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Abstract. We discuss eigenvalue problems of the form −w′′+Pw = λw with complex polynomial potential
P (z) = tzd+. . ., where t is a parameter, with zero boundary conditions at infinity on two rays in the complex
plane. In the first part of the paper we give sufficient conditions for continuity of the spectrum at t = 0.
In the second part we apply these results to the study of topology and geometry of the real spectral loci of
PT -symmetric families with P of degree 3 and 4, and prove several related results on the location of zeros
of their eigenfunctions.
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1. Introduction

We consider eigenvalue problems

(1.1) −w′′ + P (z,a)w = λw, y(z) → 0 as z → ∞, z ∈ L1 ∪ L2.

Here P is a polynomial in the independent variable z which depends on a parameter a, and L1, L2 are two
rays in the complex plane. The set of all pairs (a, λ) such that λ is an eigenvalue of (1.1) is called the spectral
locus.

Such eigenvalue problems were considered for the first time in full generality by Sibuya [37] and Bakken
[2]. Sibuya proved that under certain conditions on L1, L2 and on the leading coefficient of P , there exists
an infinite sequence of eigenvalues tending to infinity. If

(1.2) P (z,a) = zd + ad−1z
d−1 + . . .+ a1z,

where a = (a1, ..., ad−1), then the spectral locus is described by an equation F (a, λ) = 0. Here F (a, λ) is
an entire function of d variables, called the spectral determinant. So the spectral locus of (1.1), (1.2) is an
analytic hypersurface in Cd. It is smooth [2] and connected for d ≥ 3 [1, 28].

In the first part of this paper we study what happens to the eigenvalues and eigenfunctions when the
leading coefficient of P tends to zero.

Bender and Wu [7] studied the quartic oscillator as a perturbation of the harmonic oscillator:

(1.3) −w′′ + (εz4 + z2)w = λw, w(±∞) = 0.

Here and in what follows w(±∞) = 0 means that the boundary conditions are imposed on the positive and
negative rays of the real line. It has been known for long time that the eigenvalues of (1.3) converge as
ε→ 0+ to the eigenvalues of the same problem with ε = 0, but they are not analytic functions of ε at ε = 0
(perturbation series diverge). To investigate this phenomenon, Bender and Wu considered complex values
of ε and studied analytic continuation of the eigenvalues as functions of ε in the complex plane. Their main
findings can be stated as follows: the spectral locus of the problem (1.3) consists of exactly two connected
components; for ε 6= 0, the only singularities of eigenvalues as functions of ε are algebraic branch points.
These statements were rigorously proved in [18]. Discoveries of Bender and Wu generated large literature in
physics and mathematics. For a comprehensive exposition of the early rigorous results we refer to [38].
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To perform analytic continuation of eigenvalues of (1.3) and similar problems for complex parameters, one
has to rotate the normalization rays where the boundary conditions are imposed. One of the early papers
in the physics literature that emphasized this point was [6]. Thus physicists were led to problem (1.1),
previously studied only for its intrinsic mathematical interest.

An interesting phenomenon was discovered by Bessis and Zinn-Justin. For the boundary value problem

−w′′ + iz3w = λw, w(±∞) = 0,

they found by numerical computation that the spectrum is real. This is called the Bessis and Zinn-Justin
conjecture (see, for example, historical remark in [4]). This conjecture was later proved by Dorey, Dunning
and Tateo [14, 15] with a remarkable argument which they call the ODE-IM correspondence, see their survey
[16]. Shin [34] extended this result to the case

(1.4) −w′′ + (iz3 + iaz)w = λw, w(±∞) = 0,

with a ≥ 0.
These results and conjectures generated extensive research on the so-called PT -symmetric boundary value

problems. PT -symmetry means a symmetry of the potential and of the boundary conditions with respect
to the reflection in the imaginary line z 7→ −z. PT stands for “parity and time reversal”.

It turns out that the spectral determinant of a PT -symmetric problem is a real entire function of λ, so
the set of eigenvalues is invariant under complex conjugation. In contrast to Hermitian problems where
the eigenvalues are always real, the eigenvalues of a PT -symmetric problem can be real for some values of
parameters, but for other values of parameters some eigenvalues may be complex. So we can see the “level
crossing” (collision of real eigenvalues) in real analytic families of PT -symmetric operators, the phenomenon
which is impossible in the families of Hermitian differential operators with polynomial coefficients.

In this paper, we first consider the general problem (1.1) and the limit behavior of its eigenvalues and
eigenfunctions when

(1.5) P (z) = tzd + amz
m + p(z),

with d > m > deg p, as t → 0, while the coefficients of amz
m + p(z) are restricted to a compact set and am

does not approach zero. Then we apply our general results to certain families of PT -symmetric potentials
of degrees 3 and 4, and prove some conjectures made by several authors on the basis of numerical evidence.

In particular, our results for the PT -symmetric cubic (1.4) imply that real no eigenvalue can be analytically
continued along the negative a-axis, and the obstacle to this continuation is a branch point where eigenvalues
collide.

Another result is the correspondence between the natural ordering of real eigenvalues of (1.4) for a ≥ 0
and the number of zeros of eigenfunctions that do not lie on the PT -symmetry axis, conjectured by Trinh
in [41]. This correspondence is similar to that given by the Sturm–Liouville theory for Hermitian boundary
value problems.

A different approach to counting zeros of eigenfunctions is proposed in [25], where the authors prove that
for large a, the n-th eigenfunction has n zeros in a certain explicitly described region in the complex plane.

The plan of the paper is the following. In Section 2 we prove a general theorem on the continuity of
discrete spectrum at t = 0 for potentials of the form (1.5), with boundary conditions on two given rays.
Previously such problems were studied using the perturbation theory of linear operators in [24, 38, 10]. Our
method is different, it is based on analytic theory of differential equations.

Verification of conditions of our general result in Section 2 is non-trivial, and we dedicate the entire
Section 3 to this. The question is reduced to the study of Stokes complexes of binomial potentials Q(z) =
tzd+czm, d > m, which is a problem of independent interest, so we include more detail than it is necessary for
our applications. The Stokes complex is the union of curves, starting at the zeros ofQ, on which Q(z) dz2 < 0,
so they are vertical trajectories of a quadratic differential. Stokes complexes occur in many questions about
asymptotic behavior of solutions of equations (1.1). Our study permits us to make conclusions on the
behavior, as t→ 0, of the Stokes complexes of potentials P (z) = tzd +am(t)zm + pt(z) where am(t) → c 6= 0
and pt is a family of polynomials of degree m− 1 with bounded coefficients. We mention here [32] where a
topological classification of Stokes complexes for polynomials of degree 3 is given.

In the rest of the paper we apply these results to problems with PT -symmetry. In Section 4, we consider
the PT -symmetric cubic family (1.4) with real a and λ. We prove that the intersection of the spectral locus
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with the real (a, λ)-plane consists of disjoint non-singular analytic curves Γn, n ≥ 0, the fact previously
observed in numerical computation [13, 40, 29]. Moreover, we prove that the eigenfunctions corresponding
to (a, λ) ∈ Γn have exactly 2n zeros outside the imaginary line. (They have infinitely many zeros on the
imaginary line.) Furthermore, using the result of Shin on reality of eigenvalues, we study the shape and
relative location of these curves Γn in the (a, λ)-plane and show that a→ +∞ on both ends of Γn, and that
for a ≥ 0, Γn consists of graphs of two functions, that lie below the graphs of functions constituting Γn+1.

