Meromorphic Functions with Small
Ramification

A. EREMENKO

Abstract. Let f be a meromorphic function in the plane and N;(r)
stands for the Nevanlinna counting function of critical points of f.
We obtain a complete description of functions f of finite lower order
with the property

Ny(r) = o(T(r)), r — oco.

In particular, we show that this property is equivalent to

> b, f) =2

a€eC
1. Introduction. For a function f meromorphic in the complex plane C
we use the standard notations of Nevanlinna theory: T'(r, f), N(r.f), m(r, f),
6(a), etc. (See [20], [14].) Recall that the “ramification term”
Ni(r) = N(r,1/f') + 2N(r, f) = N(r, f)

counts the multiple points of f. The second main theorem of Nevanlinna states
that for arbitrary collection of distinct ay,...,aq € C we have

M=

(1) m(r,ar) + Ni(r) < 2T(r) + S(r),

k

1

where S is a small error term. Particularly for functions f of finite order S(r) =
O(logr), r — o0, and from (1) it follows that

g

(2) > b(ar) +9 <2,

k=1
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where

m(r,a) ¥ = limsup Nu(r)

R (ORI (O

While the first member of (2) has been studied extensively, very little is known
about the behavior of the ramification term.
Suppose that f has finite order and no multiple points,

(3) Ny (’I’) =0.

It follows that the Schwarzian derivative
f/// 3 fll 2
4 F=——-|—
) . (f’ )

is an entire function because, as a direct computation shows, poles of F' may
occur only at multiple points of f. Taking into account that f is of finite order
and using the lemma on logarithmic derivative, we conclude that

m(r, F) = O(log ), T — 00,

so F is a polynomial. Now (4) can be considered as an algebraic differential equa-
tion with respect to f. The general solution of this equation can be represented
as the ratio of two linearly independent solutions of the linear equation

1
y"+ 5Fy:0

Using asymptotic integration of this equation, F. Nevanlinna [18] (see also [19]
and [20], Section 262) has studied meromorphic functions of finite order without
multiple points. These functions have the following properties:

(a) T(r, f) ~ cr™/2, where ¢ > 0 and n > 2 is a natural number.
(b) The plane is partitioned into n equal angular domains:

Dj={z:¢j-1<argz<¢;}, 1<j<n, ¢n=do

so that for some b; € C we have

log = wer™? sin g(() —¢j—1) +o(r™?), r— oo,

1
| (rei®) — bj

uniformly with respect to 6 in any angle that lies strictly inside D;. If
bj = 0o, then the left-hand side has to be replaced by log | f(re®)|.
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Thus, if a number a € C occurs p(a) times among the {b;}, then é(a) =
2p(a)/n; in particular, all deficiencies are rational and

(5) > 6(a) =2.

aeC

Another approach for obtaining this result, due to L. Ahlfors [2], consists
in the investigation of the Riemann surface onto which the function f maps
the plane. It can be shown that this Riemann surface has a finite number of
logarithmic branch points and does not have any algebraic branch points. Such
Riemann surfaces admit a full description, and the statements (a) and (b) are
obtained by explicitly constructing a map of the Riemann surface onto the plane,
close to a conformal one.

In this paper we study meromorphic functions of finite (lower) order that
satisfy

(6) Ny(r) = o(T(r, f)), T — 00.

Our main result is that (1) implies (5), which supports the general principle,
stated by R. Nevanlinna ([20], Section 228) as follows: “It is natural for various
reasons to hypothesize that under normal circumstances equality holds in the
inequalities which we have called the second main theorem, provided that all of
the deficient values a1, ag,... are considered”. Some other results illustrating
this principle are in [23], Ch. IV. On the other hand, as R. Nevanlinna observes
on the same page, there are entire functions of infinite order with very regular
behavior which satisfy (3) and have no finite deficient values.

Observe that for a function f of finite order the assumption (5) together
with the second main theorem (1) implies (1). The arguments described above
led F. Nevanlinna [18] to the following conjecture. Let f be a meromorphic
function of finite order p, satisfying (5). Then:

(i) 2p is a natural number > 2.
(ii) If 6(a) > 0, then 6(a) = p(a)/p, where p(a) is a natural number.
(iii) All deficient values are asymptotic.

After some partial results by A. Pfluger and A. Weitsman, a complete proof of
F. Nevanlinna’s conjecture was obtained by D. Drasin [8]. His proof may be
considered as one of the most complicated proofs in function theory. It involves
tools such as Ahlfors’ theory of covering surfaces, quasiconformal deformations
etc. A shorter proof based mainly on classical potential theory was given in [10].
Some further improvements and generalizations were given in [11].

A conjecture that the relation (1) for functions of finite order implies (i), (ii),
(iii) and even (5) seems very natural. A partial supporting result was obtained
recently by D. Shea [22]: If a meromorphic function satisfies (1), then its lower
order is at least 3.
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In this paper we give a complete description of meromorphic functions of
finite lower order with the property (1), from which it follows that the conjecture
is true.

Theorem Let f be a meromorphic function of finite lower order satisfying (1).
Then (i), (ii), (iii), and (5) hold. If we normalize such that §(c0) = 0, then

(7 log DT(:ei—o)—l = ﬂ'r”ll(r)| cos p(6 — Kz(r))[ +0(rfey(r)), T — 00,

uniformly with respect to @ when re?® ¢ Cy. Here Cy is the union of the disks
D(zg, k) such that

Z Tt = o(R), T — 00,

{k:|zx| <R}

while £; are continuous functions with the properties £1(ct) ~ £1(t) and £y(ct) =
£5(t) + o(1) as t — oo uniformly with respect to ¢ € [1,2]. Moreover,

(8) T(r, f) ~ rPly(r), T — 00.

REMARK 1. The assumptions of the Theorem can be slightly relaxed by
replacing the lower order by so called lower Pélya order, which is defined in (19),
Section 3.

REMARK 2. Our result contains D. Drasin’s theorem [8]. We could not
prove that (1) implies (5) directly, without proving first the properties (i), (ii),
(iif).

