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Let f be a meromorphic function in the plane, denote by A(r, f )  the spherical area of 
f ((2 : lzI 5 r ) )  divided by the area of the Riemann sphere. For a E C put 

M(r, f) = M(r, CQ, f )  = sup l f  ( re i8) / ,  M(r, a ,  f 1 = M(r, (f -a)- ')  
0 

and 

b(a, f )  = liminf 
log+ M(r, a ,  f )  

- +  A ( r , f )  ' 

Put B ( f )  = ( a  : b ( a ,  f )  > 0). Then the set B(f )  is at most countable for every 
rneromorphic function f .  If there exists ao such that b ( a 0 ,  f )  > 2n then B( f )  = (ao]. 

Otherwise 
b(a, f) 5 2n. ( 1 )  

oeC 

For functions f of order h > 112 we always have (1) and more, for any set { a l ,  . . . , aq} C 

there is a sequence r k  -+ GO such that 
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A. EREMENKO 

1. INTRODUCTION 

We use the standard notations of the Nevanlinna Theory such 
as T(r, f ), N(r, f 1, N(r, a ,  f 1, m(r, f 1 and m(r, a,  f )  (see [121). In 
addition we use M(r, f )  and M(r, a, f )  defined in the Abstract. 

The Second Main Theorem of Nevanlinna implies 

when r -+ co outside some exceptional set. This may be regarded as 
a bound for simultaneous approximation of several numbers a l ,  . . . , a, 

by f  on the circumferences { z  : lil = r )  in L1 metric. We are going to 
prove a similar statement for the uniform metric. 

The history of the question starts from the work of R. Paley who made 
a conjecture that for entire functions f  of order h > 1/2 

lim inf logf M(r, f 
< nX. 

r-+cw T(r, f ) 
- 

In the case of h 5 1/2 the following inequality was proved for entire 
functions by G. Valiron in 1935 and for meromorphic functions by 
A. A. Goldberg and I. V. Ostrovskii in 1961: 

lirn inf log' M(r, f  nh <- 
r 3 ~  T ( r ,  j )  - sinnh.' 

The Paley conjecture was proved first by N. V. Govorov [4] and then 
V. P. Petrenko [13] discovered that (2) remains true for meromorphic 
functions. This result made natural the following definition 

P(a, f )  = lirn inf 
log' M (r ,  a, f  ) 

r'm T(r, f 
, 

which is analogous to Nevanlinna deficiency S(a, f  ). We briefly 
summarize the main results on ,5(a, f )  obtained by V.  P. Petrenko [14] 
and others. See also [4] which contains some development of 
V. P. Petrenko's work. 

From the results mentioned above follows that B(a, f )  5 nh, if h > 
1/2 and B(a, f) 5 nh csc nh if h 5 1/2. For meromorphic functions of 
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DEFECT RELATION FOR UNIFORM METRIC 85 

finite (lower) order h the set {a  E c : B(a, f )  > 0 )  is at most countable 
and we have 

2nh,  h 1 112 xp(a' f ,  ' ( 2 n h  csc n i ,  h 5 112 
a& 

(This precise inequality is proved by I. I. Marchenko and A. I. Shcherba 
[ l o ] ) .  We also have 

~ " ~ ( a ,  f )  < m ,  

proved in [7] and this relation is the best possible in a very strong sense: 
given a sequence { a j }  c c and a sequence of positive numbers ,!?j such 
that C /$I2 < m there exists a meromorphic function f of (some) finite 
order such that p(a j ,  f )  = p j  and p(a, f )  = 0 if a st: { a j ] .  These and 
other results show that the behavior of /?(a, f )  and 6(a,  f )  are similar 
for meromorphic functions of finite (lower) order. 

For functions of infinite order the situation is quite different. There 
are examples of meromorphic functions f such that the set {a  E C : 
,!?(a, f )  = +m} has the power of the continuum [14] (however the 
logarithmic capacity of {a  E : p(a, f )  > 0}  is always zero). 