This gives PT–analog of the familiar fact for Hermitian boundary value problems that “n-th eigenfunction
has n real zeros”; in our case we count zeros belonging to a certain well-defined set in the complex plane. This
result proves rigorously what can be seen in numerical computations of zeros of eigenfunctions by Bender,
Boettcher and Savage [5].

The result of Section 4 also gives a contribution to a problem raised by Hellerstein and Rossi [8]: describe
the differential equations

(1.6) y′′ + Py = 0

with a polynomial coefficient P which have a solution whose all zeros are real. For polynomials of degree 3,
all such equations are parametrized by our curve Γ0, and equations having solutions with exactly 2n non-real
zeros are parametrized by Γn.

The arguments in Section 4 use our parametrization of the spectral loci from [20, 18] combined with the
singular perturbation results of Sections 2 and 3. These perturbation results allow us to degenerate the cubic
potential to a quadratic one (harmonic oscillator) and to make topological conclusions based on the ordinary
Sturm-Liouville theory.

Next we apply similar methods to a family of PT -symmetric quartics

(1.7) −w′′ + (z4 + az2 + icz)w = λw, w(±∞) = 0.

This family was considered in [3] and [11, 12]. We prove that the spectral locus in the real (a, c, λ)-space
consists of infinitely many smooth analytic surfaces Sn, n ≥ 0, each homeomorphic to a punctured disc, and
that an eigenfunction corresponding to a point (a, c, λ) ∈ Sn has exactly 2n zeros which do not lie on the
imaginary axis. We study the shape and position of these surfaces by degenerating the quartic potential to
the previously studied PT -symmetric cubic oscillator.

Notation and conventions.
1. What we call Stokes lines is called by some authors “anti-Stokes lines” and vice versa. We follow

terminology of Evgrafov and Fedoryuk [22, 23].
2. We prefer to replace z by iz in PT -symmetric problems. Then potentials become real, and the difference

between PT -symmetric and self-adjoint problems is that in PT -symmetric problems the complex conjugation
interchanges the two boundary conditions, while in self-adjoint problems both boundary conditions remain
fixed by the symmetry. The main advantage for us in this change of the variable is linguistic: we frequently
refer to “non-real” zeros. The expression “non-real” excludes 0, while the expression “non-imaginary” does
not.

We thank Kwang-Cheul Shin for his useful remarks and for sending us the text of his lecture [36], and
Per Alexandersson for the plots of Stokes complexes he made for this paper.

2. Perturbation of eigenvalues and eigenfunctions

We begin with recalling some facts about boundary value problem (1.1) with potential P (z) = azd + . . ..
The separation rays are defined by

Re

(
∫ z

0

√

aζd dζ

)

= 0, that is azd+2 < 0.

These rays divide the plane into d+ 2 open sectors Sj which we call Stokes sectors. We enumerate them by
residues modulo d+ 2 counter-clockwise.

A solution w of the differential equation (1.1) is called subdominant in Sj if w(rz) → 0 as r → +∞,
for all z ∈ Sj . For every j, the space of solutions of the equation in (1.1) which are subdominant in Sj is
one-dimensional. If Sj and Sk are adjacent, that is j = k±1 mod (d+2) then the corresponding subdominant
solutions are linearly independent.
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Let Sj and Sk be two non-adjacent Stokes sectors. We consider the boundary conditions

(2.1) w is subdominant in Sj and Sk.

Such boundary value problem has an infinite set of eigenvalues tending to infinity. All eigenspaces are one-
dimensional. These facts were proved by Sibuya [37] whose main tool were special solutions normalized on
one ray, which we call Sibuya solutions. Precise definition is given below. Our first goal is to prove continuous
dependence of Sibuya solutions on parameters.

We consider a family of polynomial potentials with parameters (t, a):

(2.2) Q(z, t,a) = tzd +

m
∑

j=0

ajz
j , m < d, a = (a0, . . . , am).

Let K ⊂ Cm+1 be a compact set which has a fundamental system of open simply connected neighborhoods,
and such that am 6= 0 for a ∈ K. This compact K will be fixed in all our arguments, so our notation does
not reflect dependence of the quantities introduced below on K. Let L = {teiθ : t ≥ t0} be a ray in C.

Suppose that for some δ > 0 and R > 0, and for all (t, a) ∈ [0, 1] ×K the following conditions hold:

a) | arg z − θ| ≥ δ for all zeros z of Q(z, t,a) such that |z| > R.
b) At every point z ∈ L such that |z| > R, the smallest angle between L and the direction Q(z, t,a)dz2 < 0

is at least δ.
c) L is not a separation ray of Q(z, t,a).

One can easily show that b) implies c). Condition c) simply means that L is neither a separation ray for
tzd, nor a separation ray for amz

m for a ∈ K.

Condition a) and our assumptions about K imply that there is a branch Q
1/4
L of Q1/4 analytic on L ×

[0, 1]×K. Let Q
1/2
L = (Q

1/4
L )2 be the corresponding branch of Q1/2. We choose the original branch Q

1/4
L in

such a way that

ReQ
1/2
L (z)dz → +∞, z → ∞, z ∈ L.

This is possible in view of condition c).
Let us say that y = yL(z, t,a) is a Sibuya solution of

−y′′ +Q(z, t,a)y = 0

if

y(z) ∼ Q
−1/4
L (z) exp

(

−
∫ z

z0

Q
1/2
L (ζ)dζ

)

, z → ∞, z ∈ L.

Here z0 = Reiθ. Notice that a change of R, results in multiplying the Sibuya solution by a factor that
depends only on t and a but not on z.

Theorem 2.1. Under the conditions a), b), c) above, there exists a unique Sibuya solution. It is an analytic
function of (z, t,a) in a neighborhood of C × (0, 1] × K, continuous on K1 × [0, 1] × K for every compact
K1 ⊂ Cz.

Proof. Let

φ(z) =

∫ z

z0

Q
1/2
L (ζ)dζ,

where the integral is taken along L. This is an analytic function which maps L onto a curve γ. Condition b)
implies that γ is a graph of a function (intersects every vertical line at most once), the slope of γ is bounded,
and φ maps bijectively some neighborhood of L onto a neighborhood of γ.

Let ψ be the inverse function to φ.

Setting u(ζ) = Q
1/4
L (ψ(ζ))y(ψ(ζ)), we obtain the differential equation

u′′ = (1 − g(ζ))u,

where the primes stand for differentiation with respect to ζ, and

g(ζ) =

(

5

16

Q′2

Q3
− 1

4

Q′′

Q2

)

◦ ψ(ζ),
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see, for example [30, Section 2.2]. This is equivalent to the integral equation

(2.3) u(ζ) = e−ζ +
1

2

∫ ∞

ζ

(

eζ−η − e−ζ+η
)

g(η)u(η)dη,

where the path of integration is the part of γ from ζ to ∞. The integral equation is solved by successive
approximation, [30, Section 2.4]. We set v(ζ) = u(ζ)eζ , and obtain

(2.4) v(ζ) = 1 +
1

2

∫ ∞

ζ

(

e2(ζ−η) − 1
)

g(η)v(η)dη,

which we abbreviate as v = 1 + F (v). Setting v0 = 0 and vn+1 = 1 + F (vn), we obtain

‖vn+1 − vn‖∞ ≤ ‖vn − vn−1‖
∫ ∞

ζ

|g(t)|dt.

Here we used the fact that ℜ(ζ− η) < 0 on the curve of integration because γ is a graph of a function. Now,
if ζ > 0 is large enough, we have

(2.5)

∫ ∞

ζ

|g(η)||dη| < 1/2

for all values of parameters t ∈ [0, 1],a ∈ K. We state this as a lemma:

Lemma 2.2. There exists b ∈ L such that for the piece Lb of L from b to ∞ and for all (t, a) ∈ [0, 1] ×K
we have

∫

Lb

∣

∣

∣

∣

∣

(

5

16

(

Q′

Q

)2

− 1

4

Q′′

Q

)

Q−1/2

∣

∣

∣

∣

∣

|dz| < 1/2.

