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Zeros of an entire function can be arbitrarily prescribed, but one cannot
simultaneously prescribe zeros and 1-points.

We will study the simple case when zeros and 1-points belong to a finite
set of rays from the origin. The principal result about such functions was
proved by A. Edrei in 1955.

Theorem A. Suppose that all zeros and 1-points of an entire function belong

to a finite set of rays from the origin, and let ω be the smallest angle between

these rays. Then f is at most of order π/ω, normal type.

It is remarkable that a strong growth restriction comes only from the
assumption on arguments of a-points. The deepest part of this theorem is
that the order is finite. If one makes this an á priori assumption, then the
result that the growth is at most of order π/ω, normal type, is much simpler
and was already known to Bieberbach in 1919.

When we have only two rays, and they are positive and negative rays of
the real line, Fuchs’s theorem says that the function must be of exponential
type. This leads to the famous parametric description of real entire functions
whose all ±1-points are real in the work of Marchenko and Ostrovskii (1975).
Such functions occur in spectral theory as Hill discriminants.

Let
y′′ + q(x)y = λy

be a linear differential equation with real periodic coefficient, q(x) = q(x+T ).
Then the shift operator S : y(x) 7→ y(x+T ) acts on the space of real solutions
and has determinant 1. The trace of the shift operator is a real entire function
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λ 7→ 2L(λ). So the characteristic equation of S has the form

ρ2 − 2L(λ)ρ+ 1 = 0.

So L(λ) = ±1 if and only if ρ = ±1, that is λ is an eigenvalue of (4) with
periodic or anti-periodic boundary conditions. It follows that all such λ are
real because both eigenvalue problems are self-adjoint.

Returning to the theory of entire functions, we mention the following
three theorems.

Theorem B. (Milloux, 1927) If all zeros of an entire function f belong

to a line L0 and all 1-points to a different line L1 which crosses L0, then

f(z) = eaz+b or f(z) = 1 + eaz+b, or a polynomial of degree at most 2.

Theorem C. (T. Kobayashi, 1979, I. N. Baker, 1980) If all zeros of a tran-

scendental entire function f belong to a line L0 and 1-points to a parallel line

L1 6= L0, then f = P (eaz) with a polynomial P , and all such polynomials are

explicitly described.

Theorem D. (Biernacki, 1929) If arguments of zeros of a transcendental

entire function accumulate only to α and arguments of 1 points accumulate

only to β, then α = β.

We complement these results with the following

Theorem 1. (Bergweiler, Eremenko, Hinkkanen, 2016) If all zeros of a

transcendental entire function f lie on the positive ray L0 and all 1-points on
two rays Lj, j ∈ {±1} different from L0, then he rays Lj make equal, acute

angles with L0.

A more interesting question is whether there exist non-trivial examples
of entire functions whose zeros and 1-points are radially distributed. (By
trivial examples we mean functions of the form f(zn), where all zeros and
1-points of f lie on a line, for example f(z) = sin z. Such functions f have
been completely described by Marchenko and Ostrovskii.)

It turns out that there are non-trivial examples, and they are also closely
connected to spectral theory!

Theorem 2. (Bergweiler, Eremenko, Hinkkanen, 2016) Let

Lj = {reijα : r > 0}, j ∈ {±1}.
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If α ∈ (0, π/3] or α = 2π/5, then there exists a transcendental entire function

whose all zeros lie on the positive ray and all 1-points on L1 ∪ L−1.

It is not known whether such functions exist for α ∈ (π/3, π/2) except
for α = 2π/5. I will only describe the proof for the case α = 2π/5; the case
α ∈ (π/3, π/2) uses the same idea, but it is more complicated, and I will only
briefly discuss it in the end.

Proof of Theorem 2 for α = 2π/5. Consider the differential equations

−y′′ +
(

z3 + λ
)

y = 0, (1)

where λ is a complex parameter.
Set

ω = e2πi/5.

Our equation has the following symmetry property: if y0(z, λ) is a solution,
then

yk(z, λ) = y0(ω
−kz, ω2kλ) (2)

is also a solution.
All solutions are entire functions of two variables, z and λ. To describe

their asymptotic behavior, we consider the sectors

S0 = {reit : r > 0, |t| < π/5}, Sk = ωkS0.

These are called the Stokes sectors. In each Stokes sector, there is a one-
dimensional space of solutions which tend to zero exponentially (uniformly
with respect to arg z in any smaller sector), while all other solutions grow
exponentially. A solution which tends to zero in Sk is called subdominant in
Sk. It must grow in the two adjacent sectors Sk−1 and Sk+1.

Asymptotics of solutions are obtained by the well known Green–Liouville
method (known as the WKB method to physicists). In particular, there is a
unique solution which satisfies

y0(z, λ) = (1 + o(1))z−3/4 exp
(

−2

5
z5/2

)

z ∈ S−1 ∪ S0 ∪ S1, z → ∞, (3)

which we call the Sibuya solution. Notice that this asymptotics does not
depend on λ. Sibuya’s solution is subdominant in S0. For fixed z, it is an
entire function of λ of order

ρ = 5/6.
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All these results belong to Y. Sibuya.
It follows from the definition that solutions yk are subdominant in Sk.

