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Abstract

We describe the real quasi-exactly solvable locus of the PT-symmetric

quartic using Nevanlinna parametrization.
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Following Bender and Boettcher [3] we consider the eigenvalue problem
in the complex plane

w′′ + (ζ4 + 2bζ2 + 2iJζ + λ)w = 0, w(te−πi/2±πi/3) → 0, t → +∞, (1)

where J is a positive integer. This problem is quasi-exactly solvable [3]:
there exist J elementary eigenfunctions w = pn exp(−iζ3/3 − ib), where pn

is a polynomial of degree n = J − 1.
When b is real, the problem is PT-symmetric. By the change of the

independent variable z = iζ the problem is equivalent to

−y′′ + (z4 − 2bz2 + 2Jz)y = λy, y(te±πi/3) → 0, t → +∞. (2)

Polynomial h in the exponent of an elementary eigenfunction y(z) is h(z) =
z3/3 − bz. The spectral locus ZJ is defined as

{(b, λ) ∈ C
2 : ∃ y 6= 0 satisfying (2)}.

The real spectral locus ZJ(R) is ZJ ∩R
2. The quasi-exactly solvable spectral

locus ZQES
J is the set of all (b, λ) ∈ ZJ for which there exists an elementary
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solution y of (2). This is a smooth irreducible algebraic curve in C
2, [1, 2]. In

this paper we describe ZQES
J (R) = ZQES

J ∩R
2. We prove a result announced

in [6]:

Theorem 1. For n ≥ 0, ZQES
n+1 (R) consists of [n/2] + 1 disjoint analytic

curves Γn,m, 0 ≤ m ≤ [n/2] (analytic embeddings of R to R
2).

For (b, λ) ∈ Γn,m, the eigenfunction has n zeros, n − 2m of them real.
If n is odd, then b → +∞ on both ends of each curve Γn,m. If n is even,

then the same holds for m < n/2, but on the ends of Γn,n/2 we have b → ±∞.
If (b, λ) ∈ Γn,m, (b, µ) ∈ Γn,m+1 and b is sufficiently large, then µ > λ.

This Theorem establishes the main features of the ZQES
n+1 (R) which can

be seen in the computer-generated figure in [3]. Similar results were proven
in [5] for two other PT-symmetric eigenvalue problems.

Our Theorem parametrizes all polynomials P of degree 4 with the prop-
erty that the differential equation y′′ + Py = 0 has a solution with n zeros,
n − 2m of them real [10, 7, 5].

Suppose that (b, λ) ∈ ZQES
J (R). Then the corresponding eigenfunction

y of (2) can be always chosen to be real. Let y1 be a real solution of the
differential equation in (2) normalized by y1(x) → 0 as x → +∞, x ∈ R.
Then y1 is linearly independent of y. Consider the meromorphic function
f = y/y1. This function has no critical points in C.

Consider the sectors

Sj = {teiθ : t > 0, |θ − πj/3| < π/6}, j = 0, . . . , 5.

The subscript j in Sj will be always understood as a residue modulo 6.
Function f has asymptotic values ∞, 0, c, 0, c, 0 in the sectors S0, . . . S5, where
c ∈ C. It is known that f must have at least 3 distinct asymptotic values
[9], so c 6= 0,∞. Function f is defined up to multiplication by a non-zero
real number, so we can always assume that c = eiβ, 0 ≤ β ≤ π, where the
points 0 and π can be identified. Asymptotic value c is called the Nevanlinna
parameter. There is a simple relation between c and the Stokes multipliers
[11, 8].

The sectors Sj correspond to logarithmic singularities of the inverse func-
tion f−1. Thus f−1 has 6 logarithmic singularities that lie over four points
if c 6= c, or over three points if c = c.

The map (b, λ) 7→ β, ZQES
J (R) → R is analytic and locally invertible

[11, 2], so β can serve as a local parameter on the real QES spectral locus.
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To obtain a global parametrization one needs suitable charts on ZQES
J (R),

where this map is injective.
To recover f , one has to know the asymptotic value c and one more piece

of information, a certain cell decomposition of the plane described below.
Once f is known, b and λ are found by the formula

f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

= −2(z4 − 2bz2 + 2Jz − λ). (3)

Now we describe, following [4], the cell decompositions needed to recover f
from c. Suppose first that c /∈ R.
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Fig. 1. Cell decompositions Φ and Φ′ of the sphere.

