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In this talk I describe the recent work joint with Walter Bergweiler where
we introduce a method of construction of linear differential equations such
that the asymptotic distribution of zeros of their solutions in the complex
plane can be controlled.

On the Bank-Laine conjecture, arXiv:1408.2400,
Quasiconformal surgery and linear differential equations, arXiv:1510.05731.

We consider ordinary differential equations

w′′ + Aw = 0, (1)

where A is an entire function. All solutions are entire functions and we are
interested in the distribution of zeros of solutions in the complex plane. The
order of an entire function f is defined by

ρ(f) = lim sup
z→∞

log log |f(z)|

log |z|
,

and the exponent of convergence of zeros zk as

λ(f) = inf{λ > 0 :
∑

k:zk 6=0

|zk|
−λ <∞}.

Inequality λ(f) ≤ ρ(f) always holds; it follows from Jensen’s theorem.
When A is a polynomial, a very precise asymptotic theory is available; it

gives that the order of every solution is (d + 2)/2, where d = deg(A). Some
solutions can be free of zeros, but if E = w1w2 is the product of two linearly
independent solutions, then we have λ(E) = (d+2)/2, unless A is a constant.
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Some equations with transcendental entire coefficient A were intensively
studied since 19-th century, like the Mathieu and Hill’s equations, but the
general theory of such equations begins with the work of Bank and Laine in
the early 1980-th. The following facts were established.

1. There can be two linearly independent solutions without zeros, for example

w′′ − (1/4)(e2p + (p′)2 − 2p′′)w = 0, (2)

where p is a polynomial, has solutions

w1,2(z) = exp
(

−
1

2

(

p(z)±
∫ z

0
ep(ζ)dζ

))

.

However this is only possible only when ρ(A) is a positive integer or infinity.

2. If A is transcendental, ρ(A) is finite and not a positive integer, then

λ(E) ≥ ρ(A). (3)

Moreover, if
ρ(A) ≤ 1/2 then λ(E) = ∞. (4)

and
1

λ(E)
+

1

ρ(A)
≤ 2, (5)

when ρ(A) ∈ (1/2, 1).

Based on these results, Bank and Laine conjectured that if A is transcen-
dental, and ρ(A) is not a positive integer, then λ(E) = ∞.

This conjecture raised a considerable interest, and there are many results
where conditions on A are imposed which imply that λ(E) = ∞. We give
two such results. One, due to Bank, Laine and Langley, states conditions in
terms of behaviour of |A| on rays:

3. Suppose that for almost every θ we have either

r−N |A(reiθ)| → ∞, r → ∞ for all N > 0, (6)

or
|A(reiθ)| = O(rn), r → ∞, where 2 < n+ 2 < 2ρ(A), (7)
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or ∫ ∞

0
r|A(reiθ)|dr <∞. (8)

Then λ(E) = ∞.

Condition on n + 2 < 2ρ(A) in (7) is best possible as the example (2)
shows. Condition (8) was added to cover the case ρ(A) < 1 when the condi-
tion on n in (7) is not applicable.

Another result, due to Toda, improves (5) when an additional information
on A is available:

4. If ρ(A) < ∞ and the set {z : |A(z)| > c} has N components for some
c > 0 then ρ(A) ≥ N/2, and

1

λ(E)
+

N

ρ(A)
≤ 2,

so ρ(A) = N/2 implies that λ(E) = ∞.

One can slightly improve these results using the same methods which
their authors used:

3a. Suppose that ρ(A) ∈ (1/2, 1), and for almost every θ either (6) or (7)
holds with 0 < n < 2ρ(A)/(4ρ(A)− 2). Then λ(E) = ∞.

4a. If ρ(A) < ∞ and the set {z : |A(z)| > c} has N components, then we
have ρ(A) ≥ N/2 and

N

λ(E)
+

N

ρ(A)
≤ 2.

All results mentioned so far are based on consideration of the following
non-linear differential equation satisfied by E:

−2
E ′′

E
+

(

E ′

E

)2

−
W

E2
= 4A. (9)

HereW = w1w
′
2−w

′
1w2 is the constant Wronskian of two linearly independent

solutions of (1). Equation (9) shows that in the places where E is large, A
cannot be very large, and this leads to conclusions of 2-4a.

The general solution of (9) with entire A is an entire function, which is
the product of two linearly independent solutions of (1) with Wronskian W .
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When W = 1, such entire functions E can be characterized in the following
way: whenever E(z) = 0 we have E ′(z) ∈ {±1}. Entire functions with this
property are called the Bank–Laine functions. They were much studied since
the early 1980-th, but the following basic question remained unsolved: what
are the possible orders of Bank–Laine functions? It follows from 2, that the
order must be at least 1. There are elementary examples where the order
is an integer or infinity. Langley showed that there are many Bank–Laine
functions of finite order, besides these elementary examples, however in all
cases when the order could be determined, it was an integer.

Our contribution which is described below is a construction of Bank–
Laine functions of arbitrary order ≥ 1. Moreover, our constructions show
that all results 2, 3a, 4a are best possible.