The method of the proof is of purely potential-theoretic nature. In Section 2
we recall some facts from potential theory (including the definition and properties
of fine topology). All necessary properties of fine topology are stated explicitly
in Section 2. The proof of the theorem begins in Section 3, which concludes with
the proof of the most difficult part of the theorem, namely, that the asymptotics
(7) holds in some annuli ¢;r; < |z| < €;7'rj, €; — 0, r; = 0o. We finish the
proof in Section 4. Section 5 contains the detailed proof of a crucial lemma from
potential theory, which is closely related to the main lemma in [10]. To make
the paper self-contained we include its proof in all detail.

The author thanks David Drasin for inspiring discussions of the problem.

2 Preliminaries

2.1. 4-subharmonic functions. The general reference for subharmonic
functions is [15]. Fix a domain Q € C. Denote by L'}, the space of functions
summable on each compact in 2. Subharmonic functions belong to Ljo.. Let
vy and vy be subharmonic functions. The element v = v; — vy € L1y, is called



Meromorphic Functions with Small Ramification 1197

a d-subharmonic function. The “function” v may be undefined in those points z
where v1(2) = v2(2) = —o00. The set of such 2’s has capacity zero, so v is defined
almost everywhere. We will say that a 6-subharmonic function v is defined at
the point z € Q if there exists a finite or infinite limit

1 27 0
S (1
Tlgr(l) 37 )y v(z +re'?) db,
and we shall denote this limit by v(z). This definition is correct because for a
subharmonic function v the indicated limit coincides with v(z). Obviously if a

§-subharmonic function v > 0 a.e., then v(z) > 0 at all points z at which it is
defined. In this case we write simply v > 0.

2.2. Order relations. The space of §-subharmonic functions has a natu-
ral partial order: v; > vy means v; —vg > 0. The least upper bound and greatest
lower bound of finite families exist with respect to this order. We denote them
by Vw, and A v, respectively. Thus for example v; V vy = (v; — v2)* + vy or
(v1 V v2)(2) = max{v1(2),v2(2)}.

The generalized laplacian of a §-subharmonic function v is a charge (or
signed measure), which is called the Riesz charge and denoted by u[v]. We
will call v subharmonic if it coincides with a subharmonic function at all points
of definition. This happens if and only if the corresponding Riesz charge is a
(positive) measure, which will be denoted by p[v] > 0. The relation p > 0 defines
a partial order on the set of all charges in Q: we write py > po iff pu3 — ug > 0.
The least upper bound and greatest lower bound with respect to this order are
defined for finite families. For example p; V po = (1 — p2)t + p2, where (+)*
is the positive part in the Jordan decomposition of the charge.

2.3. Fine topology. It is well known that subharmonic functions may be
discontinuous. The smallest topology in the plane in which they are continuous
is called fine topology (H. Cartan), a general reference is [6]. All expressions
“finely closed”, “finely open” etc. are related to fine topology. For example a
“fine domain” is a “finely open, finely connected set”. We will use the following
properties of the fine topology:

(i) If D is a finely open set and 29 € D, then for a set of 7’s of positive linear
measure, the circles {z : |z — 29| = r} are contained in D. This is called
Lebesgue-Beurling property, and is due to M. Brelot [5], p. 334-335 (see
also [6], Proposition IX.2 and Theorem IX.10).

(ii) If a set A has capacity zero, then it is finely closed and all its points
are finely isolated. This follows immediately from the definition of fine
topology.

(iii) Fine domains are polygonally connected (which means that every two
points of a fine domain may be connected in this domain by a polygo-
nal curve). This property was proved by B. Fuglede [12].
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It follows from (i) that fine domains have positive Lebesgue measure. So
the set of fine components of a fine open set is at most countable.

Note that §-subharmonic functions need not be finely continuous; however
{z : v1(2) > v2(2)} is a well defined finely open set.

Lemma 1 ([7], p. 186). Let v; and ve be §-subharmonic functions in Q.
If they coincide on some fine open set E, then the restrictions of their Riesz
charges to E coincide.

2.4. Normal convergence of §-subharmonic functions. A sequence
{v;} of 6-subharmonic functions in Q is called normal if for every compact K C
2, the sequences ||v;||z1(x) and (u[v;])~(K) are bounded. From every normal
sequence one can select a subsequence that converges in L'}, to a 6-subharmonic
function ». Furthermore, we have:

(i) ulv;] — plv] weakly, i.e., for every continuous function ¢ with compact
support in {2 we have

[oautus] — [ ot

(ii) v; — v in L' with respect to linear measure on any circle in . (This also
is true relative to any rectifiable arc, but we do not use this generalization.)

(iii) meas;{z € K : |vj(2) — v(2)| > €} — 0 for every ¢ > 0 and every compact
K cqQ.

The symbol meas; in (iii) stands for Carleson 1-measure, which is defined as
follows: meas; (E) is the infimum of sums of radii of discs covering a set E. For
(i) and (iii) see [3], [4], [16], for (ii)-[1].

It follows from (iii), that for every compact K and every € > 0, there exists a

set E, meas;(FE) < ¢, such that the convergence of some subsequence is uniform
on K\E.

Lemma 2 Let {g;} be a sequence of meromorphic functions in  and t; —
0 be a sequence of positive numbers. Suppose that the sequences of 6-subharmonic
functions t;log |g;| and t;log|g;’| are normal and converge to vy and vy respec-
tively. Then

(9) () S V1

and on each fine component D of the set {z : va(2) < v1(2)} the function vy is
tdentically equal to some constant t. Moreover D is a fine component of the set
{z 1 va(2) < t}.

From our point of view (9) is an analog of the lemma on logarithmic derivative.
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Proof. First prove (9). Without loss of generality we may suppose that
Q=D(0,R'), R > 0. Represent the logarithmic derivative by the differentiated
Poisson—-Jensen formula ([14], p. 36, equation (2.2)):

9;'(z) _ 1 / o ioy,_ 2Re®
= = log|g;(Re*”)| ———
() "o )y |9 (Re™)| R )2

Am 1 1 l_’m
+ z:(Rz—dmz am—z)+z(bm—z Rz—l_)mz)’

where |z| < 7 < R < R’ and sums run over the zeros a,, and poles b,, of g; in
D(0, R). A routine estimate gives

|95 (2)] R 2 0 1 n;
< 1 (Re* J
19;(2)] = W(R"T)Z/o |tog los(Re)| [0+ —+ 2o

where the sum runs over all zeros and poles and n; is their total number in
D(0,R). Now we integrate with respect to the area over D(0,r) and use the

estimates:
/
(7!'7‘2)_1/ log* %’— dx dy < log* [(7\'1‘2)’1 //
J

9;

I.

dz dy] + log 2,
9gj

and

2w
/ | log lg;(Re®®)| | d6 = O <-1-) , nj=0 (l), J — 00,
0 tj tj

which follow from the normality of the sequence t; log|g;|. After multiplying by
t; and passing to the limit as j — oo (so that ¢; — 0), we get

/ (ve —v1) T dxdy <0
z24y2<r?

for every r < R. This proves that ve < vy.