The integral in this lemma equals to the integral in (2.5) by the change of the variable z = ψ(ζ),
√
Qdz =

dζ.

Proof of Lemma 2.2. Let z1, . . . , zd be all zeros of Q listed with multiplicity, in order of non-decreasing
moduli. Suppose that z1, . . . , zM are in the disc |z| < R while the rest are outside. Here R is the number
from condition a). We have

Q′

Q
=

M
∑

k=1

1

z − zk
+

d
∑

k=M+1

1

z − zk
= σ1(z) + σ2(z),

and
Q′′

Q
=

(

Q′

Q

)′

+

(

Q′

Q

)2

= σ′
1(z) + σ′

2(z) + σ2
1(z) + 2σ1(z)σ2(z) + σ2

2(z).

First we estimate σ1 and σ′
1 for |z| > R:

(2.6) |σ1| ≤
M

|z| −R
, |σ′

1(z)| ≤
M

(|z| −R)2
.

To estimate σ2 we first use condition a) to conclude that

(2.7) |z − zk| ≥ C0|z|, z ∈ L, k ≥M

where C0 depends only on δ. Then

(2.8) |σ2(z)| ≤ C1/|z|, |σ′
2| ≤ C2/|z|2.

Applying these inequalities, we obtain that
∣

∣

∣

∣

∣

5

16

Q′2

Q2
− 1

4

Q′′

Q

∣

∣

∣

∣

∣

≤ C

|z|2 ,

on Lb where b > 2R, where C depends only on δ.
Now we write

|Q(z)| = t

M
∏

j=1

|z − zj |
d
∏

j=M+1

|z − zj | ≥ tC3(|z| −R|)M
d
∏

j=M+1

|zj |.
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Here we used inequality (2.7) with interchanged z and zk. It is easy to see by Vieta’s theorem that

d
∏

j=M+1

|zj | ≥ C4t
−1,

where C4 depends only on K. This shows that |Qt(z)| ≥ C6|z|M .
Now we use the fact that Lb is a part of a ray from the origin, so |dz| = d|z| on Lb. Putting all this

together we conclude that our integral is majorized by the integral

∫ ∞

|b|

|z|−2−M/2d|z|,

which proves the lemma.

So the series
∑

vn is convergent uniformly in Re ζ > A for some A > 0 and this convergence is uniform
with respect to (t, a) ∈ [0, 1] × K. Then an application of the theorem on the uniqueness and continuous
dependence on initial conditions for linear differential equations shows that this convergence is uniform also
on compacts in the right half-plane of the ζ-plane. �

Let Zt be a family of discrete subsets of the complex plane. We say that Zt depends continuously on t if
there exists a family of entire functions ft 6= 0 such that Zt is the set of zeros of ft, and ft depends continuously
on t. Here the topology on the set of entire functions is the usual topology of uniform convergence on compact
subsets of the complex plane.

Consider the eigenvalue problem

(2.9) −y′′ +Qy = λy, y(z) → 0, z → ∞ z ∈ L1 ∪ L2,

where Q is a polynomial in z of the form (2.2), and L1, L2 are two rays from the origin in the complex plane.

Definition 2.3. A ray L is called admissible if conditions a), b) and c) in the beginning of this section are
satisfied.

The notion of admissibility depends on the parameter region K participating in conditions a), b) and c).

Theorem 2.4. If both rays L1 and L2 are admissible then the spectrum of problem (2.9) is continuous for
(t, a) ∈ [0, 1] ×K.

Proof. Let y1 and y2 be the Sibuya solutions corresponding to the rays L1 and L2. Then the Wronski
determinant of y1 and y2 evaluated at z = 0, W = (y′1y2−y1y′2)|z=0, where the primes indicate differentiation
with respect to z, is the spectral determinant of the problem (2.9), and W depends continuously on (a, λ)
in view of Theorem 2.1. �

The limit problem (2.9) for t = 0 may have no eigenvalues. This is the case when the rays L1 and L2

belong to adjacent sectors of Q(z, 0,a). In this case, Theorem 2.4 says that the eigenvalues of (2.9) escape
to infinity as t→ 0.

Theorem 2.5. Consider the problem (2.9). Suppose that the rays L1 and L2 are admissible, and that
λ = λ(t, a) is an eigenvalue depending continuously on (t, a) and having a finite limit λ(0,a) as t→ 0. Then
there exists an eigenfunction y(z, t,a) corresponding to λ that depends continuously on (t, a).

Proof. Let y1(z, t,a) be the Sibuya solution of (2.9) with λ = λ(t, a), corresponding to the ray L1. It
depends continuously on (t, a) by Theorem 2.5. Let y2(z, t,a) be the Sibuya solution of the same equation
corresponding to L2. The assumption that λ(t, a) is an eigenvalue implies that y1 and y2 are proportional.
This implies that y1 tends to zero as z → ∞ on L2, so y1 satisfies both boundary conditions. Thus y1 is an
eigenfunction that depends continuously on t. �
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3. Admissible rays

In this section we give a criterion for a ray to be admissible (see Definition 2.3). We reduce the problem
to the case of a binomial Q(z) = tzd + czm, t 6= 0, c 6= 0, 0 < m < d.

We begin with recalling terminology. Let Q(z) be a polynomial, z ∈ C. A vertical line of Q(z) dz2 is an
integral curve of the direction field Q(z) dz2 < 0. A Stokes line of Q is a vertical line with one or both ends
in the set of turning points {z : Q(z) = 0}. The Stokes complex of Q is the union of the Stokes lines and
turning points. Examples of Stokes complexes are shown (as bold lines) in Figs. 1-3.

(a) z4 + iz3 (b) z4 + eπi/4z3

Figure 1. Stokes complexes of z4 + iz3 and z4 + eπi/4z3.

(a) z3 + z2 (b) z3 + iz2

Figure 2. Stokes complexes of z3 + z2 and z3 + iz2.

A horizontal line of Q is a vertical line of −Q. Vertical and horizontal lines intersect orthogonally. An
anti-Stokes line of Q is a Stokes line of −Q.

Every Stokes line has one end at a turning point and the other end either at a different turning point or
at infinity. If Q has a zero at z0 of multiplicity m then there are m+ 2 Stokes lines with the endpoint at z0;
they partition a neighborhood of z0 into sectors of equal opening 2π/(m + 2). The m + 2 anti-Stokes lines
having one end at z0 bisect these sectors.

Let L(α) = {z ∈ C \ {0} : arg z = α} and, for 0 < β − α < 2π, S(α, β) = {z ∈ C \ {0} : α < arg z < β}.
For R ≥ 0, let D(R) = {z ∈ C : |z| ≤ R}. For a ray L or a sector S, define LR = L \D(R), SR = S \D(R).
For a set S ⊂ C, S is its closure in C and ∂S = S \ S.

Definition 3.1. Let Q = Pd + Pm be a binomial, where Pd(z) = tzd and Pm(z) = czm are two non-zero
monomials, 0 < m < d. Let S(Q) be the partition of C \ {0} into open sectors and rays defined by the
Stokes lines of the two monomials Pd and Pm.

Let R(Q) be the refinement of S(Q) defined by the rays from the origin through the non-zero turning
points of Q.
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(a) z4 + z3 (b) z3
− z2

Figure 3. Stokes complexes of z4 + z3 and z3 − z2.