Recently W. Bergweiler and H. Bock [2,3] found the way to formu- 
late and prove a statement, analogous to the Paley conjecture, which 
remains valid for meromorphic functions of arbitrary fast growth: if the 
order of f is at least 112 then 

lim inf 
log' M (r, f 1 

( n. 
'-+W A(r , f )  

We remark that A(r, f )  = dT(r, f )/d logr + O ( 1 )  so for example if 
T ( r ,  f )  -- rh then A(r, f )  -- hrA, which makes (4) plausible once ( 2 )  is 
known. Actually W. Bergweiler and H. Bock do not discuss the case of 
finite order in their paper, but their proof extends easily to the case of 
any order greater then 112. Thus it is natural to define 

b(a,  f ) = lim inf 
log' M ( r ,  a ,  f 

r im A(r ,  f )  

Then (4) implies 
H a ,  f 5 n 

for every meromorphic function f of order greater then 112 and every 
a E c .  We have the following 
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86 A. EREMENKO 

THEOREM 1 For evepy meromorphic function f ef order at least 1/2 
and distinct points a , ,  . . . ,a, we have 

on some sequence of r tending to infinity. 

Now we consider the case of meromorphic functions of order less 
than 112. Here we can expect troubles because the precise estimate (3), 
on being divided by h tends to co when h -+ 0. Indeed, it may happen 
that b(a, f )  = oo for functions of zero order. But we still can prove that 
the exceptional set B (  f )  is always countable. 

Let us call a E a strong exceptional value if b(a, f )  > 0 and in 
addition there exists a sequence rk -+ oo such that 

uniformly with respect to 0 6 [O ,  2n'I. It is evident that if a function f 
has a strong exceptional value a then B (  f 1 = {a), so card B( f) = 1 in 
this case. 

THEOREM 2 If f is u nzeromorphic function of order h < 1/2 and 
b(a, f) > n sin rrh then a is a strong exceptional value. 

This theorem can be compared with the result of 0. Teichmuller-A. 
A. Goldberg ( [ S ,  Ch. V, Theorem 3.11, and [6, Theoretn 4.15]), which 
says that if 6(u, f )  > I - cos nh and h < 1/2 then (6) holds. 

THEOREM 3 If  f is a meromorphic function of order h 5 1 / 2  without 
strong exceptional values, then 

b(a. f )  5 2n sin nh. 
a& 

In particular (5) holds. 

COROLLARY 7 For every meromorphic function f the set B (f) = {a E 

: b(a, f )  > 0) is clt most countable and either consists of one point a 
with b(a, f )  > 2n or 

Ma. f )  c 2n. 
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DEFECT RELATION FOR UNIFORM METRIC 87 

This result is the best possible. An evident example is f ( z )  = e'. 
Furthermore, for every h 2 1 such that 2h is an integer there are 
examples of meromorphic functions of order h for which equality takes 
place in (7). These are the meromorphic functions which have precisely 
2h deficient values, each deficiency being equal to l l h  (see [12. 51). All 
such functions are precisely described in [9]. We conjecture that there 
are no other meromorphic functions of finite (lower) order for which the 
equality holds in (7). In particular for entire functions equality in (7) is 
likely only in the case of order 1. 

Before starting the proof of the Theorem we recall some necessary 
facts from the theory of delta-subharmonic functions and from Ahlfors' 
"Uberlagerungsflachentheorie". 

The author thanks Min Ru who asked the questions which stimulated 
this work and also W. Bergweiler for the discussion of the subject. 

2. DELTA-SUBHARMONIC FUNCTIONS 

A delta-subharmonic function is the difference of two subharmonic func- 
tions. We consider only delta-subharmonic functions in the plane C with 
the property u(0)  = 0. By p = g, we denote the Riesz charge of u. 

We have the Jordan decomposition p = p" - p-, where pf and p- 
are Bore1 locally finite measures in the plane. We use the following 
notations: 

mu ( r )  = I in u' (reiQ )d6, 
2n . -, 

The Poisson-Jensen Formula in these notations takes the form T, , (r )  = 
T-u(I-). 