Consider the cell decomposition Φ of the Riemann sphere C shown by solid
lines on the left part of Fig. 1. It consists of one vertex at the point 2,
three edges (loops γc, γc and γ∞ around non-zero asymptotic values) and
four faces (cells of dimension 2). The faces are labeled by the asymptotic
values 0, c, c,∞. Label 0 is not shown in the picture. The face labeled 0 is
the unbounded region in the picture. (The point 1 in the figure is neither a
label, nor a part of the cell decomposition. It will be needed, together with
the dashed line, for the limit at β = 0.) As

f : C\f−1(0,∞, c, c) → C\{0,∞, c, c}

is a covering map, the cell decomposition Φ pulls back to a cell decomposition
Ψ of the plane.

3



0

0

4

c

0

c
_

0

0

0

0

4

c

0

c
_

0

0

v v’

v”

v

v’

v”=

Fig. 2. Two examples of the cell decomposition Ψ of the plane (solid lines).
Both eigenfunctions have two zeros, none of them real.

Two examples of Ψ are shown in Fig. 2 (solid lines). The faces of Ψ are
labeled with the same labels as their images. Non-zero labels of bounded
faces are omitted in the picture. The reader can restore them from the
condition that labels around a vertex must be in the same cyclic order as in
Fig. 1 (left, solid lines). The labeled cell decomposition Ψ defines f up to
a pre-composition with an affine map of C. Two cell decompositions define
the same f if they can be obtained from each other by orientation-preserving
homeomorphism of the plane.

Replacing multiple edges of the 1-skeleton of Ψ with single edges and re-
moving the loops, we obtain a simpler cell decomposition T whose 1-skeleton
is a tree, which we denote by the same letter T . The cell decomposition Ψ is
uniquely recovered from its tree T embedded in the plane, [4]. The faces of T
are asymptotic to the sectors Sj and the label of each face is the asymptotic
value in Sj. Two faces with a common edge cannot have the same label.
The cell decomposition T is invariant under the reflection in the real axis,
with simultaneous interchange of c and c. It is easy to classify all possible
embedded trees T with labeled faces that satisfy these properties. They de-
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pend on two integer parameters k and l ≥ 0. These trees form two families,
Xk,l, k ≤ 0, l ≥ 0 and Xk,l, k > 0, l ≥ 0, shown in Fig. 3.
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Fig. 3. Trees Xk,l.

Cell decompositions in Fig. 2 (solid lines) correspond to the trees X0,1

and X−1,1.
Parameters of the trees Xk,l can be interpreted as follows:

k+ := max{k, 0}

is the number of real zeros of f , and 2l is the number of non-real zeros. So
the total number of zeros is

n = 2l + k+.

Functions f corresponding to trees Xk,l, k ≤ 0 have 2l zeros, none of them
real. Zeros of the eigenfunction y coincide with those of f .

For given n the number of trees Xk,l with k + 2l = n, k > 0 is (n + 1)/2
when n is odd, and n/2 when n is even.

Every tree Xk,l and every β ∈ (0, π) defines a meromorphic function f
satisfying (3) with J = 2l + k+ + 1 and some (b, λ) depending on β. This
follows from a result of Nevanlinna [9], see also [4]. From this function f , the
coordinates of a point (b, λ) on the real QES spectral locus are recovered by

5



the formula (3). Thus we have a map F : (T, β) 7→ (b, λ) which we call the
Nevanlinna map. This map is of highly transcendental nature: construction
of f from T and β involves the uniformization theorem. We refer to [4, 5, 9]
for details.

So each of the trees from our classification defines a chart of ZQES(R).
To obtain the global parametrization of ZQES

J (R), we only have to find
out how these charts are pasted together.

We will see that the boundaries of our charts correspond to real values
of c. When c is real, we can use instead of Φ the cell decomposition of the
sphere with two loops, γ∞ and the loop around c shown with the dashed line
in the left part of Fig. 1. Taking the preimage of this cell decomposition and
removing the loops and multiple edges from this preimage gives again one of
the trees Xk,l.