Solutions y0, y1 are linearly independent because no solution can be subdom-
inant in adjacent sectors. Every three solutions must be linearly dependent,
so

y−1 = C(λ)y0 + C̃(λ)y1.

In the sector S0, all three have asymptotics which follow from (3). Comparing
the asymptotics of y1 and y−1 on the positive ray (where y0 tends to zero
and does not contribute) we conclude that C̃ = −ω, independent of λ.

Thus
y−1 = C(λ)y0 − ωy1. (4)

Function C(λ) is called the Stokes multiplier. It is an entire function. Indeed,
we differentiate (4) with respect to z and obtain

y′
−1 = C(λ)y′0 − ωy′1, (5)

and solve (4), (5) for C using Cramer’s rule. We obtain

C(λ) = W−1,1/W0,1,

where Wi,j is the Wronskian of yi, yj . Now y0 and y1 are linearly independent
for each λ, therefore W0,1 is free of zeros, and C is an entire function. Equa-
tions (2), (4) give an explicit expression of C in terms of Sibuya’s solution
y0, and also show that C is of order at most 5/6 < 1.

More precisely, let us consider the entire function f(λ) = y0(0, λ). Zeros of
f are exactly the eigenvalues of the equation (1) with the boundary conditions
y(0) = y(+∞) = 0. As this eigenvalue problem is self-adjoint and the
potential z3 is positive on the positive ray, we conclude that all these zeros
are negative. Thus

f(λ) = c
∞
∏

k=1

(

1 +
λ

λk

)

, (6)

where c 6= 0 is a real constant.

Lemma. Dorey, Dunning, Tateo (2001), K. Shin (2002) All zeros of the

Stokes multiplier C are positive.

Proof of the Lemma. Let λ be a zero of C. Plugging λ to (4) with z = 0,
and using the definition of yk we obtain

|f(ω2λ)| = |f(ω−2λ)|. (7)
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For any fixed r > 0, the function θ 7→ |f(reiθ)| is even and strictly increasing
on [0, π] which is immediately seen from (6), where every factor enjoys these
properties. Thus λ in (7) must be real.

Now we prove that C has no negative zeros. Let λ be a zero of C. We
know that it is real and that for this λ we have y−1 = −ωy1 in view of (4).
This means that there is a solution y subdominant in two sectors S1 and S−1.
Let y∗(z) = y(z); this solves the same equation and is subdominant in the
same sectors, from which we conclude that y∗ = cy. Plugging any real value
for z, we obtain |c| = 1. Then w = y

√
c is a real solution, subdominant in

S1. Now we substitute h(t) = w(teiα) with α = 2π/5 into (1), multiply on
h(t) and integrate from 0 to ∞. We obtain after an integration by parts,

−w′(0)w(0)− e−iα
∫

∞

0

|h′|2dt−
∫

∞

0

t3e4iα|h|2dt = λeiα
∫

∞

0

|h|2dt.

Taking the imaginary part and using the fact that w is real on the real line,
so w′(0)w(0) is real, we obtain

sinα
∫

∞

0

|h′|2dt− sin(4α)
∫

∞

0

t3|h|2dt = λ sinα
∫

∞

0

|h|2dt.

As sinα > 0 while sin 4α < 0, we conclude that the left hand side is positive,
thus λ > 0. This proves the lemma.

Substituting to (4) (z, λ) 7→ (ω−1z, ω2λ), we obtain

y0 = C(ω2λ)y1 − ωy2. (8)

Using this to eliminate y0 from (4), we obtain

y−1 =
(

C(λ)C(ω2λ)− ω
)

y1 − C(λ)ωy2. (9)

Notice that according to our definition, yk = yj when k ≡ j (mod 5), in
particular, y−1 = y4. Substituting to (4) (z, λ) 7→ (ω−3z, ωλ) we obtain a
relation

y2 = C(ωλ)y3 − ωy−1 (10)

We conclude from (9) and (10) that

C(λ)C(ω2λ)− ω and C(ωλ)

have the same zeros: indeed these zeros are exactly those λ for which y2 and
y−1 are linearly dependent. As C has genus 0, it is determined by its zeros
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up to a constant factor. To find this factor, we plug (z, λ) = (0, 0) to (4) and
find

C(0) = 1 + ω.

Thus
C(ωλ)C(ω−1λ)− ω = bC(λ), (11)

where b = (1 + ω + ω2)/(1 + ω). Now the function C(λ)/
√
ω has positive

zeros and its 1-points lie on the rays {tω : t > 0} and {t/ω : t > 0}. This
proves the theorem for α = 2π/5.

To extend this to other angles α, the natural idea is to consider the
differential equation

−y′′ + (zm + λ)y = 0 (12)

with real m > 2. The relation between m and α is

α =
2π

m+ 2
.

Such equations were studied by the physicists Bender and Boettcher, who
computed few first zeros of the relevant Stokes multipliers. Their computa-
tion indicates that these zeros are all real when m ≥ 4. This was known for
integer m and was rigorously proved for all m > 4 in my recent preprint thus
giving the range α ∈ (0, π/3] in Theorem 2. However for 2 < m < 4, except
m = 3, which corresponds to α ∈ (π/3, π/2) except 2π/5, the computation
of Bender and Boettcher shows that only finitely many zeros are real, though
this fact is unproved. This shows that our method will not give the desired
result for the remaining range (π/3, π/2) of α.
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