )
is mapped onto V homeomorphically. An equivalent property is that every
path in the image has a unique lifting. In our situation this is equivalent to
saying that φ can be analytically continued along any path in G.

Now we give an exact definition of a singularity of the inverse function.
Let us assume that f(D) is dense in G. Let us fix a point a ∈ G. Every
neighborhood V of a has non-empty open preimage. Consider a map S which
to every neighborhood V of a puts into correspondence some component S(V )
of f−1(V ), so that the following condition is satisfied

V1 ⊂ V2 −→ S(V1) ⊂ S(V2).

Then there are two possibilities:
a) Intersection of all S(V ) is not empty. Then it must consist of one point

z ∈ D such that f(z) = a. Indeed, let this intersection contain a point z,
and let U be a neighborhood of z then f(U) is a neighborhood of a, and
there exists a neighborhood V of a such that V ⊂ f(U). This implies that
S(V ) ⊂ U . So ∩V S(V ) consists of one point z.

b) Intersection of all S(V ) is empty. Then we say that our map S defines a
transcendental singularity of f−1. We say that the transcendental singularity
S lies over a, and that a is the projection of the singularity S.

Introduction of transcendental singularities is a sort of completion of D
to which our function f extends continuously. Let Sing(f) be the set of all
transcendental singularities, and Df = D ∪ Sing(f), the disjoint union. We
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define the topology on Df as follows: the neighborhoods of a point in D are
its usual neighborhoods, and the neighborhoods of a point S ∈ Sing(f) are
the sets S(V ) ∪ {S}. So the sets S(V ) are punctured neighborhoods of S.
We can define f(S) = a if S lies over a, and this extension of f to Df is
continuous.

It is easy to see that for each transcendental singularity S over a there
exists a curve Γ : [0, 1) → D such that for every neighborhood V of a we
have f(Γ(t)) ∈ V for all t sufficiently close to 1. Thus Γ is an asymptotic
curve with asymptotic value a. And conversely, if Γ is an asymptotic curve
with asymptotic value a, then we choose as S(V ) to be that component of
f−1(V ) which contains Γ(t) for t sufficiently close to 1, and this defines a
transcendental singularity.

If S is a transcendental singularity, then all regions S(V ) are unbounded.
They are called tracts of f over a.

One can also define transcendental singularities as elements of the com-
pletion of D with respect to some metric. Suppose that G is equipped by
some intrinsic metric σ. “Intrinsic” means that the distance between two
points is equal to the infimum of the lengths of curves connecting these two
points, for example, any smooth Riemannian metric is intrinsic. The pull-
back ρ = f ∗σ is an intrinsic metric in D defined as follows: the ρ-length of
a curve in D is the σ-length of its image. So f becomes a local isometry
(D, ρ)→ (G, σ).

Now, we define another metric ρM in D, which is called the Mazurkiewicz
metric. The ρM -distance between two points is the infimum of σ-diameters
of curves f ◦ γ over all curves γ connecting these two points. Mazurkiewicz’s
metric is in general not intrinsic, and ρM ≤ ρ. However ρM coincides with ρ
on sufficiently small neighborhoods of a point z ∈ D for which f ′(z) 6= 0.

Example. Let f(z) = cos z, C → C. Let σ be the usual Euclidean metric.
Then ρ = f ∗σ is the metric whose line element is

|f ′(z)||dz| = | sin z||dz|.

The ρ-distance between the points 0 and 2πm is 2m, (the shortest curve is the
segment [0, 2πm] which is mapped by f onto the segment [−1, 1] described
2m times). The Mazurkiewicz distance between the same points is 2.

Exercise. Function f extends to a continuous function on the completion
DM of D with respect to ρM , and that there is a homeomorphism φ : DM →
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Df , such that the extension satisfies such that f(z) = f(φ(z)) for all z ∈ DM .

2. Iversen’s classification

We call critical points and transcendental singularities considered as points
of Df the singularities of f−1.

We begin with the simplest kind of transcendental singularities, the iso-
lated ones. Let S be an isolated transcendental singularity over a point a,
then there is an open σ-disc V = B(a, r) of radius r around a, such that
S(V ) is at positive distance from other singularities. Proposition 1 applied
to the restriction

f : S(V )\f−1(a)→ V \{a} (1)

implies that this restriction is a covering map. All possible coverings over a
punctured disc are classified by subgroups of the fundamental group which
is the infinite cyclic group. Thus there are two possibilities:

a) (1) is m-to-1, and S is a critical point, or
b) (1) is a universal cover. In this case S(V ) is a simply connected region

bounded by a single curve in D, parametrized by (0, 1), and both ends of
the curve are at ∞. The map (1) is equivalent to z 7→ exp(z) from the
left half-plane to the punctured unit disc. This type of singularity is called
logarithmic.