A ray L(θ) is called good for Q if it is not one of the rays of R(Q) and is not tangent to any vertical line
of Q. The last condition is equivalent to L(θ) ∩ Z = ∅ where Z = {z : z2Q(z) ≤ 0}. A sector S of R(Q) is
good for Q if each ray L(θ) ⊂ S is good. This is equivalent to S ∩ Z = ∅.

In Figs. 1-2, thin solid rays and dashed rays are the Stokes lines of the two monomials of a binomial.
These rays define the partition S.

Theorem 3.2. Let Q = Pd+Pm be as in Definition 3.1. Then any sector of R(Q) containing an anti-Stokes
line of Pd is good for Q, and any good ray belongs to one of such sectors.

Proof. Let R+ and R− be the positive and negative real rays (not including 0). Definition 3.1 implies that
a ray L = L(θ) is good if and only if the cone CL = {αz2Pd(z) + βz2Pm(z), z ∈ L, α ∈ R+, β ∈ R+} does
not contain R−.

An anti-Stokes line of Pd is a good ray unless it is also a Stokes line of Pm, because z2Pd(z) is real positive
on it, hence z2Pm(z) must be real negative to make the sum real negative.

Suppose that L is an anti-Stokes line of Pd, and that z2Pm(z) is either real positive or belongs to the
upper half-plane for z ∈ L. Then either CL = R+ or CL belongs to the upper half-plane. When L is rotated
counter-clockwise, the arguments of the two monomials z2Pd and z2Pm restricted to L are increasing. Hence
CL remains in the upper half-plane until at least one of the monomials becomes real negative on L, i.e., until
L becomes a Stokes line of either Pd or Pm, or both. When L is rotated clockwise, the arguments of the
two monomials restricted to L are decreasing. Since the argument of Pd decreases faster than the argument
of Pm, the cone CL does not contain negative real numbers until either z2Pd on L becomes real negative or
argPm − argPd passes π, i.e., until L either becomes a Stokes line of Pd or passes a non-zero turning point
of Q.

The case when Pm(z) belongs to the lower half-plane on an anti-Stokes line of Pd is done similarly.
Conversely, let L be a ray which is not one of the rays of R(Q) and such that CL does not contain negative

real numbers. Then either L itself is an anti-Stokes line of Pd, or it can be rotated to the closest anti-Stokes
line of Pd preserving this property.

For example, if z2Pd(z) belongs to the upper half-plane for z ∈ L, then arg(z2Pd(z))−π < arg(z2Pm(z)) <
π for z ∈ L. Otherwise, either L would be a Stokes line of Pm (if arg(z2Pm(z)) = π), or it would contain
a turning point of Q (if arg(z2Pd(z)) − π = arg(z2Pm(z))), or CL would contain R−. When L is rotated
clockwise, since argPd decreases faster than argPm, Pd would become real positive on L before either
argPm − argPd becomes π or z2Pm becomes real negative.

The case when z2Pd(z) belongs to the lower half-plane on L is done similarly, rotating L counter-clockwise.
�

Corollary 3.3. Let S = S(α, β) be a Stokes sector of Pd such that the anti-Stokes line L ⊂ S of Pd does
not contain a turning point of Q. Then S contains a good subsector.

Proof. Since L does not contain a turning point of Q, it cannot be a Stokes line of Pm. Hence L belongs to
a sector of R(Q), which is good by Theorem 3.2. �
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In Figs. 1 and 2, every Stokes sector of Pd (bounded by the thin solid rays) contains a good subsector.
The two Stokes sectors of Pd adjacent to the negative real axis in Fig. 3(a), and to the positive real axis in
Fig. 3(b), do not contain any good rays.

Theorem 3.4. Let Q = Pd+Pm be as in Definition 3.1. Let H = {(x, y) ∈ R2 : |x| < π, |y| < π, |y−x| < π}
be a hexagon in R2. Then R+ is a good ray for Q if and only if (arg t, arg c) ∈ H. Here the values of arg t
and arg c are taken in (−π, π].

A ray L(θ) is a good ray for Q if and only if (arg t, arg c) belongs to H translated by (2πk−(d+2)θ, 2πl−
(m+ 2)θ) for some integers k and l.

Proof. For t > 0 and c > 0, R+ is an anti-Stokes line of both Pd and Pm, hence it is a good ray. It is not
a Stokes line of either Pd or Pm when | arg t| < π and | arg c| < π. It does not contain a turning point if
| arg t− arg c| < π.

For | arg t| < π, the anti-Stokes line L of Pd closest to R+ has the argument − arg t/(d + 2). It is a
Stokes line of Pm if arg c − (m + 2) arg t/(d + 2) = π(2k + 1) for an integer k. Since 0 < m < d, the lines
y − (m+ 2)x/(d+ 2) = π(2k + 1) do not intersect H. Hence L does not contain a turning point of Q when
(arg t, arg c) ∈ H. This implies that the closure of the sector S bounded by R+ and L does not contain
Stokes lines of either Pd or Pm, and does not contain non-zero turning points of Q, for all (t, c) such that
(arg t, arg c) ∈ H. Due to Theorem 3.2, R+ is a good ray for Q with these values of t and c.

If one of the three inequalities defining H becomes an equality, R+ becomes either a Stokes line of one of
the two monomials of Q, or contains a turning point of Q.

When (arg t, arg c) crosses one of the two segments | arg t| < π, | arg c| < π, | arg t − arg c| = π of the
boundary of H, a turning point of Q crosses R+ and remains inside the sector S for all values (t, c) such
that | arg t| < π, | arg c| < π, | arg c− (m+ 2) arg t/(d+ 2)| < π. Due to Theorem 3.2, R+ is not a good ray
for Q with these values of t and c.

This implies that R+ is not a good ray for Q when (arg t, arg c) /∈ H.
The statement for L(θ) is reduced to the statement for R+ by the change of variable z = ueiθ in the

quadratic differential Q(z) dz2. �

Example 3.5. Let us investigate when the two rays of the real axis are good for a binomial Q(z) = tzd+czm.
According to Theorem 3.4, R+ is a good ray when (arg t, arg c) ∈ H (light shaded hexagon in Fig. 4(a)).

For R− (θ = π in Theorem 3.4) there are 4 cases, depending on the parity of d and m.
a) If d and m are even, both R+ and R− are good rays for any Q such that (arg t, arg c) ∈ H.
b) If d and m are odd, R− is a good ray for Q when (arg t, arg c) belongs to the complement in (−π, π]2

of the two triangles (dark shaded area in Fig. 4(b)) with the vertices (0, 0), (0, π), (−π, 0) and (0, 0), (π, 0),
(0,−π), respectively. Both R+ and R− are good rays for Q when (arg(t), arg(c)) belongs to the union of
the two squares (0, 1)2 and (−1, 0)2 (light shaded area in Fig. 4(b)).

c) If d is even and m is odd, R− is a good ray for Q when (arg t, arg c) belongs to the complement in
(−π, π] of the two triangles (dark shaded area in Fig. 4(c)) with the vertices (0, 0), (π, 0), (π, π) and (0, 0),
(−π, 0), (−π,−π), respectively. Both R+ and R− are good rays for Q when (arg(t), arg(c)) belongs to the
union of the two open parallelograms (light shaded area in Fig. 4(c)) with the generators (π, 0), (−π,−π)
and (π, π), (−π, 0), respectively.

d) If d is odd and m is even, R− is a good ray for Q when (arg t, arg c) belongs to the complement in
(−π, π]2 of the two triangles (dark shaded area in Fig. 4(d)) with the vertices (0, 0), (0, π), (π, π) and (0, 0),
(0,−π), (−π,−π), respectively. Both R+ and R− are good rays for Q when (arg(t), arg(c)) in the union
of the two open parallelograms (light shaded area in Fig. 4(d)) with the generators (0, π), (−π,−π) and
(0,−π), (π, π), respectively.