For every I- > 0 denote by &(re1" the even function of 8, lbl 5 n, 
decreasing for 6 E [0, n] and equirneasurable with 6 t+ u(relN). This 
means that the sets (0 E [-n, n] :  re'" > x }  and (6 E [-n, ?r] : 
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88 A. EREMENKO 

u(reie) > X) have the same measure for all x E R .  Define the Baernstein 
*-function [ I ]  by 

~,(re")d0 + Nu (r) .  

This function is subharmonic in the upper half-plane, continuous in the 
closed upper half-plane and has the following properties: 

a 1 
-T:(-r) = - inf u(reie), r > 0 ,  
a4 n 6 

(10) 

max T: (rei4) = T ,  (r) .  
4 (1 1) 

In addition to these properties we will use the fact that the function 
r H -tT*(rei6) is convex with respect to the logarithm for every 6 .  

The following inequalities were used by M. Sodin [15] in his simpli- 
fied proof of (2) and its generalization. Define 

1 
Gu(r,  A, j?, y)  = -B,(r) cos Ay + ANu@) sin Ay- 

n 
1 

-  re'^) cos A(j? + y) - A.~z ( r e '~ )  sin h(j3 + y). (12) n 

LEMMA 1 Let u be a delta-subhamtonic function, 0 < P < Q < Q' < 
m , O  < A < m , O  < /3 < n a n d  I/3+ yl 5 nl(2A).  Then 

Sketch of the proof. We assume that T* is smooth in the closed upper 
half-plane. The general case is obtained using the standard approximation 
arguments given in [15]. Put D = {z : P < lzl < Q, 0 i arg z and 
define v(reiB) = r-"0s A(@ + y). Apply the Second Green identity D
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DEFECT RELATION FOR UNIFORM METFUC 89 

where a/an is differentiation in the direction of outer normal, ds is the 
length element and do is the area element. As V is positive and harmonic 
in D and T* is subharmonic, the right side is non-positive. Using the 
properties (8) and (9) of T* we get 

Now we perform the following transformations in the right side of this 
formula: 

Drop the negative terms which contain P (we use the fact that r t+ 
T;(reie) ia convex with respect to logarithm); 
Drop cos h(8 f y). 
Use the estimate 

a 
Q-T:(Q~") 5 1' r $ T: (re'H)d log r 

ar 1ogQ'-loge Q 

- 1 1 - 
log Q' - log Q 

TU(Qr). 

Replace TZ by T, which is possible in view of (11). 

Thus we obtain (13). 

2. AHLFORS' THEORY AND POTENTIAL THEORY 

Assume without loss of generality that the numbers a l ,  . . . , a, are finite. 
Choose S,O < 36 < rnin(lai - ajl : i # j} and fix an arbitrarily large 
integer K. 

Consider the delta-subharmonic functions 

They have disjoint supports. A component D of the set (Z : uj(z) r 0)  
is called mall if: 
(i) D contains at most K a,-points of f ,  counting multiplicity, and 

(ii) D is bounded or D is unbounded and uj(z) -+ 0 as z -+ co, z E D. 
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90 A. EREMENKO 

Otherwise the component D is called large. Note that the small compo- 
nents D are exactly those in which u; is equal to the sum of at most K 
Green functions for D (with poles at aj-points of f in D). 

We write 
ul(z) = vj(z) + W;(Z) ,  

where v, and w, are non-negative delta-subharmonic functions with 
disjoint supports and v, (z) = u,(z) if z belongs to a large component for 
u, and w, (z) = u,(z) if z belongs to a small component. 

The following lemma belongs to H. Selberg (see for example [16, 
rv, 31). 

Now we put fij  = K,I; and estimate these measures from above. Our 
purpose is to show that 

The following result is an easy exercise. 