Now prove that v, is constant on every fine component D of the set {z :
v2(2) < v1(2)}. Fix 29 € D. For a set of r’s of positive linear measure, the circle
C, ={z:|z — 20| = r} is contained in D and we have

(10) v2(2) < N —e < N < v(2), z € Cy,

for some real N and positive €. So we can fix an arbitrary small r such that
C, C D, (10) is satisfied and convergence

(11) tjloglg;'| — v2; tjloglg;| — v
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is uniform on C,. Fix a point z; € C,. We have

N+’I’j
tj

lgj(21)] = exp

for some 7; > 0 and

N-—¢
l97'(2)] < exp ——, zec..
3

After integrating g;’ along C, and dividing by |g;(21)|, we get

where C is the length of C,. So

9i(2)
gj(zl)

—E — Tj
b
tj

—1‘ < Cexp

—€
| log|g;(2)| —loglg;(z1)| | < Cexp 7
j

and, after multiplying by t; and passing to the limit as j — oo, we get v1(z) =
v1(#1), z € C,; thus v; is constant on C,. We have proved that every point
2o € D can be surrounded by arbitrarily small circles on which v; is constant.

Now take two arbitrary points a and b in D. Connect them by a simple
polygonal curve I' C D. Choose small circles C* and C? centered at a and b,
respectively, such that v; is constant on these circles and

|v1(z) —vi(a)| <e, z€ cl,

lv1(2) —v1(b)| <€, z€C?

where € > 0 is a fixed arbitrary small number. The circles can be chosen so small
that each of them intersects I'" only once, say at the points a3 and b, respectively.
Let T'; be the part of ' between a; and b;. Each point of I'y is the center of
some arbitrarily small circles on which v; is constant. Choose a finite collection
of these circles such that their interiors cover I';. We can assume that the union
of these circles together with C* and C? is connected. So v is constant on this
union of circles and |vq(a) — v1(b)| < 2¢. This proves that vi(a) = v1(b) and v;
is constant on D.

Denote this constant by ¢ and consider the fine component D’ of the set
{z € Q : v2(2) < t} containing D. We are going to prove that D = D’. Suppose
that a € D'\ D. It is enough to prove that v1(a) = t. Choose a point b € D and
connect a and b by a simple polygonal curve I' C D’. Repeating the covering-
by-circles argument of the preceding paragraph, we can find a simple rectifiable
curve IV close to I' with the following properties:
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e I has the ends o’ and b close to a and b and vi(b) = wvy(¥),
|vi(a) — v1(a')| < €, where € > 0 is arbitrary small;

e the convergence in (11) is uniform on I';
o vy(z)<t—T,z€T.

We have
t+o(1
195)] = exp 22D,
3
and
lg;'(2)] < exp ;T, zel.
3
Integration along I" gives
(o -
g](a) -1 SCeXp_Iig(_l_).’ j—>00,
9;(b") tj

where C is the length of I'. Thus,

—7+o(1
| 108 1g;(a)] ~ log |g; ()] | < Cexp T +2D)

3
and after multiplying by ¢; and passing to the limit as j — co we have v;(a’) =
v1(b'). Thus |vi(a) — v1(b)] < € and this proves the last statement of the
lemma. a

2.5. Tracts of subharmonic functions and the standard decompo-
sition. Let u be a subharmonic function in C. Consider a function ¢ — V'(t),
which assigns to each ¢ € R a fine component V' of the set {z : u(z) > t}. Sucha
function is called tract. Given any fine component Vj of the set {2 : u(z) > to},
there is a tract V(t) such that V(tp) = Vp. This follows from the fact that
the function « is unbounded in every fine component of any set of the form
{z 1 u(z) > to} [12].

Lemma 3 (Denjoy—Carleman—Ahlfors Theorem for subharmonic functions)
Suppose that a subharmonic function satisfies u(z) < c|z|*, z € C for somec > 0
and A > 0. Then the number of different tracts of u is at most max{2X,1}.

This lemma is proved in [15]. (The definition of tract is slightly different in [15],

but it is easy to see that the lemma is equivalent to Theorem 4.16 in [15]).
Suppose now that u > 0 is a subharmonic function in a simply connected

domain D C C. Denote by E a fine component of the set {z € D : u(z) > 0}.
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Then the function defined in the following way:

ug(2) = u(z), z€E,
’U,E(Z) = 07 A C\E

is subharmonic. Indeed, denote by E’ the union of all discs whose boundaries
are in E. It is clear that E’ is open (in the standard topology). Furthermore,
it follows from the property (i) of the fine topology that E C E’. The domain
E’ does not intersect the fine components F # E of {z € D : u(z) > 0},
because no such F is relatively compact in D and F is polygonally connected.
So ug(z) = u(z) in the (standard) domain E’ and u(z) = 0 in the complement
of E'. Thus ug is subharmonic.

We define the support of a §-subharmonic function as the set of points where
this function is defined and distinct from 0. The functions ug defined above have
disjoint supports for different E’s. So we have

(12) u= ZuE,

where the sum runs over all fine components of {z : u(z) > 0}. We call this
representation the standard decomposition of u.

Lemma 4 Let u be a subharmonic function in C. Let E be a component of
the set {z : u(z) > 0} and D be a component of the set {z : u(z) < t}, t > 0,
intersecting E. Then the set X = E N D is connected. (All topological terms
here are related to standard topology.)

Proof. Suppose X is not connected. Then there exist simply connected
domains G; and Gy with the following properties:

GiNG, =0, G;NX #0, 0G;NX =0, 1=1,2.