In particular, if t is on the positive imaginary axis, both R+ and R− are good rays for Q when −π/2 <
arg(c) < π in case (a), 0 < arg(c) < π in case (b), −π/2 < arg(c) < 0 or π/2 < arg(c) < π in case (c),
−π/2 < arg(c) < π/2 in case (d).

By definition, a good ray L is not tangent to the vertical lines of Q and is not a Stokes line of either Pd

or Pm. Since the angles between L and vertical lines of Q have non-zero limits at the origin and at infinity,
there is a lower bound for these angles on L. This lower bound depends continuously on L, hence there is
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Figure 4. The values of (arg t, arg c) in Example 3.5 where both R+ and R− are good
(light shaded) and where R− is not good (dark shaded). (a) d and m even; (b) d and m
odd; (c) d even, m odd; (d) d odd, m even.

a common lower bound for these angles for all rays in a proper subsector T of a good sector S (such that
T \ {0} ⊂ S).

The good sectors in Theorem 3.2 depend continuously on the arguments of the coefficients t and c of
monomials Pd and Pm, except when a good sector degenerates to a ray that is a Stokes line of Pm and an
anti-Stokes line of Pd.

The lower bounds for the angles between a good ray L and vertical lines, and for the values of R, depend
continuously on the arguments of t and c, except when a good sector containing L degenerates.

Now we show that a good ray for a monomial tzd + czm is admissible for the potential (2.2), with fixed
am = c 6= 0 and

K = {(a0, . . . , am−1, c) : sup
0≤j≤m−1

|aj | ≤M},

for every positive M .

Lemma 3.6. Consider the polynomials Q(z) = tzd + czm +q(z), where t ≥ 0, |q(z)| ≤M |z|m−1 and |c| = 1.
Let S be a sector whose closure does not contain turning points of tzd + czm.

For every ǫ > 0 there exists R > 0 depending on ǫ,M, S, such that for every t ≥ 0:
(i) The set S ∩ {z : |z| ≥ R} does not contain turning points of Q, and
(ii) If v(z) and v′(z) are the vertical directions of Q(z)dz2 and (tzd+czm)dz2, respectively, then | arg v(z)−

arg v′(z)| < ǫ for z ∈ S, |z| > R.

Proof. We have |tzd + czm| ≥ c|z|m for z ∈ S, so |q(z)/(tzd + czm)| ≤ c−1|z|−1, and (i), (ii) hold when R is
large enough. �

4. PT-symmetric potentials and linear differential equations having solutions with

prescribed number of non-real zeros

Hellerstein and Rossi asked the following question [8, Problem 2.71]. Let

(4.1) w′′ + Pw = 0

be a linear differential equation with a polynomial coefficient P . Characterize all polynomials P such that
the differential equation admits a solution with infinitely many zeros, all of them real.

10



This problem was investigated in [39, 27, 26, 31, 35, 21]. Recently K. Shin [36] announced a description
of polynomials P of degree 3 or 4 such that equation (4.1) has a solution with infinitely many zeros, all but
finitely many of them real. It turns out that equations (4.1) with this property are equivalent to (1.4) or
(1.7) of the Introduction by an affine change of the independent variable.

Here we use the methods of [20, 18] to parametrize polynomials P of degrees 3 such that equation (4.1)
has a solution with prescribed number of non-real zeros.

Theorem 4.1. For each integer n ≥ 0 there exists a simple curve Γn in the plane R2 which is the image of
a proper analytic embedding of the real line and which has the following properties.

For every (a, λ) ∈ Γn the equation

(4.2) −w′′ + (z3 − az + λ)w = 0

has a solution w with 2n non-real zeros. Real zeros belong to a ray (−∞, x0) and there are infinitely many
of them. This solution satisfies limt→±∞ w(it) = 0.

The union ∪∞
n=0Γn coincides with the real part of the spectral locus of (1.4).

The projection (a, λ) 7→ a,

Γn ∩ {(a, λ) : a ≥ 0} → {a : a ≥ 0}
is a 2-to-1 covering map. The curves Γn are disjoint, and for a ≥ 0 and n ≥ 0, if (a, λ) ∈ Γn and
(a, λ′) ∈ Γn+1 then λ < λ′.

Figure 5. Curves Γn, n = 0, . . . , 4 in the (a, λ) plane (Trinh, 2002).

Equation (4.2) is equivalent to the PT-symmetric equation (1.4) in the Introduction by the change of
the independent variable z 7→ iz. Computer experiments strongly suggest that the projection (a, λ) 7→ a is
2-to-1 on the whole curve Γn except one critical point of this projection, and that the whole curve Γn+1 lies
above Γn.

Fig. 5, taken from Trinh’s thesis [40] (see also [13]), shows a computer generated picture of the curves Γn.
As a corollary from Theorem 4.1 we obtain that every eigenvalue λn(a), a ≥ 0 of (1.4), when analytically

continued to the left along the a-axis, encounters a singularity for some a < 0. According to Theorem 2 of
[18] this singularity is an algebraic ramification point.

Proof. Consider the Stokes sectors of equation (4.2). We enumerate them counter-clockwise as S0, . . . S4

where S0 is bisected by the positive real axis. Consider the set G of all real meromorphic functions f whose
Schwarzian derivatives are real polynomials of the form −2z3 + a1z + a0, and whose asymptotic values in
the sectors S0, . . . , S4 are ∞, 0, b, b, 0, respectively, where b = eiβ , β ∈ (0, π). Such functions are described
by certain cell decompositions of the plane [18]. By a cell decomposition we understand a representation of
a space X as a union of disjoint cells. This union is locally finite, and the boundary of each cell consists of
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cells of smaller dimension. The 0-cells are points, vertices of the decomposition. The 1-cells are embedded
open intervals, the edges, and the 2-cells are embedded open discs, faces of a decomposition. Two cell
decompositions of a space X are called equivalent if they correspond to each other via an orientation-
preserving homeomorphism of X.

To describe functions of the set G, we begin with the cell decomposition Φ of the Riemann sphere shown
in Fig. 6.

4

b
-

b

21

Figure 6. Cell decomposition Φ of the image sphere (solid lines).

It consists of one vertex at 2 and three edges which are simple disjoint loops around b, b and ∞, so that
the loop around ∞ is symmetric with respect to complex conjugation while the loops about b and b are
interchanged by the complex conjugation. The point 0 is outside the Fig. 6. The dotted line is not discussed
here; it is needed for the future.

So our cell decomposition has one vertex, three edges and four faces. The faces are labeled by the points
b, b,∞ and 0 which are inside the faces. (So three faces are bounded by single edge each, while one face
(labeled with 0) is bounded by three edges).

Suppose now that we have a local homeomorphism g : C → C such that the restriction

(4.3) g : C\g−1(A) → C\A,
where A = {b, b,∞, 0}, is a covering map, and Ψ = g−1(Φ). Then the preimage Ψ = g−1(Φ) will be a cell
decomposition of the plane C. Now suppose that a cell decomposition Ψ of the plane is given in advance,
and suppose that its local structure is the same as that of Φ. This means that the faces of Ψ are labeled by
the elements of the set A, and that a neighborhood of each vertex of Ψ can be mapped onto a neighborhood
of the vertex of Φ by an orientation-preserving homeomorphism, respecting the labels of the faces. Then
there exists a local homeomorphism g : C → C such that (4.3) is a covering map, and Ψ = g−1(Φ), see [18].