LEMMA 3 Lpt r he an analytic curve dividing a disk D into tuw parts, 
Dl and D2. Let u, he two functions harmonic in Di, i = I ,  2 and L I I  ( 2 )  = 
u2 (z), z E r. Define 

Thvn u zs delta-subharmonic with Riesz charge supported by r. Further 
more p has a density d(z) with respect to arc-length measure on I' and 

where n is the unit normal to r, pointing from Dz to Dl .  

We conclude that f i j  is supported by some piecewise analytic curves 
where If (z) - a; / = S and has density equal to D
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DEFECT RELATION FOR UNIFORM METRIC 91 

By the Cauchy-Riemann equations this is equal to 

where 81% is differentiation along the unit tangent vector to the level 
curve I f  ( z )  - ajl = 6. Thus by integration along the boundaries with 
respect to D(r)  of all large components we get that g,(D(r))  is equal 
to the covering number of the circle {< : - a,I = 6) by boundaries of 
the large components of u, in D(r). 

Here we are using the terminology and the main results of the Ahlfors 
Theory, which we briefly recall now (see [12] for proofs). We consider 
a holomorphic map of bordered Riemann surfaces f : S -t So. We 
assume that a smooth Riemannian metric po is given on So so that the 
area of So is finite. We denote by p the pullback of po via f .  All lengths 
and areas will be measured with respect to these metrics p and po. If D 
is a Jordan region in So and r is a rectifiable curve in So, the covering 
numbers over A ( D )  and A ( r )  are defined as 

and 

Now define the length of the "relative boundary" as 

The First Main Theorem of Ahlfors says that for every smooth Jordan 
region D c So there exists a constant h, depending only on D, So and 
po, such that 

IA(D) - A(So)l 5 hL. 

Similarly for any smooth curve r c So there exists a constant h 
depending only on I', So and po, such that 

We apply this to the case when So is the closed disk A j  := {( : /< - 
a,/ ( 8)  with the Euclidean metric, f  is the meromorphic function 
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92 A. EREMENKO 

which we are considering, and S is the intersection of the union of large 
components of uj with the disk D(r).  Then all covering numbers will 
have parameter r  and index j .  We conclude that 

Now we apply Ahlfors' theory to the case when So is the Riemann sphere 
with some smooth metric of finite area, coinciding with the Euclidean 
one on the disks A and S = D(r) .  We denote the covering number of So 
in this situation by A(r) and the length of the relative boundary by L(r). 
A component D of preimage f - ' ( A ; )  is called an island of multiplicity 
k if its closure is contained in int(D(r)) and f assumes aj k times in D, 
counting multiplicity. A component D of preimage f - ' ( A ~ )  is called a 
peninsula if it intersects aD(r). It is clear that the intersection of a large 
component with D(r)  consists of islands of multiplicity at least K + 1 
and of peninsulas. 

The Second Main Theorem of Ahlfors implies that the sum of covering 
numbers of A j  by peninsulas and islands of multiplicity at least K + 1 
does not exceed 2(1+  l / K ) A ( r )  + hL(r), where the constant h depends 
only on aj ,  S and the choice of the metric on the sphere (see [12]).We 
conclude from this and (14) that 

Now we notice that 

because v j  > 0. So we integrate (15) and get 

where T ( r )  = T(r,  f) and 

We have the following estimate for S(r) [I 1 1 :  
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DEFECT RELATION FOR UNIFORM METRIC 93 

3. BERGWEILER'S GENERALIZATION OF POLYA PEAKS 

According to [3] there exist sequences hk > 0, pk -+ W, M k  --+ GO and 
~ k - - +  0 such that 

for 

If the order A of the function f is finite, we may take hk = A, if h  # 0. 
Then (18) becomes the usual definition of Polya peaks. The case of 
zero order needs special consideration (see the Remark at the end of the 
paper). Furthermore, we may take 

Define t k  and Tk by 

Pk Tk Mk log - = log - = - 
tk Pk hk 

so that (18) holds for tk _( r 5 T k .  Consider the set 

and define Q; = T k  if Ak = 0 and Qj, = minAk otherwise. Similarly we 
consider 

and define Pk = tk if Bk = 0 and Pk = max Bk otherwise. We also define 
Qk = e - ' f A * ~ k  Then tk 5 Pk i pk < Qk < Q;  5 T k .  The following 
estimates belong to W. Bergweiler and H. Bock [3] 

LEMMA 4 Denote 
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94 A. EREMENKO 

We are going to apply Sodin's inequality (13) to the functions vl and 
W j  with P = Pk, Q = Qk, Q' = Qi and h = hk. We will estimate from 
above the error term (right side) of this inequality, using the evident 
relations 

TW1W + TLJl(r) = Tu(r) = T(r) + 00). 