Examples. Function exp : C → C has one logarithmic singularity over
0. Function exp : C → C has two logarithmic singularities, one over 0
another over∞. Function cos : C→ C has two logarithmic singularities over
∞ and infinitely many algebraic ones over 1 and −1. The entire function
z 7→ sin z/z, C → C has two logarithmic singularities over ∞, infinitely
many critical points, and two non-isolated singularities over 0.

Further classification of transcendental singularities is due to Felix Iversen
(1912).

A transcendental singularity S over a is called direct if there exists V such
that f(z) 6= a for z ∈ S(V ). Otherwise it is called indirect.

So logarithmic singularities are direct.

Examples. We consider functions C→ C. Function ez sin z has one direct
non-logarithmic singularity over ∞. Function sin z/z has two indirect singu-
larities over 0, and function sin

√
z/
√
z has one indirect singularity over 0.
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3. Meromorphic functions of finite order

From now on we only consider maps C→ C, and the Riemannian metric
σ will be the spherical metric, whose pullback ρ = f ∗σ has the length element

|f ′(z)||dz|
1 + |f(z)|2

.

The lower order of growth of a meromorphic function will play an important
role. It is defined by

λ(f) = lim inf
r→∞

logA(r, f)

log r
,

where

A(r, f) =
1

π

∫
|z|≤r

|f ′|2

(1 + |f |2)2
dm,

where dm is the Euclidean area element in the plane. The order of f is defined
similarly, with lim sup instead of lim inf. The geometric interpretation of the
quantity A(r, f) is the “average number of sheets” of the covering of C by
the image of the disc |z| ≤ r: the integral is the area of this image, and π is
the area of C.

The Nevanlinna characteristic is defined by the averaging of A(r, f),

T (r, f) =
∫ r

0
A(r, f)

dt

t
.

It has an advantage that it satisfies the usual properties of the degree of a
rational function,

T (r, f + g) ≤ T (r, f) + T (r, g) +O(1), T (r, fg) ≤ T (r, f) + T (r, g) +O(1),

T (r, fn) = nT (r, f) +O(1) and T (r, f) = T (r, 1/f).

The order and lower order can be defined using A(r, f), T (r, f) or, logM(r, f)
in the case of entire functions, with the same result.

Theorem 1. (Denjoy, Ahlfors, Beurling, Carleman). The number of direct
singularities of f−1 is at most max{1, 2λ(f)}.
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Corollary. If f is an entire function, then the number of transcendental
singularities over points in C is at most 2λ. In particular, the number of
finite asymptotic values of an entire function is at most 2λ(f).

To derive the Corollary, one notices that the number of singularities of an
entire function over infinity is at least the number of transcendental singu-
larities over finite points. Indeed, between any two asymptotic curves corre-
sponding to distinct transcendental singularities there must be an asymptotic
curve with infinite asymptotic value. All singularities over infinity are direct.

There are several different proofs of Theorem 1, due to Ahlfors, Beurling
and Carleman; each of them introduced new important tools of analysis.

The main result used in Carleman’s proof of Theorem 1 is the following
important inequality from potential theory. Let u be a non-negative subhar-
monic function in a ring, A = {z : r0 < |z| < r1}. Let

m2(r) =
(∫ 2π

0
u2(reiφ)dφ

)1/2

,

µ(t) = m2(e
t).

Then for r ∈ (r0, r1) we have

µ′′(t) ≥
(

π

θ(et)

)2

µ(t), (2)

where θ(r) is defined in the following way. If u(z) > 0 on the circle {z :
|z| = r} then θ(r) = +∞; otherwise θ(r) is the angular measure of the set
{φ : u(reiφ) > 0}.

Inequality (2) expresses a kind of convexity. If θ ≡ +∞, then this is the
ordinary convexity of µ(t). Small θ implies that µ is “very convex”.

It follows that when the set {z ∈ A : u(z) > 0} is narrow, the function u
must grow fast. When er0 < r1 ≤ +∞, one can derive from (2) that

logm2(er) ≥ π
∫ r

r0

ds

sθ(s)
+ log

dm2

d log r

∣∣∣∣∣
r=r0

, r0 < r < r1/e. (3)

It is this version of Carleman’s inequality that is most frequently used. When
r1 =∞, inequality (3) is asymptotically best possible when r →∞; extremal
regions are angular sectors.
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An appropriate version of Carleman’s inequality holds in every dimension.