Let F = w2/w1 be the ratio of two linearly independent solutions of (1).
This is a locally univalent meromorphic function which satisfies the Schwarz
differential equation

S(F ) :=
F ′′′

F ′
−

3

2

(

F ′′

F

)2

= 2A.

There is a bijective correspondence F 7→ S(F ) = 2A between all locally
univalent meromorphic functions F modulo post-composition with fractional
linear transformations, and all entire functions A.

The Schwarzian admits a factorization: 2S(F ) = B(F/F ′), where

B(E) = −2
E ′′

E
+

(

E ′

E

)2

−
1

E2
,

is the Bank–Laine operator. If F = w2/w1 then F/F ′ = w1w2/W , where W
is the Wronskian of w1 and w2.

In our constructions, the principal object is a meromorphic locally uni-
valent function F . Consider the following example:

F (z) = P (ez)ee
z

,

where P is a polynomial. The local univalence condition implies that

F ′(z) = (P ′(ez) + P (ez))ezee
z

6= 0,
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so P ′ + P must be a monomial. This implies that P (w) is a partial sum of
the Taylor series of e−w. For a technical reason, we take a partial sum of
even degree:

Pm(w) =
2m
∑

k=0

(−w)k

k!
.

To this choice of F correspond E(z) = (2m)!e(2m−1)zPm(e
z) and

A(z) = −(1/4)e2z −mez − (2m+ 1)2/4,

both are entire functions of order 1.
To obtain examples with different asymptotic behavior, we glue several

such functions together. Let

gm(z) = Pm(e
z)ee

z

.

These are 2πi-periodic entire functions, which map the real line onto (1,+∞)
homeomorphically. Our choice of degree 2m of Pm ensures that this map is
increasing.

Example 0.

The simplest examples are obtained when we glue together two such func-
tions, gm restricted to the upper half-plane H+, and gn restricted to the lower
half-plane H−. Let φ be the increasing homeomorphism of the real line de-
fined by

gm(x) = gn(φ(x)), x ∈ R.

This homeomorphism has the following asymptotic behavior:

φ(x) =

{

x+O(e−δz), x→ +∞
kx+ b+O(e−δ|x|), x→ −∞.

, (10)

where k = (2m+ 1)/(2n+ 1).
We want to find a curve γ which divides the plane into two parts D+

and D− and quasiconformal homeomorphisms h± : D± → H± such that
h−(z) = φ(h+(z)), z ∈ γ. Then the function

G(z) =

{

gm(h
+(z)), z ∈ D+,

gn(h
−(z)), z ∈ D−
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will be continuous in the plane:

gm(h
+(z)) = gn(φ(h

+(z)) = gn(h
−(z))), z ∈ γ,

see Fig. 11, and hopefully G will be quasiconformal with small dilatation. In
fact there exist conformal maps h± which do the job, but we want to know
explicitly their asymptotic behaviour, and to do this it is convenient to work
instead with quasiconformal maps. Small dilatation means

∫

C

KG(x, y)− 1

x2 + y2
dxdy <∞, (11)

where KG ≥ 1 is the quasiconformal dilatation. This condition implies ac-
cording to Teichmüller, Wittich and Belinskii, that there exists a quasicon-
formal homeomorphism ψ of the plane such that F = G ◦ ψ is an entire
function, and

ψ(z) ∼ z, z → ∞. (12)

This function F is locally univalent by construction, and its asymptotic be-
haviour can be determined if we know the asymptotic behavior of h±, because
gm, gn are explicitly known and ψ is sufficiently controlled by (12).

To construct the gluing γ, h±, let us first consider the homeomorphism
φ∗ which is obtained by neglecting the small error terms in (10):

φ∗(x) =

{

x, x > 0,
kx, x < 0.

(13)

This is elementary, and (h∗)± can be chosen conformal. Indeed, the principal
branch of q(z) = zµ with an appropriate complex µ maps the plane with a
cut along the negative ray onto the complement of the logarithmic spiral,
such that

q(x+ 0i) = q(kx− 0i), x < 0.

See Fig. 2. The image of the positive ray under q is another logarithmic
spiral, and the union of these two spirals is a curve γ which divides the plane
into D+ and D−. Our homeomorphisms (h∗)± : D± → H± are the branches
of q−1. A simple computation gives

µ =
2π

4π2 + log2 k
(2π − i log k).

1Figures are in the end of the paper.
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To perform a similar gluing with our actual homeomorphism φ, one has
to modify these (h∗)± by composing them with quasiconformal homeomor-
phisms which satisfy (12), and thus do not affect the asymptotic behaviour.

Asymptotic behaviour of A and E can now be found because our func-
tion F is represented as a composition of explicit functions gm, gn, (h

∗)± and
quasiconformal maps that satisfy (12).

This construction gives Bank-Laine functions and potentials A with

ρ(E) = λ(E) = ρ(A) = 1 +
log2 k

4π2
, k =

2m+ 1

2n+ 1
,

so we achieve a dense set of orders in (1,+∞).
To achieve all orders in (1,+∞) and to construct further examples, we

need to glue together an infinite set of functions gm.