Proof of Theorem 1. We begin with the simpler case of charts Xk,l, k > 0.
In these charts the limits as β → 0, π do not belong to the spectral locus,
because the two faces labeled with c and c have a common boundary edge, so
the charts defined by Xk,l, k +2l = n, 1 ≤ k ≤ n, make separate components

of ZQES
n+1 (R), each parametrized by β ∈ (0, π). We call these components

Γn,m where m = (n− k)/2. These are simple disjoint analytically embedded
curves in R

2 parametrized by β ∈ (0, π).
When β → 0, π we must have b → ±∞. We’ll show below that b → +∞

on both ends of Γn,m when k > 0.
When n is odd (that is J is even), these curves Γn,m parametrize the

whole spectral locus ZQES
n (R).

Now consider the part of the spectral locus parametrized by Xk,l, k ≤ 0.
This part is present only when n = 2l is even.

Lemma. For l ≥ 0 and k ≤ 0, we have

lim
β→π

F (Xk,l, β) = lim
β→0

F (Xk−1,l, β). (4)

If we want β to be continuous on the spectral locus, we must discard our
normalization β ∈ [0, π] and allow β to describe the real line.

Proof of the Lemma. This is proved by the same arguments as in [5, Thm.
4.1]. When c = c = 1, the cell decomposition Φ must be modified: the loops
γc and γc around c and c have to be replaced by a single loop L around 1
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(dashed line in Fig. 1, left part). Note that L is homotopy equivalent to the
product of γc and γc, and does not intersect γ∞. Let us call the resulting cell
decomposition Φ1.

The preimage Ψ1 = f−1(Φ1) is easy to construct from the original cell
decomposition Ψ. First, removing preimages of γc and γc, we obtain the cell
decomposition Ψ∞, the preimage of the loop around ∞ in Φ. Next, for each
vertex v of Ψ consider the path Lv consisting of the edge of f−1(γc) from v
to v′ followed by the edge of f−1(γc) from v′ to v′′. Then the edge of f−1(L)
from v to v′′ is homotopic to Lv in the complement of f−1(γ∞). The new
edges are shown with dashed lines in Fig. 2.

To deal with the case c = c = −1, in a similar way, one has to choose
another cell decomposition Φ′ of the sphere, shown in the right part of Fig. 1
(solid lines). When c → −1, Φ′ collapses to Φ′

−1 where the two loops γ′

c and
γ′

c are replaced with a single loop L′ around −1 (dashed line in Fig. 1, right
part).

We need the transition formula from Ψ = f−1(Φ) to Ψ′ = f−1(Φ′). This
formula is obtained by combining the two decompositions (see Fig. 4) and
expressing the loops of Φ′ in terms of the loops of Φ.
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Fig. 4. Two cell decompositions of Fig. 1 combined.
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The formulas using notations in Fig. 4 are:

γ∞ = α β, γ′

∞
= β α, γ′

c = β γc β−1, γ′

c = α−1 γc α. (5)

Similar formulas were obtained in [5] in the proof of Theorem 4.1. Application
of these transition formulas to the cell decomposition Ψ of the type X−1,1 is
illustrated in Figs. 5,6,7.
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Fig. 5. Cell decomposition Ψ corresponding to the tree X−1,1.

In Fig. 5, we use Φ from Fig. 3. The cell decomposition Ψ (left) corresponds
to the tree X−1,1 (right).
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Fig. 6. Passing from Ψ to Ψ′.

In Fig. 6, the circles denote the vertices of Ψ′ (preimages of the vertex of Φ′)
and the dotted lines correspond to the preimages of γ′

c and γ′

c determined
from (5). The preimages of γ∞ and γ′

∞
coincide. They are shown with the

bold solid line. Removing the preimages of γc and γc (thin solid lines in
Fig. 6) and the vertices of Ψ, we obtain the cell decomposition Ψ′ shown in
Fig. 7 (left) corresponding to the tree X−2,1 (right).
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Fig. 7. Cell decomposition Ψ′ corresponding to the tree X−2,1.

Thus, for k ≤ 0, the cell decomposition of the plane obtained from Xk,l in
the limit β → 0 as the preimage of Φ1 is equivalent to the cell decomposition
obtained from Xk−1,l in the limit β → π as the preimage of Φ′

1. Since
Φ′

1 = −Φ1, Nevanlinna theory implies that the corresponding functions f
and f ′ satisfy f ′ = −f . Hence these two functions correspond to the same
point of ZQES(R). This completes the proof of Lemma.