To derive Theorem 1 from Carleman’s inequality we suppose without loss
of generality that all direct singularities lie over finite points, and that there
are at least two of them. Choose p ≥ 2 direct singularities of f−1 and consider
Euclidean discs Vj, 1 ≤ j ≤ p of radii ε around the corresponding asymptotic
values aj. We choose ε so small that the sets Dj = Sj(Vj) are disjoint and
f(z) 6= aj in Dj. The last condition can be satisfied by definition of direct
singularity.

Then we consider functions

uj(z) = log
ε

|f(z)− aj|
, z ∈ Dj.

Each uj is positive and harmonic in Dj and zero on the boundary. We denote

Bj(r) = max
|z|=r

uj(z), B(r) = max
j
Bj(r).

Then (3) implies for every j

logB(er) ≥ logm2(er, uj) ≥ π
∫ r

r0

ds

sθj(s)
+O(1)

Averaging in j gives

logB(er) ≥ π

p

∫ r

r0

ds

s

p∑
j=1

1

θj(s)
+O(1). (4)

On the other hand, by Cauchy–Schwarz inequality,

p2 =

∑
j

√
θj(s)

1√
θj(s)

2

≤
∑
j

θj(s)
∑
j

1

θj(s)
≤ 2π

∑
j

1

θj(s)
.

Inserting this to (4), we obtain

logB(er) ≥ p

2

∫ r

r0

ds

s
+O(1) =

p

2
log r +O(1).

By rudimentary Nevanlinna theory, this implies that

lim inf
r→∞

r−p/2T (r, f) > 0,
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so the lower order of f , is at least p/2. When p = 1 we do not obtain any
estimate because many circles |z| = r may lie entirely in D1.

Theorem 2. ([5, 12]) For a meromorphic function f of finite lower order,
each indirect singularity over a point a is a limit of critical points whose
critical values are distinct from a.

For functions of infinite order, this is not so; there are entire functions
of infinite order without critical points at all, and such that the set Sing(f)
has the power of continuum [16], and all but countably many singularities
are indirect.

The main analytic tool in the proof of Theorem 2 is the Carleman in-
equality.

Theorem 2 helps to prove in many situations the existence of critical
points. The simplest example is the following result, originally established
by Clunie, Eremenko, Langley and Rossi:

Theorem 3. Let f be a transcendental meromorphic function of order ρ.
a) If ρ < 1, then f ′ has infinitely many zeros,
b) If ρ < 1/2, then f ′/f has infinitely many zeros,
c) If f is entire, and ρ < 1, then f ′/f has infinitely many zeros.

Here is another application of Theorem 2: If f is a non-constant mero-
morphic function, then ff ′ takes every finite non-zero value.

This was conjectured by Hayman in 1967, and all known proofs of this
conjecture use Theorem 21

4. The sets of singularities of various types

The set of asymptotic values is an analytic (Suslin) set. This is a larger
class than Borel sets. One of the several equivalent definitions is that a Suslin
set is a continuous image of a Borel set.

More generally, the set of projections of singularities of an arbitrary multi-
valued analytic function is an analytic set. This was proved by Mazurkiewicz
who introduced his metric specially for this purpose.

Nothing more can be said, even if one considers asymptotic values of
meromorphic functions of restricted growth.

1This was written in 2013. It is shown in [1] that Hayman’s conjecture also follows
from a deep result of Yamanoi [17].
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Theorem 3. (Cantón–Drasin–Granados) For every analytic (Suslin) set A,
and every λ ≥ 0 there exists a meromorphic function of order λ whose set of
asymptotic values is equal to A.

This is a difficult result which improves on two earlier simpler construc-
tions:

For every analytic set, there is an entire function whose set of asymptotic
values is A ∪ {∞} (M. Heins),

and
For every λ ≥ 0, there is a meromorphic function of order λ whose set of

asymptotic values is C. (A. Eremenko).
Thus there is no restriction on the size of the set of asymptotic values of

a meromorphic function of given order, and the Corollary from Theorem 1 is
the only restriction for entire functions of given order.

The asymptotic values coming from direct singularities are rare:

Theorem 4. (M. Heins) Let f be a meromorphic function in C, V a disc,
and D a component of f−1(V ). Then the restriction f : D → V takes every
value in V with at most one exception. Thus the set of projections of direct
singularities is at most countable.

On the other hand, the set of direct singularities over one point can have
the power of continuum [7].

If a is an omitted value of f , then there is at least one singularity over a
(Iversen’s theorem). Evidently, all singularities over a are direct in this case,
but it is possible that none of them is logarithmic.