We use the cell decomposition Ψn shown in Fig. 7 to construct g:
The five “ends” extend to infinity periodically. This cell decomposition depends on one integer parameter

n ≥ 0 which is the number of 0-labeled faces between the neighboring “ramification points”. Only some face
labels are shown but the reader can easily recover all other labels from the condition that a neighborhood of
each vertex of Ψn is similar to a neighborhood of the vertex of Φ. The dotted lines are not a part of our cell
decomposition; they are preimages of the dotted line in Fig. 19, and are added for a future need. Since Ψn is
symmetric with respect to the real line, we can choose g symmetric, that is g(z) = g(z). This construction
defines the map g up to pre-composition with a symmetric homeomorphism φ : C → C of the domain of
g. A fundamental result of R. Nevanlinna ensures that this homeomorphism φ can be chosen in such a way
that f = g ◦ φ is a meromorphic function which is real in the sense that f(z) = f(z). We refer to [18] for
the discussion of this construction in our current context; in fact [18] contains a simple alternative proof
of Nevanlinna’s theorem. Nevanlinna’s original proof is explained in modern language in [17]; the original
paper of Nevanlinna is [33].

The meromorphic function f is defined by the cell decomposition Ψn and parameter b up to pre-
composition with a real affine map cz + d. Furthermore, the Nevanlinna theory says that the Schwarzian
derivative of f is a polynomial of degree exactly 3 (the number of unbounded faces of Ψn minus 2). We
pre-compose f with a real affine map to normalize this polynomial to have leading coefficient −2 and zero
coefficient at z2. Thus

(4.4)
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

= −2(z3 − az + λ).

As f is real, a and λ are also real. Now f is uniquely defined by the properties that it satisfies a differential
equation (4.4), has asymptotic values ∞, 0, b, b, 0 in the sectors S0, . . . , S4, respectively, and that f−1(Φ)
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equivalent to Ψn (Fig. 7 for n = 2) by an orientation-preserving homeomorphism of the plane commuting with
the reflection z 7→ z. The statement on asymptotic values implies that f(it) → 0, t→ ±∞. Furthermore, f
depends analytically on b, when b is in the upper half-plane, and thus we obtain a real analytic map b 7→ (a, λ).
This map is invariant with respect to transformations b 7→ tb, t ∈ R\{0}, because the Schwarzian derivative
in the right hand side of (4.4) does not change when f is replaced by tf .

Thus for every n we have a one-parametric family Gn ⊂ G of meromorphic functions, parametrized by
β ∈ (0, π), b = eiβ. Taking the Schwarzian derivative we obtain a map Fn : (0, π) → R2, β 7→ (a, λ). This
map is known to be a proper real analytic immersion [2]. It is easy to see that it is injective: two solutions
of the same Schwarz equation may differ only by post-composition with a fractional-linear map, and this
fractional-linear map must be identity by our normalization of asymptotic values.

For the same reasons the images of Fn are disjoint: for different n, our functions have (topologically)
different cell decompositions. The images of Fn are our curves Γn.

Now we prove that the union of Γn coincides with the real part of the spectral locus of (1.7).
Our functions f ∈ G can be written in the form f = w/w1 where w and w1 are two linearly independent

solutions of equation (4.2) with some real a and λ. We can choose w and w1 to be real entire functions.
Condition that f(it) → 0 as t → ±∞ implies that w(it) → 0 for t → ±∞ so w is an eigenfunction of the
spectral problem

(4.5) −w′′ + (z3 − az + λ)w = 0, w(±i∞) = 0,

which is equivalent to (1.4) by the change of the independent variable z 7→ iz.
So our curves Γn belong to the real part of the spectral locus of (4.5) or (1.4).
Now, let λ be a real eigenvalue of the problem (4.5), w a corresponding eigenfunction. Choose a point

x0 on the real line such that w(x0) 6= 0 and normalize w so that w(x0) = 1. Then w∗(z) = w(z) is an
eigenfunction with the same eigenvalue, so w∗ = cw for some constant c 6= 0. Substituting x0 gives that
c = 1. So w is real.

Let w1 be a solution of the same equation as w but satisfying w1(x) → 0, x → +∞. We normalize w1

so that w1 is real in the same way as we normalized w. Then f = w/w1 is a real meromorphic function

0

4

b

b
-

0

000

0

0

0

0

Figure 7. Cell decomposition Ψn for n = 2 (solid lines).
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whose Schwarzian derivative is a cubic polynomial with top coefficient −2, and the asymptotic values in Sj

are ∞, 0, b, b, 0. We can change the normalization of w1 multiplying it by any real non-zero constant. In this
way we achieve that b = eiβ for some β ∈ (0, π). So f belongs to the class G.

Lemma 4.2. G = ∪∞
n=0Gn.

Proof. Let f ∈ G. Consider the cell decomposition X = f−1(Φ). We have to prove that X = Ψn for some
n ≥ 0. To do this, we follow [18]. We first remove all loops from X, and then replace each multiple edge by a
single edge, and denote the resulting cell decomposition by Y . Notice that the cyclic order (∞, b, b) in Fig. 6
is consistent with the cyclic order (∞, 0, b, b, 0) of the Stokes sectors in the z-plane. By [18, Proposition 6],
this implies that the 1-skeleton of Y is a tree. This infinite tree is properly embedded in the plane, has 5
faces, is symmetric with respect to the real line, and has two faces labeled with 0 which are interchanged by
the symmetry. Moreover, the faces of Y are in one-to-one correspondence with the Stokes sectors, and the
face corresponding to S0 is bisected by the positive ray. One can easily classify all trees with these properties.
They depend of one integer parameter n ≥ 0 which is the distance between the ramification point in the
upper half-plane and the ramification point on the real axis. Now we refer to [18, Proposition 7] that the
tree Y uniquely defines the cell decomposition X. This shows that X = Ψn for some n ≥ 0.

Meromorphic function f is defined by the cell decomposition X and the parameter b up to an affine change
of the independent variable. Normalizing it as in (4.4) gives f ∈ Gn. �

We conclude that the union of our curves Γn in the right half-plane a ≥ 0 coincides with the real part of
the spectral locus of (4.5).

Now we study the shape of the curves Γn. The boundary value problem (4.5) was considered by Shin [34],
Delabaere and Trinh [40, 13]. The spectrum of this problem is discrete, simple and infinite. It is known [34]
that for a ≥ 0 all eigenvalues of this problem are real and positive. It follows from this result that there are
real analytic curves λ = γk(a), k = 0, 1, 2, . . . , such that for each k, γk(a) is an eigenvalue of the problem
(4.5), and γk < γk+1, k = 0, 1, 2, . . .. So the part of the real spectral locus in {(a, λ) : a ≥ 0} is the union of
the graphs of γk.

Next we prove that the intersection of Γn with the half-plane a ≥ 0 consists of γ2n and γ2n+1. For this
purpose we study what happens to eigenvalues and eigenfunctions of the problem (4.5) as a→ +∞.

A different approach to the asymptotics as a→ ∞ is used in [25]. We could use their Corollary 2.16 here
instead of referring to Sections 2,3.

We substitute cz + d in (4.5) and put y(z) = w(cz + d), where

d = (a/3)1/2 > 0, c = (3d)−1/4 > 0.

The result is

(4.6) −y′′ + (c5z3 + z2 + µ)y = 0,

where µ = c2(λ + d3 − ad). Choosing the positive and negative imaginary rays as our normalization rays
L1 and L2, we see that the normalization rays are admissible in the sense of Theorem 2.4. The Stokes
complex of the binomial potential corresponding to (4.6) is shown in Fig. 2(a). According to Theorem 2.4,
the spectrum of the problem (4.6) converges to the spectrum of the limit problem

(4.7) −y′′ + z2y = −µy, y(±i∞) = 0.