Now we continue the proof of Theorem 1.
For even n = 2l each chart Xk,l, k ≤ 0 parametrizes one curve in the real

QES spectral locus, and we call this curve Γn,n/2. We parametrize the curve
Γn,n/2 by the real line, so that the number k increases, thus the right end of
Γn,n/2 is parametrized by the chart X0,n/2. So when the parameter t ∈ R on
Γn,n/2 tends to +∞, the asymptotic value c = exp(iβ) tends to 1. On the
other hand, when t → −∞ on Γn,n/2 the asymptotic value c does not have a
limit; it oscillates, passing each point of the unit circle infinitely many times.
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The curves Γn,m are disjoint. Indeed, different cell decompositions give
different functions f . This proves the first two statements of Theorem 1.

Now we deal with asymptotic behavior of our curves Γn,m. We use the
rescaling of (2) as in [6]. The QES spectral locus is defined by a polynomial
equation Qn+1(b, λ) = 0 which is of degree n + 1 in λ. So on a ray b > b0

there are n = 1 branches λj(b). In [6, Eq. (25)], we found that all λj

have asymptotics λ(b) ∼ b2 + O(
√

b), b → ∞, and as b → +∞, each QES
eigenfunction yj tends to some eigenfunction Yℓ of the harmonic oscillator

−Y ′′ + 4z2Y = µY, Y (it) → 0, t → ±∞. (6)

The eigenvalues of this harmonic oscillator are µℓ = 2(2ℓ+1), . . . , ℓ = 0, 1, . . . .
Only one of the eigenfunctions yj can tend to a given Yℓ, and the corre-

sponding eigenvalue satisfies

λj(b) = b2 + (µℓ − 2J + o(1))
√

b, b → +∞.

It follows that all λj are real. The graph of each λj is a part of a curve Γn,m,
and each Γn,m has only two ends. So each Γn,m contains at most two graphs
of λj. The total number of these graphs λj is n + 1 and the total number of
curves Γn,m is (n+1)/2 when n is odd, and n/2+1 when n is even. It follows
that each Γn,m contains two graphs λj when n is odd, and each Γn,m except
one contains two λj, and the exceptional one, Γn,n/2 contains one graph of
λj, when n is even.

Thus b → +∞ as c → ±1 in the Xk,l-charts with k > 0, which proves the
third statement of the Theorem. To prove the last statement for Xk,l-charts
with k > 0, we study the zeros of the eigenfunctions.

The eigenfunction Yℓ of (6) corresponding to the eigenvalue µℓ has exactly
ℓ zeros on iR and no other zeros in C. One of these zeros is real iff ℓ is odd.

When b → +∞, each QES eigenvalue λj(b) must tend to some µℓ, and
the corresponding QES eigenfunction tends to Yℓ. Suppose that the tree
corresponding to λ(b) is Xk,l, k > 0; we are going to find the correspondence
between ℓ and k, l.

We have c → ±1, as b → +∞, so the tree Xk,l must collapse in the limit:
all edges separating a face labeled c and a face labeled c must be erased,
and the resulting tree must be a tree corresponding to some Yℓ (Fig. 8). The
trees corresponding to Yℓ are constructed similarly to those corresponding to
y, using the two loop cell decomposition of the sphere, consisting of γ∞ and
the dashed loop in Fig. 1, left.
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Fig. 8. The tree corresponding to Y3.

For general results on convergence of Nevanlinna functions like our f we refer
to [12]. By counting the zeros whose limiting position is on iR, we conclude
that this can happen exactly when ℓ = l for even ℓ, and ℓ = l + 1 for odd ℓ.
So, for fixed n and m, there are two values of ℓ. These two values correspond
to c → ±1.

Now we consider the degeneration of the X0,l chart with l ≥ 0, the chart
which parametrizes the left end of Γn,n/2, n = 2l. On the left end of Γn,n/2,
where in our parametrization described after the Lemma, t → −∞, there
are infinitely many points Γn,n/2(tk) which belong to the real QES locus, and
where the asymptotic value c is real. It was proved in [6] that these are
exactly those points where ZQES

J (R) crosses the non-quasi-exactly solvable
part of ZJ(R), and these points correspond to bk → −∞.

It follows that it is the right end of Γn,n/2 on which b → +∞. Inspection
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of the cell decomposition corresponding to this right end shows that the limit
eigenfunction has n zeros. So it tends to Yn.

So the ordering of the ends of the curves Γn,m corresponds to the natu-
ral ordering of the first n + 1 eigenvalues of the harmonic oscillator. This
completes the proof.
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