We cannot have u(z) < 0, z € G, or u(z) > t, z € G, because otherwise E
or D would be disconnected. So in each point z € 8G; we have one of the two
inequalities: u(z) < 0 or u(z) > t and both inequalities occur. Now we may find
circles C,, with the following properties:

e the union of the circles is connected;
e on each circle we have either u(z) < t/4 or u(z) > 3t/4 and

e both inequalities occur.

These properties are inconsistent and this proves the lemma. O
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3. Reduction of the Theorem to a problem of Potential Theory.
We begin the proof of the Theorem. Recall that a point a € C is called non-
exceptional in the sense of Valiron if m(r, (f —a)™!) = o(T(r, f)), r — 0o. The
set of Valiron exceptional values has zero capacity [20], Section 233. So, after
performing a fractional-linear transformation on f we can assume that the poles
of the function f are simple and that

(13) m(r, f) = O(T(va))’ T — o0,
SO
(14) N(?",f)=N(7‘,f)NT('f',f), T — O0.

Moreover, choose a sequence b; € C such that b; are not exceptional in the sense
of Valiron and all b;-points of f are simple. Then

(15) m (r, f_—l—b;> =o(T(r, f)), r — 00.

Recall that a sequence r; — oo is called a sequence of Pélya peaks of order
A for T(r) = T'(r, f) if for some sequence ¢; — 0, we have

A
T(’I’) < (1 +6j) (-}) T(’I‘j), €;Tj <r< Z—]
J J

By some reasons which will be clear later we prefer to use the weaker relation:

P
(16) T(r) < (TL) T(ry), g5T; < T < €075
b
r A+6
amn T(r) < (7‘_> T('I‘j), Eo_lrj <r< ej_lrj,
J

where €; — 0, j — 00; 6 > 0 is fixed arbitrary small number and €9 > 0 may
depend on 6. Set

) : T(Az) }
18 AY = su : limsu =00¢;
(18) p{p i SUP T ()

. .o T(Az)
(19) Ay = inf {p : })1)1/1{1_1}1(1)2 T(a) = (]} .

It is known [9] that Pélya peaks of order X exist if and only if A, <A < A* and
[+, p] C [As, A*], where p and p, are, respectively, order and lower order of the
function T'(r). By the theorem of D. Shea [22], mentioned in the introduction,
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we may suppose that p > 0. Until the end of this section, we fix a number
A € [A, A*], A > 0 and a sequence of Pélya peaks r; of order A for the function
T(r). It is assumed that § < A in (16), (17). In the course of the proof we will
select several times subsequences from the sequence of Pélya peaks preserving
the same notation ;.

Consider the sequence of §-subharmonic functions

1 o 1
T(r;) S 1f(rs2l

(20) Uj(z) =
From the lemma on the logarithmic derivative it follows that

(21) m (r, fTI) = o(T(2r)), r — 00,

s0, in view of (13) and (21) we have
!

(22) m(r, f') < mir, f) +m (r, L

As all poles are simple, N(r, f') = 2N(r, f) so that

) +log?2 = o(T(2r)), r — 00.

(23) 2+ o(1))T(r, f) S T(r, f') < 2T(r, f) + o(T(2r, f)), T — 0.

Using a theorem of J. Anderson and A. Baernstein [1], we conclude from (17) and
(23) that the sequence U; defined in (20) is normal. After selecting a subsequence
of Pélya peaks, we get

(24) U; — u, j— oo.
The function u has the following properties. First of all, (22) gives that
(25) u> 0.

The key assumption (1) of our Theorem implies that « is subharmonic. Denote by
24 the Riesz measure of u. The measure p describes the asymptotic distribution
of poles of f in the following sense. Define v(FE) to be the number of poles in a
set £ C C and set

v;(E) = ﬁj)umm,

where rE denotes the homothety of the set E with center at the origin and
scaling factor r. Then

(26) p = weak lim v;.

J—0o0
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We have N(r,1/f") = o(T(r, f)), r — o0, so

m (r, %) =T(r, f') + o(T(r, f)).

This asymptotic equality together with (23), (16) and (17) implies

(27) u(2) < 2}, 2] < eo,
(28) u(z) < ¢|zM8, 2| > et
and

(29) u#0.

Notice that if in (20) we replace f by (f — b,)~!, where b,’s are defined in
the beginning of this section (15), then the new functions U; have the same limit

u. This follows from
1Y f
<f—b) T (F-b)?

) 1
]llbrgo T—(—T]—)\ log |f(r;jz) — b| ‘ — 0.

and

(The last statement holds since m(r, f —b) + m(r, (f — b)) = o(T(r, f)) as b
and oo are not exceptional in the sense of Valiron.)

By Lemma 3 the subharmonic function u satisfying (28) has a finite number
of finely connected components of the set {z : u(z) > 0}. We denote these
components by F,... E,.

Fix an arbitrary large number R > 0 and denote

(30) B(R,u) = max{u(z) : |z| < R}.
Choose some circles Cy C Ej with the following properties:
(31) u(z) > B(R,u), 2€C, 1<k<gq

e convergence in (24) is uniform on Ci, 1 <k < ¢;

o if we replace in (20) f by (f —b,)"*, 1 < n < ¢+ 1, then the convergence
in (24) will be uniform on Cy.

Choose arbitrary points z; € Ck and select a subsequence of Pélya peaks such
that

(32) f(rjzk) = ag,; — ax, j — oo,
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where ay, are some points on the Riemann sphere. We may suppose without loss
of generality that all ax are finite. Indeed if this is not the case, take a b from the
collection by,...,bg41, which is different from any a, and replace our function
f by (f —b)~L. From this point we suppose that all aj are finite and dispense
with the b,,.

Consider the sequences of §-subharmonic functions

1

1
(33) Uei(®) = 73 8 T2 —ang]”

1<k<q.

Since ag,; are uniformly bounded in view of (32) and finiteness of ax, we have
T(r, f—ak;) = T(r, f)+O(1) uniformly in j. Thus, by the theorem of Anderson—
Baernstein, the sequences Uy ; are normal. Selecting a subsequence of Pélya
peaks we get

(34) Uk,j — wg, j—ooo, 1<k<gq.
The functions wy are §-subharmonic and we have

(35) 0 < wg <u, 1<k<gq
The left inequality holds because m(r, f — a;x) = o(T(r, f)), r — 0o, uniformly
in j, and the right inequality follows from (9) in Lemma 2.