This limit problem is equivalent to the self-adjoint problem

−u′′ + z2u = µu, u(±∞) = 0

by the change of the variable u(z) = y(iz). By Theorem 2.5, convergence of the spectrum implies convergence
of eigenfunctions uniform on compact subsets of the plane. As a varies from 0 to ∞, we can choose an
eigenvalue λ(a) which varies continuously, and the corresponding eigenfunction that varies continuously, and
tends to an eigenfunction of (4.6). In the process of continuous change the number of non-real zeros of
the eigenfunction cannot change because eigenfunctions cannot have multiple zeros. The conclusion of the
theorem will now follow from the known properties of zeros of eigenfunctions of Hermitian boundary value
problems, once we establish the following

Lemma 4.3. As t = c5 → 0 in (4.6) the non-real zeros of an eigenfunction cannot escape to infinity.
14



Notice that the real zeros of the eigenfunction do escape to infinity, as the limit eigenfunction has at most
one real zero.

Proof. Let wt be the eigenfunction constructed in Theorem 2.5 which depends continuously on t. Let w∗
t

be the Sibuya solution corresponding to the positive ray. Then ft = wt/w
∗
t is a real meromorphic solution

of the Schwarz equation and has asymptotic values ∞, 0, bt, bt, 0 in the sectors Sj . As ft → f0, and the
Schwarzian of f0 is of degree 2, we conclude that b = eiβ converges to the real axis, and the Riemann surface
of f−1

t must converge in the sense of Caratheodory [9, 42], to a Riemann surface with 4 logarithmic branch
points which can lie only over 0,∞, b0, where b0 ∈ {±1}. To construct the cell decomposition corresponding
to this limit Riemann surface, we consider two cases.

Case 1. b0 = 1. To describe the limit function, we must replace in the original cell decomposition Fig. 6
two loops corresponding to b, b with a single loop around both of these points. This loop is shown by
the dotted line in Fig. 6 and its preimage is shown by the dotted lines in Fig. 7. The original loops that
separate b- and b- labeled faces from the face labeled 0 must be removed. Performing this operation on the
cell decomposition Ψn we see that the 1-skeleton breaks into infinitely many pieces. But there is only one
piece that has four unbounded faces and thus can correspond to a meromorphic function whose Schwarzian
derivative is a polynomial of degree 2. This limit decomposition is shown in Fig. 8.

4b= b
-

0

0

0

0

0

0

Figure 8. Limit cell decomposition with n = 2 (solid and dotted lines).

This time both solid and dotted lines represent the edges of this decomposition. We see that the number
of non-real zeros in the limit is the same as it was before the limit.

Case 2 b0 = −1. To analyze this case, we replace the cell decomposition on Fig. 6 by the one in Fig. 9

We may assume that the loop around ∞ in Fig. 6 is symmetric with respect to z 7→ −z and the loop
around ∞ in Fig. 9 is obtained from the loop in Fig. 6 by this reflection. Let us choose for convenience b = i.
Then Figs. 6 and 9 can be combined as in Fig. 10.

Now we want to find the preimage of the cell decomposition in Fig. 9 under the same function f . There
are several ways to find this preimage. We express the loops in Fig. 9 in terms of the loops in Fig. 6, as
elements of the fundamental group of C\{0, i,−i}. We denote the loops around b,b in Fig. 6 by γb, γb, and
let α, β be the upper and lower halves of the loop around ∞, so that γ∞ = αβ (α followed by β). Let γ′b
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-1-2

Figure 9. Another cell decomposition of the sphere (solid lines).

and γ′
b

be the loops in Fig. 9. Then we have γ∞ = γ′∞ = βα (α followed by β), γ′b = βγbβ
−1, γ′

b̄
= α−1γb̄α.

See Fig. 10.
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b

21

b
-

-1-2

a

b

g

g

b

b
-

g
b

g
b
-

’

’

Figure 10. Fig. 6 and Fig. 9 together.

These relations permit us to draw the preimages of the loops γ′∞, γ
′
b, γ

′
b

in the z-plane. The resulting
picture is shown in Fig. 11.

0
4

b

b
-

0 0 0
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0

0

0

Figure 11. Preimage of the cell decomposition Fig. 9 (solid lines).
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When b → −1, we have a degeneration as before. The corresponding cell decomposition is obtained
by replacing preimages of the loops γ′b and γ′

b
by the preimages of the dotted line. The resulting cell

decomposition is shown in Fig. 12.

4b= b
-

0

0

0

0

0

0

0

Figure 12. The limit cell decomposition of Fig. 9 as b→ −1 (solid and dotted lines).

We see that the limit function still has 2n non-real zeros, and one real zero. This completes the proof of
the lemma, and of Theorem 4.1. �

This proof shows that β → 0 corresponds to the lower branch of Γn while β → π corresponds to the upper
branch.

�

Theorem 4.4. Let P be a polynomial of degree 3 such that equation (4.1) has a solution with 2n non-real
zeros. Then (4.1) can be transformed to an equation of Theorem 4.1 with (a, λ) ∈ Γn by a real affine change
of the independent variable.

Proof. By the results of Gundersen [26, 27], all solutions have infinitely many zeros, and the coefficients of P
are real. By a real affine change of the variable we achieve that P (z) = −z3 +az−λ. As almost all zeros are
real, our solution must tend to zero in both directions of the imaginary axis. Indeed, the asymptotic value
in S2 cannot be 0 because otherwise by symmetry the asymptotic values in the adjacent sectors S2 and S3

would be equal. If the asymptotic value in S1 were different from 0, we would have infinitely many zeros in
the asymptotic direction of the separating ray between S1 and S2. Thus the asymptotic value in S1 is zero.

So λ is an eigenvalue of the problem (4.5). Let w be a real eigenfunction and w1 a real solution of our
equation that is linearly independent of w. Then the ratio f = w/w1 is a meromorphic function which is
a local homeomorphism, and has asymptotic values ∞, 0, b, b, 0 in S0, . . . , S4, respectively. This function
belongs to the class G defined in the proof of Theorem 4.1. �

Now we state analogous results for the quartic family

(4.8) −w′′ + (−z4 + az2 + cz + λ)w = 0, w(±i∞) = 0.

studied in [3, 12]. This family is equivalent to the PT-symmetric family (1.7) of the Introduction via the
change of the independent variable z 7→ iz.
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Theorem 4.5. The real part of the spectral locus of (4.8) consists of disjoint smooth connected analytic
surfaces Sn, n ≥ 0, properly embedded in R3. For (a, c, λ) ∈ Sn, the eigenfunction has 2n non-real zeros.
Each of these surfaces is homeomorphic to a punctured disc. Projection π(a, c, λ) = (a, c) has the following
properties: It is a 2-to-1 covering over some neighborhood of the a-axis, and for a > a0, the preimage of
every line c = const is compact and homeomorphic to a circle.

Proof. We follow the same pattern as in the proof of Theorem 4.1. There are 6 Stokes sectors, S0, . . . , S5,
which we enumerate counter-clockwise, beginning from the sector in the first quadrant.

If f = w/w1 where w is a real eigenfunction and w1 is a real linearly independent solution of the same
equation, then f has asymptotic values b0, 0, b1, b1, 0, b0 in the sectors S0, . . . , S5. Here b0 6= b1, and b0, b1
must belong to C\R.