For the first term in the right side of (13) we have 

by monotonicity of T ( r )  and definition of Qk.  For the second term in 
the right side we have 

again by definition of Qk. 
Thus Lemmas 1 and 4 imply 

Proof of Theorem I. Choose in (22) u = vj, yk = 0 and pk = x/(2hk) 
and replace Tlf; by T,, in the expression (12). We obtain 

Now fix an arbitrarily small E> 0 and choose in (22) u = w,, pk =E /kk  
and yk = (x/2- ~ ) / h k .  Then divide the inequality by sin E and replace 
Tk,  by T,, in the expression (12). We obtain 

d r  
(r) - 4 ( T ,  (r) csc E - N ,  (r) cot E) ) 5 o ( l k ) .  

(24) 
Now we use Lemma 2 to get NWj (r) 1: T,, (r) - h, where h is a constant. 
This permits us to replace in (24) T,, csc E -N,, cot E by T,,(l  - 
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DEFECT RELATION FOR UNIFORM METRIC 95 

cos E) csc E.  We remark that 

We add the inequalities (23) and (24) for 1 5 j 5 q and use (16). We 
obtain 

To estimate the integral in the right side we use (17) and the Minkowski 
inequality ab 5 ;a3 + 5b3I2: 

1 
Now using (19) and ab 5 -(a2 2 + b2)  we get 

hkS(r) 5 h(log3A(r) + log3 T ( r )  + o(hkT(r))) 

= o(A(r)  + kkT(r)).  

Thus from (25) and (26) we obtain 

as E-+ 0 and K -+ CQ. Now we integrate by parts and use Lemma 4 
and (20) to get 
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A. EREMENKO 

Thus there exists a sequence rk -+ cc such that 

As K may be chosen arbitrarily large and E arbitrarily small, C(K, E) 
is arbitrarily close to 2 and this proves the theorem. 
Proof of Theorem 2. Assume that for some j we have b(aj, f )  > 0 but 
a j  is not a strict exceptional value. We apply (22) with u = v,, hk = 
A ,  yk = 0 and B k  = n .  But now we take into account that 

This follows from the definition of a strict exceptional value. Thus we 
have in view of (10) 

So the term R,, (reiD) = Rvj (-r) in the expression (12) for G,, disappears 
and we obtain 

similarly to (23). Then we obtain (24), add it to (27) and integrate by 
parts like in the proof of Theorem 1. The result is 

Qk 1 / { -3, (r) - (n sin lrh+ E)A (r)} -$ c 0 
pk 

(28) 

and we conclude that b(a, f )  5 n sin&, which proves the theorem. 
Proof of Theorem 3. Add the inequalities (27) and (24) for 1 5 j 5 q 
and use (15). The error term S ( r )  in (15) is o(T(r)) for functions of 
finite order [ l  11. Thus we obtain 

where 

1 - cos E 
C 1 ( K , ~ ) = 2 n s i n n A  1 + -  + ( ) sin E 

q+ E-+ 2n sin nh < 2n 
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as K -+ oo and E-+ 0. Then we integrate by parts and finish the proof 
in the same way as for Theorem 1. 

Remarks on the case of zero order. When the order of f is zero we 
don't need Polya peaks. We take an arbitrarily small number 3, > 0, fix 
large P and instead of integrals from Pk to Qk consider integrals from P 
to oo. All integrals are convergent because T ( r )  = o(rh)  and the error 
terms tend to zero. 
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