The condition (31) and uniform convergence in (24) on Cy imply |f'(z)| <
exp(—B(R,u)T(r;)), z € r;Ck. Integration of f — a; along r;Cy gives

log|f(2) — ax,j| < —B(R,u)T(r;) + O(logr;), z € Ck, j — o0,

so that
(36) wi(2) > B(R,u), z € Cg.

Denote by 7, the Riesz charge of wy,. We have the weak convergence of the Riesz
charges:

plUk 5] = &, j — oo.
So, by (33)

(37) mt <,

where p is the measure described in (26).
Define new é-subharmonic functions as follows:

ug(2) = wi(2), z € Eg;
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ug(z) =0, z € C\Ek.

To prove that the uy are d-subharmonic, consider the standard decomposition
of u, defined in (12):

u=3 us,.

It is easy to verify using (35) that

+
wo=(w =Y ug,)

n#k

and é-subharmonicity follows immediately. We conclude from (35) that

(38) 0<ur<wu, 1<k<q.
Also (36) implies
(39) uk(z) 2> B(Ra u)a z € Cka 1<k< q.

Denote by ug the Riesz charge of ui. We prove that
(40) pr < it

It follows from Lemma 1 that ux|g, = nk|g, and pk|g,, = 0, m # k. To obtain
that px|r < nk|F on F = C\ U E,,,, we use the following result:

Lemma 5 (A. Ph. Grishin, [13]). If vy > vy are two §-subharmonic func-
tions and v1(2) = va(2), z € F, for some Borel set F, then p[vi]|r < plve]|r.

From this lemma we conclude that pg|r < nx|rF and (40) follows.

Consider the set {z € Ey : uk(z) < u(2)} = {# € Ex : we(z) < u(2)}.
By Lemma 2 this set is the union of some fine components Dy, 5 of the sets
{z € Ex : u(2) > tym}. By Lemma 3 the number of these fine components
Dy, is finite. Moreover, it follows from (39) that ¢x ., are strictly positive. So
if we denote ¢ = ming m{tk,m}, then ug(z) = u(z), when 2z € Ey and u(z) < t.
Furthermore ug(2) > 0, z € E, so the support of u is connected.

Denote by D the component of the set {z € C : u(z) < t} containing 0.
This set is open in the usual topology because the subharmonic function u is
upper semi-continuous; it contains zero because 1(0) = 0 in view of (27). By the
maximum principle, D is simply connected.

Now the uy have disjoint supports (which means that at each point at most
one of them is different from zero). This follows from the definition of ug. Also
uk(2) = u(z), z € ExND. So

(1) kgluk(z) = u(z), z€D.
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It follows from (41) that uy are subharmonic in D: pk|g,np = 24|E,np > 0 by
Lemma 1 and px|p\g, > 0 by Lemma 5 and the fact that ux > 0.

Applying consequently (41), (40) and (37), we obtain for the restrictions of
measures to D:

q q
(42) S m=2p22\/ .
k=1 k=1
An immediate consequence from (42) is
(43) q>2.

In particular, D is unbounded. The restrictions of ux to D have connected
supports by Lemma 4.

Lemma 6 Suppose that non-negative subharmonic functions ui,...,uq are
defined in a simply connected domain D and have disjoint connected supports.
Assume that their Riesz measures satisfy (42). Then there exists a Riemann
surface F with a two-sheeted ramified covering p : F — D and a function h
harmonic on F such that uop = |h|, where u = Y ug. Furthermore, the covering
p 1s ramified over at most ¢ — 2 points in D and each ramification point of p is
a zero of h of order at least 3.

This is a modified form of the main lemma from [10]. For completeness, a proof
will be given in Section 5.

Applying this lemma to our functions u and wu, we obtain a function h
harmonic on the Riemann surface F' such that uop = |h|. Consider a disk Do =
D(0,7) so small that p is unramified over Do\ {0}. Then u(2?) = |h1(z)|, z € Do
for some harmonic function hy on Dy. It follows from (27) that hy(0) = 0 and
if we denote by 2¢. the number of components of the set {z € Dy : h1(2) # 0},
then (again by (27))

(44) g > 2(A = 6).

It is easy to see that the set K = {z € D : u(z) = 0} contains g, disjoint
simple piecewise analytic curves £, starting at the origin and tending to aD.
None of them can have a finite cluster point zg € dD. Otherwise we would have
u(20) >t > 0 and u(z) = 0, 2z € £, and this would contradict the existence
of arbitrary small circles centered at zp on which u is positive. So each £,,
1 < n < g4« tends to infinity.

Thus

(45) q> g

But ¢ is the number of fine components of the set {z € C : u(z) > 0} for a
subharmonic function u subject to the growth restriction (28), so by Lemma 3
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and (43) we have ¢ < 2(A+6). Together with (44) and (45) this gives |g—2A| < 26.
But § > 0 was chosen arbitrarily small in the beginning of this section, so ¢ = 2.
Recall now that A was chosen as an arbitrary number between A, and A*.

So
(46) P=pe=A" =X =n/2

for some natural n > 2.

The next conclusion is that u has maximal possible number of components
of the set {z € C: u(z) > 0}. Together with Lemma 3, this implies that all sets
{z € Ey : u(z) > t} are connected for every t > 0.