If c = 0, we can choose w,w1 with the additional symmetry with respect to the imaginary axis, which
gives b0 = −b1, so b0 and b1 belong to the same half-plane of C\R. The same situation persists for all real
c because b0, b1 depend continuously on c and never cross the real line. The real affine group acts on f by
post-composition; this corresponds to the change of normalization of w and w1. So we can always choose
the normalization so that b1 = i. We denote b = b0.

Notice that after this normalization condition c = 0 corresponds to |b− i/2| = 1/2. See Remark 4.6 after
the proof.

Consider the cell decomposition Φ of the Riemann sphere (the range of f) shown in Fig. 13. It consists
of one vertex at ∞ and four disjoint loops around ±i and b, b that are interchanged by the symmetry.

4 1

i

-i

b
-

b

Figure 13. Cell decomposition Φ of the sphere (solid lines).

Now consider the cell decomposition Ψn of the plane (with labeled faces) shown in Fig. 14. It is locally
similar to Φ, and depends on one integer parameter n ≥ 0 which is the number of 0-labeled faces between
the adjacent “ramification points”.

As in Theorem 4.1, Nevanlinna theory gives for each n ≥ 0 a family Gn of meromorphic functions f which
have 2n non-real zeros and satisfy the Schwarz equation of the form

(4.9)
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

= 2(z4 − az2 − cz − λ).

with real a, c, λ.
Classification result for symmetric trees with 6 faces in [18] ensures that all equations (4.1) having a

solution with infinitely many real zeros and 2n non-real zeros are equivalent to equations which arise from
our families Gn.

This also has an implication that there is “no monodromy” in our families Gn: when b traverses a
loop around i, we return with the same function f we started with. Indeed, in the process of continuous
deformation the number of non-real zeros cannot change, and there is only one suitable cell decomposition
Ψn for every n.

Thus our family Gn is homeomorphic to a punctured disc. Taking the coefficients a, c, λ of the Schwarzian
defines an analytic embedding of Gn to R3. This is our surface Sn. The surfaces are disjoint and properly
embedded for the same reasons as in the proof of Theorem 4.1.
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Figure 14. Cell decomposition Ψn for a quartic with n = 2 (solid lines).

To study the shape of these surfaces Sn in R3, we first notice that for c = 0, the eigenvalue problem
obtained from (4.8) by rotation z 7→ iz is Hermitian. It follows that the intersection with the plane Sn ∩
{(a, c, λ) : c = 0} consists of the disjoint graphs of two analytic functions defined for all real a, and that
λn(a, 0) < λn+1(a, 0). Another simple property of the surface Sn is that it is symmetric with respect to
change c 7→ −c, which follows by changing z 7→ −z in the equation.

Now we study the asymptotic behavior of Sn for a→ +∞. In the equation (4.8) we set z = ε(ζ−t), y(z) =
w(ε(ζ − t)), where t satisfies

(4.10) a− 6ε2t2 = 0, and 4ε6t = 1,

and obtain

(4.11) −y′′ + (−ε6z4 + z3 + αz + µ)y = 0,

where

α = 4ε6t3 + 2ε4at+ cε3,

and

µ = −ε6t4 + aε4t2 − cε3t+ ε2λ.

Expressing t and a from equations (4.10) as functions of ε and substituting the result to the expression of α
we obtain

a = (3/8)ε−10, c = ε−3α− (1/4)ε−15,(4.12)

λ = −21 · 2−8ε−20 + (α/4)ε−8 + µε−2.(4.13)

Consider the curves Γn from Theorem 4.1. It follows from their properties stated in Theorem 4.1 that for
every n, there exists αn = max{−α : (α, λ) ∈ Γn, and 0 < αn <∞.
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Suppose that α < αn, and consider the curve in (a, c)-plane parametrized by (4.12). Equation (4.11)
satisfies the conditions of Theorem 4.1 of Section 2 (the Stokes complex corresponding to this equation is
shown in Fig. 1(a), rotated by 90◦), and the sectors containing the normalizing rays are good. We conclude
that the spectrum of (4.11) tends to the spectrum of the cubic

(4.14) −y′′ + (z3 + αz + µ)y = 0.

The spectrum of the cubic with parameter α has at least one eigenvalue µ∗ which is real and such that
the corresponding eigenfunction has 2n non-real zeros. As µ∗ is an isolated point of this spectrum, and the
spectrum of (4.11) is symmetric with respect to the real axis, we conclude that there is an eigenvalue µ of
(4.11) which is real, and the corresponding eigenfunction has 2n non-real zeros.

To ensure that the number of non-real zeros does not change in the limit, we make an argument similar
to that in the proof of Theorem 4.1, the degeneration of the cell decomposition Ψn is shown in Fig. 15.

0

0

i

-i

b=b
-

0

0

0

0

0

0

Figure 15. Limit cell decomposition with n = 2 (solid and dotted lines).

We conclude that projection of our surface S contains a piece of the curve (4.12) for ε ∈ (0, ε0).
Now suppose that α > αn. We claim that there are no points on Sn with a→ ∞ and (a, c) on the curve

(4.12). Proving this by contradiction, we suppose that there is a sequence (aj , cj , λj) ∈ Sn such that (aj , cj)
belong to the curve (4.12). Then Theorem 2.4 implies that the sequence µj related to the λj by (4.13), has
the property that µj tends to a real eigenvalue µ∗ of the cubic oscillator (4.14). Then the corresponding
eigenfunction tends to an eigenfunction of the cubic with 2n non-real zeros. This is a contradiction because
α > αn, so our claim is proved.

So the projection of Sn on the plane (a, c) is asymptotically close to the set 9c2 − 4a3 ≤ 0 when a →
+∞. �

Fig. 16, which is taken from Trinh’s thesis shows a section of the surfaces Sn by the plane a = −9. Similar
pictures can be seen in [3, 12].

Computational evidence suggests that each Sn has the shape of an infinite funnel with a sharp end
stretching towards a = −∞. This end probably corresponds to b → i, where b is the asymptotic value as
in Figs. 13-14. Moreover, λ → −∞ as a → −∞ on Sn as the picture in [12] suggests. For every real a0

the section of Sn by the plane a = a0 is an oval that projects on the c-axis 2-to-1. We only proved that
this section is compact for a large enough. For n = 0, 1, 2, . . . , the funnels Sn are symmetric with respect to
c 7→ −c, Sn+1 lies above Sn and Sn+1 is wider than Sn.

Remark 4.6. In general, it is hard to say anything explicit on the correspondence between the parameters a, c
in the potential and the Nevanlinna parameter b. Some information on this correspondence can be extracted
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Figure 16. Section of the surfaces Sn, n = 0, 1, 2, 3 by the plane a = −9.

from symmetry and degeneration considerations. In the beginning of the proof of Theorem 4.5 we noticed
that the line c = 0 corresponds to the circle |b− i/2| = 1/2. We can determine now the sign of c for b inside
and outside this circle. Degeneration used in the proof corresponds to convergence of b to a real non-zero
point. Formula (4.12) shows that c < 0 when ǫ → 0. So negative c correspond to the exterior of the circle
and positive c to its interior.
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[25] V. Grecchi, M. Maioli and A. Martinez, Padé summability of the cubic oscillator, J. Math. Phys. A: Math. Theor. 42

(2009) 425208, 17pp.
[26] G. Gundersen, On the real zeros of solutions of f ′′ + A(z)f = 0 where A is entire, Ann. Acad. Sci. Fenn. Math. 11, 1986

276–294.
[27] G. Gundersen, Solutions of f ′′+P (z)f = 0 that have almost all real zeros, Ann. Acad. Sci. Fenn. Math., 26 (2001) 483–488.
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