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ABSTRACT.In his 1928 thesis H. Cartan proved a theorem which can be con- 
sidered as an extension of Montel's normality criterion to holomorphic curves 
in complex projective plane P2. He also conjectured that a similar result 
is true for holomorphic curves in Pn for any n. A counterexample to this 
conjecture is constructed for any n 2 3. 

The following theorem of Borel may be considered as an extension of Picard's 
theorem to holomorphic mappings of the complex plane C to complex projective 
space. 

Borel's Theorem. Let f i , .  . . ,fp  be a system of entire functions without zeros 
and 

( 1 )  f l +  . . . + f p =  0. 


Then the set of indices ( 1 ,  . . . , p )  can be partitioned into disjoint subsets { I )  such 

that 1 I /  2 2, and for every I the functions f j ,  j E I ,  are proportional and their sum 

is zero. 


According to the so-called Bloch principle, to every theorem of Picard type 
should correspond a Montel-type theorem for families of functions in the unit disk. 
The following statement is known as 

Cartan's Conjecture ( [ 2 ,31). Let F be an infinite family of p-tuples of holomor- 
phic functions f = ( f l ,. . . ,f p )  without zeros in the unit disk U satisfying the Borel 
equation ( 1 ) .  

Then there exists an infinite subsequence C having the following property. 
There exists a partition of indices P = ( 1 , .  . . ,p)  into disjoint sets { S )  and each 

S contains a subset I with at least two elements, which may be equal to S itself. 
These satisfy the following properties for f E C:  

( i )For each S and j, k E I c S the sequence { f j /  f k )  i s  convergent (uniformly 
on  compacta, to a non-zero function). 

(ii)If l f j  E S\I and k E I c S then f j /  fk converges to 0. 
(iii) Given k E I c S, 

C f j /  f k  converges to O. 
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When p = 3 the statement is (almost) equivalent to the Monte1 theorem, which 
asserts that a family of meromorphic functions in the unit disk omitting three given 
values is normal. Cartan [2], see also [3, Ch. VIII], proved a partial result: 

Let 3 be as above. Then there exists a subsequence L C 3 having one of the 
following properties: 

(a) The full set P of indices satisfies (i), (ii) and (iii) (with single set S = P ) ,  
or 
(b) There are two disjoint subsets S1 and S2 i n  P ,  each containing at least two 

elements, satisfying the three conditions (i), (ii) and (iii). 
The point is that S 1  and S2  in (b) may not cover the whole set of indices P .  

This result implies that Cartan's conjecture is true for p = 3 and p = 4 [2]. We 
show that it fails for p = 5. 

Example. It is convenient to work in the rectangle R = { x  + i y  : 1x1 < n, 0 < 
y < 1 )  instead of the unit disk. For every natural integer n > 12 > 4e consider the 
function h(z) = h, (z) = exp(n exp i z ), z E R. We have 

The set {z E R : I h,(z)l < 3) consists of two components: left and right. We denote 
the right component by D, so that as n + co, D, + R n { x  2 n/2). Choose a 
diffeomorphism p of the disk {w : Iwl 5 3) onto itself with the following properties: 

and 

p is conformal for 1 w1 < 2. 

Put 

Then we can find a diffeomorphism 4, : R + R, continuous in R with 

such that 

G, = G, o 

is holomorphic in R. This $, is obtained by solving a Beltrami equation [I] 

where ,LL is a smooth function, Ip(z)I < c 5 1, z E R, c an absolute constant, and 

We claim that 

uniformly on R. Indeed, (4,) is a family of quasiconformal homeomorphisms of R 
with uniformly bounded dilatation, so this family is precompact (the topology of 
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uniform convergence). Any limit function 4 of the family is conformal everywhere 
in R except perhaps the segment 

K = { r / 2 + i t : O < t < l ) =  lim Kn 
n+cc 

But K is a removable singularity for homeomorphisms conformal in the complement 
of K. So 4 is a conformal automorphism of R and (2) implies that 4 = id. This 
proves (4). Notice that Gn - 1has no zeros in R n{x > 0) and Gn has no zeros in 
R n{x < 0). It follows from (4) that 

and 

when n -+m uniformly on R. Now we define H, by 

Asymptotic equalities (5) and (6) imply respectively 

and 

(9) log(H,(x+iy)-11 = (n+o(l))coszexp(-y), x < O ,  

as n -,m uniformly on R. 
Now we set a = r - l / (e  + 1) and define 

fA(4 = exp{n(z + a)) ,  f,2(z) = exp(4-z + a)), 

f 3n = Gn - f1n )  f 4n = Hn - f:, f i(z)  - -1. 

From this definition and (7) follows that (1) is satisfied. Furthermore we have in 
view of (5), (6), (8) and (9) 

for n large enough. 
Inequalities (10) show that all five functions f j  are zero-free in R if n is large 

enough. 
Now we show that the conclusion of Cartan's conjecture is not valid for the 

functions of our sequence. This is because f: cannot be in the same class S with 
any other function fi,15 j 5 4. Indeed, when j is odd we have 

logIfi(z)l = (n+o( l ) ) (Rz+a) ,  n -m ,  

1 
+ 0 and (  2  m n i m. 

A similar argument works for even j .  In this case 

1 
- 0  and fi(i/2) - m ,  n - m. 

So f: -1 cannot be incIuded in any class S described in (i) and (ii) of Cartan's 
conjecture. 
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Remarks. The simplest counterexample for any p > 6 can be constructed by adding 
non-zero constant functions fi with the properties 

P 

and I fil = b-n, 6 <- j 5 p, where 1< b < exp{l/(e+l)). These new functions may 
be included in one class S with f: but then (iii) fails for this class. Our example 
for p = 5 shows that even a partition into classes S, card S 2 2, which satisfy (i) 
and (ii), is impossible. Examples with this property can also be constructed for 
any p > 5. 

The author thanks David Drasin, who made many helpful suggestions, and 
V. Lin for illuminating discussions. 
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