Using this observation, we are going to prove that v is harmonic in |J Ej.
To do this we reconsider the definition of the set D (see paragraph following
Lemma 5). Fix k between 1 and ¢q. Each fine component of the set {z € Ej :
uk(2) < u(z)} is a fine component Dy, n of some set {z € Ej, : u(z) > tm}. But
now we know that there is only one such component Dy, », for each k. Denote
it by Dy and the corresponding value ¢t by tx. We have ug(z) = u(z) < t
if z € Ex\Dg and ug(z) = ty if z € Dg. So ug(2) < t, 2 € Ey and (39)
implies ¢t > B(R,u). So our domain D which was defined as the component of
{z € C: u(z) < ming{tx}}, 0 € D, contains the disc D(0, R). We apply Lemma
6 to D = D(0,R) for arbitrary R > 0 and conclude that there is a Riemann
surface F, a two-sheeted ramified covering p : FF — C and a harmonic function
h on F which satisfies u o p = |h|. As the surface F' has only a finite number of
ramification points over C, we may compactify it by adding one or two points
over infinity. Let us study the harmonic function h on the Riemann surface F,
which satisfies

(47) |h(2)| < elp(2)[™/?

in view of (27), (28) and (46). Consider a multi-valued analytic function H on
the Riemann surface F' such that h = R H. The derivative s = dH/dp is a single
valued meromorphic function on F. (The singularities at infinity are at most
poles in view of (47).) Again by (47) we conclude that the sum of multiplicities
of poles of the function s over infinity is at most n — 2. The only zeros of dp are
ramification points of F' and all these zeros are simple. On the other hand at
the ramification points of F', the function h has zeros of at least third order so
dH has multiple zeros and s has zeros. Thus the only poles of s may occur in
infinite points of F' and their total multiplicity is at most n —2. Now by (47) the
total multiplicity of zeros of s over 0 is at least n — 2. So s has no other zeros
and the covering p : F — C may be ramified only over 0 and co. Thus

u(z) = R (cz™?)

with some ¢ € C. To determine |c| note that m(r;,1/f') = (2 + o(1))T(r;, f),
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so by definition of u we have

1 27 X

Ey A u(retd) = 2.
Thus |¢| = 7 and
(48) u(re'®) = xrn/? ’cos -721(0 —6o)

for some 6 € [0, 27].
We summarize what has been proved in this section:

Proposition 1 Let f be a meromorphic function which satisfies (1), (14)
and (13). If we choose A and r; with the properties (16) and (17) and define U;
by (20) then there exists a subsequence of the sequence r; such that U; — u and
u has the form (48).

4. Conclusion of the proof. By (18), (19) and (46) we have

T(t) < (;)p_sT(r), t < eors

£\ PH0
T) < (;) T(r), t>eotr,

for every § > 0 and £¢ depending on 6.

We conclude that the relations (16) and (17) are satisfied for every sequence
rj — o0o. Thus we may apply Proposition 1 to every sequence r; — oco. It
follows that T'(¢tr)/T(r) — t°, r — oo, uniformly with respect to ¢t € [1,2)].
Setting T'(r) = rP¢1(r), we conclude that £;(tr) ~ £1(r), r — oo uniformly with
respect to ¢ € [1,2]. This proves (8).

Let us prove (7). Denote by X = {u(.;6o) : 6p € [0,2n]} the set of all
subharmonic functions of the form

u(ret®; 0p) = mrP| cos p( — 6o)).

It is clear that X is a compact subset of L!j,.. Remark that L'}, is a metric space
and denote its metric by dist. Consider the family of §-subharmonic functions

Ut(Z) = t>0.

1 o 1
ORI
By (8) (which has already been proved) and Proposition 1, we have

(49) dist (U, X) — 0.
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Let u; € X be the closest element to U;. We claim that

(50) dist (us, uet) — 0, t — 00,
uniformly with respect to ¢ € [1,2]. If this is not the case, we have

(51) dist (ut,,, Uc,t,) > €>0

for some sequences ¢, € [1,2] and ¢, — 00. As ¢ Pu(cz) = u(z) for all u € X
and ¢ > 0, we have

Ucmtm (Z) + 0(1)
em " PU,, (emz) + o(1)
em " Put,, (cmz) + o(1)
ut,, (2) + o(1),

ucmtm (Z)

where o(1) stands for a function which tends to zero in L', as m — oco. This
contradicts (51) and proves (50).
If we set uy = u(.,60(t)), then (50) is equivalent to

0o(t) — Bo(ct) — 0 mod 2, t — o0,

uniformly with respect to ¢ € [1,2].
From (49) follows

Ui(z) = u(z;60p(t)) + o(1), t— oo

in L'joc. This is equivalent to (7), because normal convergence of §-subharmonic
functions implies the convergence by 1-measure.

Once we have (7), all other statements of the Theorem 1 follow easily. Con-
sider the family of curves Ty = {re?® : § — fy(r) = ¢}, 0< ¢ < 2rm. Ifa
curve I'y meets an exceptional circle, we replace the part of the curve inside this
circle by a part of circumference of the circle. After performing this procedure,
we get new curves I'y’ that do not intersect the exceptional set. We also have
Ty’ = {re®® : 0—£y(r) = ¢+o0(1)}. Integrating f’ along the curves I'y’ and using
the asymptotic formula (7), we conclude that for some aj € C there holds

log = nrPLy(r)| cos p(6 — £2(r))| + o(r?La(r)),

1
|f(rei®) — axl
™ ™
—((2k—-1)<0- <—2k+1
as re*® ¢ Cy, 1 — oo, uniformly with respect to . This implies immediately

that 6(a) = p(a)/p, where p(a) is the number of ax’s equal to a; the sum of
deficiencies is two and all deficient values are asymptotic.
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5. Proof of Lemma 6. We may suppose without loss of generality that
D = D(0,Ryp), Ry > 0.

Denote by Dy, the union of the interiors of all Jordan domains whose bound-
aries are in the set {z € D : u(z) > 0}. Then Dy are domains containing the
supports of ug. Each Dy is not relatively compact in D. It follows from the
definition that Dy’s are simply-connected.

A point 29 € 8Dy, is called accessible if there exists a curve ¢ : [0,1] — C
such that ¢(t) € Dy if t € [0,1) and ¢(1) = 2. Denote by 8o Dy, the set of all
accessible boundary points. This is a Borel set [17], so it is ug-measurable.

Proposition 2 pi(8Dx\8Dy) = 0.

Proof. Fix a number R, 0 < R < Ry. Cousider the domain G = Dy U{z €
C : |z| > R}. The domain G is regular for the Dirichlet problem because each
boundary point is contained in a continuum in the boundary [15]. Let g be the
Green function with the pole at infinity, extended to be zero on C\G. Then g is
a subharmonic function in C and its Riesz measure is the harmonic measure for
G. Choose a constant c so large that ux(z) < cg(2), |2| = (Ro+ R)/2, and apply
Lemma 5. We obtain that the restriction of uy to 8Dk N D(0, R) is majorized
by the harmonic measure of G. It is known (see, for example, [21]) that the
harmonic measure is supported by the set of accessible points. But a point
20, |20| < R is accessible from G iff it is accessible from Dg. The Proposition is
proved. 0O

Proposition 3 The set E of points which are accessible simultaneously
from three or more domains Dy, is finite and px(E) = 0 for all k.