Asymptotic behaviour of φm,n when m,n→ ∞.

To control the dilatation of gluing of infinitely many gm we need asymp-
totic behavior of homeomorphisms φm,n defined by

gm(x) = gn(φm,n(x)), x ∈ R.

This is studied using a version of Szego’s asymptotics for partial sums of the
exponential:

log(gm(x)− 1) = − log k! + ex + kx− log
(

1 +
ex

k

)

+R(ex, k),

where k = 2m+ 1 and

|R(w, k)| ≤
24w

k(k + w)
, w > 0, k ≥ 24.

Then a computation shows that |φm,n(x)−x| and | log φ′
m,n(x)| are uniformly

bounded from above when Cn > m > n→ ∞, where C is a positive constant.
This, together with a quantitative improvement of (10) is sufficient to verify
(11) in our subsequent constructions.

Example 1.

Let us choose a sequence of non-negative integers (mj), j ≥ 1, and restrict
gmj

to the strips

Πj = {x+ iy : 2π(j − 1) < |y| < 2πj}.
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We want to glue all these functions together. We have homeomorphisms φj

of the real line defined by

gmj+1
(x+ 2πij) = gmj

(φj(x) + 2πij).

where the homeomorphisms behave at infinity similarly to (10) with con-
stants

kj =
2mj+1 + 2

2mj + 2
.

As in (10) above we have

φj(x) ≈

{

x, x > 0,
kjx, x < 0.

(14)

Assuming exact equality in (14) the gluing can be performed in the following
way. We define affine maps h−1

j which send the half-strips

Π−
j {x+ iy : x < 0, 2π(j − 1) < |y| < 2πj}

onto half-strips Sj which fill the left half-plane (see Fig. 3), and such that
gmj

◦hj ≈ id on ∂Sj ∩{z : ℜz < 0}, so that the function defined by gj ◦hj in
Sj is almost continuous in the left half-plane. By doing this we introduced a
discontinuity along the imaginary line. This discontinuity is described by a
piecewise-linear homeomorphism q, and we choose our sequence mj so that
q has the required asymptotic behaviour. Then we glue the right and left
half-plane along q, using power functions.

Choosing

q(iy) ≈

{

iky, y > 0,
iy, y < 0,

where k is a real number, we obtain a function with spiraling behaviour
of the type we constructed above, but this time we can achieve any order
ρ(A) = λ(E) ∈ [1,∞). This extends Example 0, and solves the question on
the possible orders of Bank–Laine functions.

Example 2.

Choosing
q(iy) ≈ iy|y|γ−1,

with some γ > 1 we obtain another gluing problem which is solved in the first
approximation by two power functions, one in the left half-plane, another in
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the right half-plane (Fig. 4). If γ = 1/(2ρ− 1), ρ ∈ (1/2, 1), these functions
are:

Φ + (z) = z1/ρ, | arg z| < π/2,

and
Φ−(z) = −(−z)2−1/ρ, | arg z − π| < π/2.

This choice produces the following asymptotic behaviour:

log |A(reiθ)| ∼ 2 log
1

|E(reiθ|
∼ rρ cos ρθ, |θ| < π/(2ρ), (15)

log |E(−reiθ)| ∼ rσ cos σθ, |θ| < π/(2σ), (16)

|A(−reiθ)| ∼ cr2σ−2, |θ| < π/(2σ),

where ρ = ρ(A) ∈ (1/2, 1) is prescribed, and

1

ρ
+

1

σ
= 2.

This example shows that (5) and 3a are best possible.

Example 3.

To show that 4a is best possible, we need a function F whose asymp-
totic behavior is similar to F1(z

N), where F1 is the locally univalent function
which produces (15), (16). Of course F1(z

N) is not locally univalent. To con-
struct the required F , we consider F1 which maps R homeomorphically onto
(1,+∞) and prepare another locally univalent function F2 whose asymp-
totic behavior is similar to F1 but mapping R homeomorphically onto (0, 1),
changing the orientation. Then we restrict F1 and F2 to the upper and lower
half-planes, and consider the regions Bj, 1 ≤ j ≤ 2N shown in Fig. 5. These
regions are contained in the sectors

Σj = {z : 2π(j − 1)/(2N) < arg z < 2πj/(2N)}

and are asymptotically close to these sectors. Let ϕj be conformal maps from
Bj to the upper or lower half-plane, and define Gj = F1 ◦ φj for 2 ≤ j ≤
2N − 1 and Gj = F2 ◦ φj for j = 1, 2N . Then G maps components of ∂Bj

homeomorphically onto (1,∞) or onto (0, 1) as shown in the figure. Then
we map the complementary region B to C by a local homeomorphism whose
boundary values match those of G. Choosing the appropriate shape of B we
can assure that the resulting quasiconformal map has dilatation satisfying
(11).
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Figure 1: Figures 1 and 2
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Figure 2: Figures 3-5.
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