Non-logarithmic direct singularities of inverses of entire functions have
additional interesting properties:

Theorem 5. (Sixsmith) Let a ∈ C be a projection of a direct non-logarithmic
singularity of the inverse of an entire function. Then either a is a limit of
critical values, or every neighborhood of this singularity contains another
transcendental singularity which is either indirect or logarithmic and whose
projection is different from a.

Theorem 6. [7] Let S be a direct non-logarithmic singularity of the inverse
of an entire function over a point a ∈ C. Then every neighborhood of S
contains other direct singularities over the same point a.

It follows that whenever the inverse of an entire function has a direct non-
logarithmic singularity over a finite point, it must have the set of singularities
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of the power of continuum over the same point.
Another corollary is that direct singularities over finite points of inverses

of entire functions of finite order are all logarithmic.

5. Classes of functions defined by restrictions on their singular
values

By singular values we mean critical and asymptotic values.
The simplest class is the Speiser class S which consists of meromorphic

functions with finitely many critical and asymptotic values. It is the union
of classes Sq which consist of functions with q critical and asymptotic values.

These are the simplest meromorphic functions from the geometric point of
view. Examples are exp(z), cos z, ℘(z), rational functions. The class of entire
functions in S is closed under composition. To describe the most important
property of functions of class S we need a definition.

Definition. Two meromorphic functions f and g defined in simply connected
regions are called topologically equivalent if there exist homeomorphisms φ
and ψ such that f ◦ φ = ψ ◦ g.

Theorem 7. (Teichmüller, Eremenko–Lyubich) Let f be a function of class
S, and Mf the set of meromorphic functions equivalent to f . Then all func-
tions in Mf are defined in C, and the set Mf is a complex analytic manifold
of dimension q+ 2, on which the critical and asymptotic values are holomor-
phic.

These manifolds were introduced and studied in [10]. The crucial property
here is that Mf has finite dimension. This permits to extend Sullivan’s proof
of the absence of wandering domains to functions of class S.

In the study of holomorphic families of entire functions, the dependence
of periodic points on parameter is important. Let us fix some g ∈ S, and let
f ∈Mg. Consider the equation for a periodic point

fm(z) = z.

Solution of this equation z = α(f) is a multi-valued function on Mg. The
main result on this multi-valued function is

Theorem 8. (Eremenko–Lyubich) The function α has only algebraic singu-
larities on Mg.
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The proof uses a version of Carleman’s inequality (2) which takes into
account not only the “width” of D but also the amount of “spiraling” of D
as z →∞.

Class B consists of transcendental entire functions whose set of singular
values is bounded. As∞ is always an asymptotic value of an entire function,
it follows that for f ∈ B, all singularities over ∞ are isolated and thus
logarithmic. This means that the behavior of the inverse f−1 near infinity is
as simple as possible for a transcendental function. Evidently S ⊂ B.

An important analytic tool in the study of functions of class B is the
following

Theorem 9. (Eremenko–Lyubich) For every f ∈ B, there exists R > 0 such
that whenever |f(z)| > R, we have∣∣∣∣∣z f ′(z)

f(z)

∣∣∣∣∣ ≥ 1

4π
(log |f(z)| − logR) .

Recently, Sixsmith found that this property actually characterizes class B:

Theorem 10. Let f be a transcendental entire function. Then either f ∈ B
and

η := lim
R→∞

inf
|f(z)|>R

∣∣∣∣∣z f ′(z)

f(z)

∣∣∣∣∣ = +∞,

or f 6∈ B and η = 0.

The proof of Theorem 10 uses Theorem 5.
Individual functions of class S were studied from the point of view of the

general theory of meromorphic functions by Nevanlinna, Teichmüller and
others. It was found in [10] that classes S and B are interesting from the
point of view of dynamics.

In general, entire functions, can have all sorts of dynamical pathology:
they can have wandering domains, measurable invariant line fields on the
Julia set, and invariant components of the set of normality which do not
contain singular values, and where the iterates converge to infinity (Baker
domains).

The proof of Sullivan’s non-wandering theorem depends on the fact that
rational functions topologically conjugate to a given function form a manifold
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of finite dimension. Thus Theorem 5 permits to extend this result to the class
S, essentially with the same proof.

Other pathologies in dynamics of entire functions are apparently related
to the complicated behavior near ∞. So the class B with simplest possible
behavior near infinity was introduced and Theorem 6 can be used to show
that for functions of class B the iterates cannot tend to infinity on the set of
normality. So Baker domains do not exist for such functions.

These results permitted to obtain a classification of periodic components
of the set of normality for functions of class S, similar to such classification
for rational functions.

Since then, these classes were intensively studied in holomorphic dynam-
ics. We mention only one recent result of Bishop: functions of class B can
have wandering domains.