Proof. Assume that three points 2y, 23, 23 are accessible simultaneously from
three disjoint domains D;, Dy, D3. Fix arbitrary three points w, € D, and
draw in each domain D,, 1 < n < 3, three curves 7, m, connecting wy to zm.
We may choose the curves to be disjoint except their ends. We obtain a graph
with 6 vertices and 9 edges such that each vertex of the group {z,,} is connected
to each vertex of the group {w,}. It is well known that such a graph cannot
be embedded in the plane. So each triple of our domains can have at most two
common accessible points, thus the set E is finite. Furthermore our subharmonic
functions uy, are non-negative, so their Riesz measures cannot charge a finite set.

Denote by p . the restriction of the measure py to the set 0gDy N Og Dy,
1<n <q,n#k,and let ug x be the restriction of py to DkU@oDk\Un;ﬁ,c doD,,.
By Propositions 2 and 3 we have

q
(52) B =Y bk,
n=1
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and there exist Borel supports By, of measures yy,n such that By, N Bym = 0
unless the non-ordered pairs {k,n} and {¢,m} coincide. Using (42) we obtain

Z Nkn—Eﬂk>2VNk—2(Zﬂkk+ > (uanunk))
kn=1 1<k<n<gq

or

(53) > (Bhin + o) = Z Pk +2 Y (Bkn Vi k)-

1<k<n<q 1<k<n<q

We always have pig n+pin k. < 2(fk,nVtin k) with the only possible case of equality
when pig n = pin k. Thus (53) implies

(54) Hk,k = 0, 1< k < q
and
(55) Bk = Bnk, 1<k<n<gq.

It follows from (54) that the functions uy are harmonic in Dy.

Proposition 4 Harmonic measure on 8yDy is absolutely continuous with
respect to pg.

Proof. Fix z9 € Dg. Then choose r > 0 such that D(29,7) C Dy and set
K = dD(zp,r). Let g be the Green function for D with pole at 2o extended to
be zero in D\ Dy. Choose a constant ¢ > 0 such that g(2) < cug(z), z € K, then
apply Lemma, 5.

Note that the harmonic measure of 0D N dD;, with respect to Dy, is positive,
so there are some points 2 € 0D, accessible from Dy. Take g copies of the
unit disc Ug, 1 < k < ¢ and fix the conformal maps ¢y : Uy — Dy such that
¢k((—1,0]) is a curve tending to zx. The radial limits of ¢ are exactly the
accessible boundary points of Dx. We denote by ¢r(z), € Ty = Uy, the
radial limit of ¢y at the point x, whenever it exists.

We show that if z, y € Tk, © # y, and px(z), ¢x(y) € D, then pi(z) #
vk (y). Otherwise consider a curve v, consisting of two radii, ending at the points
z, y. The closure I’ of the image ¢x(7) is a Jordan curve in D. The domain
G, bounded by I' cannot intersect D,,, n # k because all D,, are not relatively
compact in D. On the other hand, G contains a part of 0Dy, of positive harmonic
measure. It follows from Proposition 4, that py x(G) > 0, which contradicts (54).

We say that the domains Dy and D,, are contiguous if there exist at least
two common boundary points in D accessible from both domains. Obviously, if
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Ukn # 0, then Dy and D, are contiguous. Fix a number k, 1 < k < q. Assume
that the domain D, is contiguous to Di. Consider the set Xy , C Tk, where @
has radial limits, which are accessible from D,,. Set

bkn = inf{f € (—m,7) : € € Xin};
ak,n = sup{f € (—m,m) : e e Xkn}s

Tem = (bk,naak,n) C T.
The arc Ty, is called the contiguity arc.

We show that none of the contiguity arcs Ty, contain points z in which
pr(x) € 8D. Otherwise, we would have points z, y, t, -7 < z,y,t < w, with
radial limits @x(e®®) = a, pr(e¥) = b, pi(e’) = ¢, where @ € D and ¢ € D
are accessible from D,, and b € dD. Join @ and ¢ by simple arcs v; € Dy, and
Y2 € D,. The Jordan curve y; U 72 U {a,c} bounds a domain G, relatively
compact in D. The curve ¢;~1(v;) divides Uy into two parts, one of which has
on the boundary the point —1, while the other the point e?¥. So the images of
both these parts are not relatively compact, which is not possible since one of
these images lies in G.

We show that the contiguity arcs Ty , and Ty m do not intersect if m # n.
If these two arcs intersect, then we can find three points -7 < z <y <t <,
such that there exist pairwise distinct radial limits ¢k (e*®) = a, @i(e®¥) = b,
or(et) = c; a, b, ¢ € D such that a and c are accessible from a domain D,, and
b is accessible from D,, (k, m and n are pairwise distinct). Join the points a and
¢ by simple arcs in Dy and D,,. We obtain a Jordan curve, bounding a domain
G, relatively compact in D. It is easy to see that b € G. So D, intersects G, but
this is a contradiction because D,, is not relatively compact and does not meet
the boundary of G.

Observe that on each T} there is an open set that does not intersect the
contiguity arcs, because the number of contiguity arcs is finite and the harmonic
measure of D N Dy with respect to Dy is positive. Suppose that an arc A C T
intersects no contiguity arcs. Then the radial limits of ¢, belong to 8D almost
everywhere on A. Otherwise the limits of the function ¢, on A that are in D
form a set of positive harmonic measure with respect to Dg, and none of these
limits is accessible from D,, n # k. Taking into account Proposition 4, we
obtain a contradiction with (54).

A similar argument shows that the points on T} , in which there exist radial
limits of ¢, being accessible boundary points from D,,, are dense in the arc T} .