6. Further applications to dynamics

Let f be a meromorphic function, and z0 a periodic point which means
that fnz0 = z0 for some n. The smallest n with this property is called the
order of z0, and the derivative λ = (fn)′(z0), where n is the order, is called
the multiplier. A periodic point is called attracting, repelling or neutral if
|λ| < 1, |λ| > 1 or |λ| = 1, respectively. If λm = 1 for some m, the periodic
point is called neutral rational.

If z0 is a periodic point of order n then z0 is a fixed point of fn with
the same multiplier. Attracting fixed points and neutral fixed points with
multiplier 1 have non-empty immediate basins of attraction. An immediate
basin of attraction is defined as a maximal invariant region where fm(z)→ z0
as n → ∞. The following theorem of Fatou is fundamental in holomorphic
dynamics:

Theorem 11. Let D be an immediate basin of attraction of an attracting or
of a neutral point with multiplier 1. Then the restriction f : D → D cannot
be a covering map. This means that this map has either a critical point of
an asymptotic curve with asymptotic value in D. Moreover, the trajectory of
some singular value in D is not absorbed by z0.

In the simplest case that z0 is attracting, there is a one-line proof of the
first part of the theorem. Suppose that f : D → D is a covering. Then f
is a local isometry with respect to the hyperbolic metric in D. But at z0,
f strictly compresses the hyperbolic metric. This contradiction proves the
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statement.
The main corollary of Theorem 11 is that for rational functions, or for

functions of class S, the number of attracting and neutral rational cycles is
finite: it does not exceed the number of singular values.

A component D of the set of normality is called completely invariant if
f−1(D) = D. The boundary of such component must coincide with the Julia
set. It follows that if a meromorphic function f has at least two completely
invariant components, they all must be simply connected.

If f is a rational function with at least two completely invariant compo-
nents Dj, then f : Dj → Dj are ramified coverings of degree d = deg f , so by
the Riemann–Hurwitz theorem, each Dj must contain d − 1 critical points
(counting with multiplicity). It follows that a rational function can have at
most two completely invariant components.

How many completely invariant components can an entire meromorphic
function have, is not known2. It is conjectured that the answer is at most
one for transcendental entire functions and at most two for meromorphic
functions, and this is known in the case of meromorphic functions of class S,
see [3]. For meromorphic functions of class S with two completely invariant
components, the Julia set is a Jordan curve [6].

Appendix. Proof of Carleman’s inequality

Let v(t, φ) = u(et+iφ); this is a sub harmonic function, and we suppose
for simplicity that it is continuous. Let D = {z : u(z) > 0}. All integrals
below are over the arcs {φ : et+iφ ∈ D}, and we omit dφ. We have

ν(t) :=
∫
v2 = µ2(t),

ν ′ = 2
∫
vvt,

ν ′′ = 2
∫

(v2t + vvtt) ≥ 2
∫

(v2t + v2φ), (5)

where we used utt + uφφ ≥ 0 and integrated by parts.

2Baker’s proof [2] that a transcendental entire function has at most one completely
invariant domain contains a gap, [13].

13



Wirtinger’s inequality for a C1 function which equals to zero at the end-
points of an interval I says

|I|2
∫
I
v2 ≥ π2

∫
I
v2φ.

Applying this to each maximal interval where v > 0 we obtain∫
v2φ ≥

(
π

`

)2 ∫
v2,

where `(t) = θ(et). Cauchy’s inequality gives

(ν ′)2 = 4
(∫

vvt

)2

≤ 4
∫
v2
∫
v2t = 4ν

∫
v2t .

Combining these two inequalities with (5) we obtain

ν ′′ ≥ (ν ′)2

2ν
+ 2

(
π

`

)2

ν.

Rewriting this for µ =
√
ν we obtain

µ′′ ≥
(
π

`

)2

µ,

which is (2).
To obtain (3) we set ω = log µ. Then

ω′ =
µ′

µ
, ω′′ =

µ′′

µ
−
(
µ′

µ

)2

,

so

ω′′ + (ω′)2 =
µ′′

µ
≥
(
π

`

)2

.

Now (
ω′ +

ω′′

2ω′

)2

≥ (ω′)2 + ω′′ ≥
(
π

`

)2

.

Thus

ω′ +
ω′′

2ω′
≥ π

`
.
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Now notice that

ω′ +
ω′′

2ω′
=

1

2

d

dt
log

(
d

dt
e2ω
)
,

thus
d

dt
log

(
dν

dt

)
≥ 2π

θ(et)
.

Returning to the variable r = et and integrating this twice with respect to t
we obtain (3).
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