We supply the circumference Ty with the positive orientation (anti—clock-
wise). There is a natural monotone (orientation reversing) mapping ¥, of a
dense subset of the arc T, to a dense subset of the arc Thx: Yrn(z) = ¥
if pr(z) = pn(y). We extend ¢, to a homeomorphism. This can be done
since the functions v, and ¥, = 1/)k,n—1 are strictly monotone. We paste
together the closures of the circles U, and U, identifying the closed arcs T 5, and
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Tn ;. with the aid of homeomorphism i ,. We perform this procedure for each
pair {k,n} for which Dy and D,, are contiguous and obtain a bordered surface
(polyhedron) S’. Its border arises from the arcs on T}, which are complementary
to the contiguity arcs. Denote the interior of S’ by S. On the surface S we have
a net, consisting of the edges Ty, = Tn.x and vertices, which are the points
where the edges meet. The map ¢(z) = ¢r(z), = € Uy, is defined on a dense
open subset of S as well as on a dense subset of the net.

A closed curve I' C S is said to be admissible if it does not meet vertices,
intersects transversally and non-tangentially the edges in a finite set of points,
and at each point of intersection x € I' N T, there exist radial limits ¢ (z) =
@n(x). Admissible curves are dense in the set of all closed curves on S. An
admissible curve I C S has the image ¢(T'), which is defined to be the closure
of Uy, ok (T N Up).

We show that the surface S is homeomorphic to a plane domain. If this is
not so, then there exist two admissible curves I'y and I'; intersecting transversally
in a unique point, not lying on an edge. Then the closed curves ¢(I'1) and ¢(T's)
in the disc D intersect transversally in a unique point, which is impossible.

Next we show that S is homeomorphic to a disc. For this purpose consider
again the bordered surface S’. If there is more than one boundary component of
S’, then there exists a Jordan admissible curve " that separates some boundary
components B; and By of S’. Choose two curves I'; and I'; that do not intersect
I', that tend to some points b; € B;, i = 1,2, and such that there exist limits

m—»I}:,H;eF.» o(z) =a; € 0D, i=1,2.

The image (') is a Jordan curve which separates ¢(I'1) and ¢(I'z). So one of
these two curves is separated from 0D and we get a contradiction.

Let I' be an admissible curve. Denote by n(I') the number of its intersections
with edges. If z is a point in the plane or in S, and I is arbitrary closed curve
not passing through z, denote by ind,I" the rotation number of I with respect
to 2. The set of odd vertices (i.e., such vertices in which an odd number of edges
meet) will be called Q.

Proposition 5 n(') = 3, ind,(T') (mod 2).

Proof. By a small deformation we achieve that the curve I' will have a
finite number of self-intersections. We continuously deform the curve I', con-
tracting it to a point zo € U;. The deformation is carried out in such a manner
that the intermediate curves have a finite number of self-intersections and these
self-intersections do not occur on edges and vertices. When during the process
of deformation the curve passes through a vertex z so that the number ind,I’
changes by 1, the number n(I") obtains an even increment if the vertex z is even,
and an odd increment if the vertex x is odd. This proves the proposition.

Consider an arbitrary odd vertex x. Let I',, be a sequence of admissible
Jordan curves converging to x and such that I',; separates I, from z. Denote
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by K, the closure of the domain bounded by ¢(Ty,). Then K41 € K, and
therefore (-_, K, is a non-empty set which we denote by K(x). The curves
©(T'), where ' C S is an admissible curve, do not intersect the sets K(z).

For each odd vertex = we select a point ¢(z) € K(z). For any admissible
curve I we have

(56) indg(T") = indy(z)@(T).

Consider a two-sheeted ramified covering p : F — D of the disk D by
some Riemann surface F', ramified precisely over the points of p(z),z € Q. Let
Dy, ...,Dqq be the p-preimages of the domains Dj,...,D,, where p (D) =
Dy U f)q.,_k. The definition of contiguity of domains on the Riemann surface F
is exactly the same as in D.

Proposition 6 Let f)kl, e ,bkn be a finite sequence such that each f)k.» 18
contiguous to Di,,, 1 <i<n, kny1 = k1. Then n is even.

This proposition explains the role of the Riemann surface F'.
Proof. There exists a closed curve y C F such that the intersection of v with
each Dy, is a simple open arc and the ends of this arc are accessible boundary

points of Dy . The curve v; = p(y) is the p-image of some admissible curve
Tes,

M= ‘p(F),

and we have

Z indyz)71 =0 (mod 2),
TEQ

because v; = p(y) for a closed curve v in F. So, by (56)

> ind,I'=0  (mod 2).
z€Q
Thus the number n = n(T) is even by Proposition 5.
Now we may assign to each domain Dg, 1 < k < 2¢, a sign s(k) = £1 such

that contiguous domains have opposite signs. This is possible by Proposition 6.
Define the functions i and h in the following way:

g = s(k)ux op, 1<k<g

gtk = s(@+kugop, 1<k<g



Meromorphic Functions with Small Ramification 1217

It is evident that h is §-subharmonic on F'. Its Riesz charge is

2q 2q
(57) Z 3(")[’% = Z S(n)ﬁn,ma
n=1 m,n=1

where [i,, is the Riesz charge of i, while fi,, , is the restriction of fi, to 8015,L N

8Dpm. If fim,n # 0, then D, and D,, are contiguous, so they have opposite
signs. It follows from (55) that fim,n = fin,m, S0 the expression (57) is equal to
zero and the function h is harmonic.

By definition of h we have uop = |h|. The number of ramification points of
the covering p : F — D is equal to the number of odd vertices of the net on S.

We estimate the number of vertices in the net. For this purpose consider S’
and replace the unique border component of S’ by one vertex xo. The resulting
polyhedron S is homeomorphic to a sphere. All faces have =g on the boundary,
so at least g edges meet at . In each vertex meet at least 3 edges. If we denote
by v, e, and g, respectively, the number of vertices, edges and faces of S”, then
v — e + ¢ = 2 by the Euler formula. Furthermore, e > 1/2(q + 3(v — 1)) and we
get v < ¢ — 1 and the number of vertices on S does not exceed ¢ — 2 as required.

Finally in a neighborhood of each ramification point on the Riemann surface
F' the harmonic function h changes sign at least 6 times. So it has a zero at this
point of order at least 3. The lemma, is proved. O
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