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Let f be a.meromorphic function in the plane, denote by A(r,  f) the spherical area of 
f ((2 : lzl 5 r)) divided by the area of the Riemann sphere. For a E C put 

and 

Put B(  f) = ( a  : b(a,  f )  > 0). Assume that card B(  f) > 1. The recent nsu_lts of 
W. Bergweiler, H. Bock and the author show that in this case b(a, f )  5 n ,  a € C, the 
set B (  f )  is at most countable, and 

We show that for functions f of finite lower order the equality in (1) implies 

lim 
log T(r, f n = - 

r-- logr 2' 

where n 2 2 is an integer, and b(a, f) = 2nln for every a E B (  f ). 
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146 A. EREMENKO 

Keywords: Meromorphic function; subharmonic function; Ahlfon theory 

Classification Categories: 30D30, 30D3.5 

1. INTRODUCTION 

We use the standard notations of the Nevanlinna Theory such as 
T(r ,  f 1, N(r ,  f ), N(r ,  a ,  f 1, m(r, f 1, m(r,  a ,  f and f 1 (see [141). 
In addition we use M(r, f ) ,  M(r ,  a ,  f )  and b(a, f )  defined in the 
Abstract. Assume that the exceptional set B ( f )  contains at least two 
points. Then it is known [3] that 

and we have the following analogue [5] of Nevanlinna's Defect Relation 

In this paper we study the case of equality in (2).  

THEOREM 1 Let f be a meromorphic function of finite lower order, 
B ( f )  contains at least two points and equality takes place in (2). Then 
the limit exists 

lim 
log T(r ,  f ) n = - 

r-.m logr 2 ' 

where n L 2 is an integer, and b(a, f )  = 2 n / n ,  a E B ( f  ). 

COROLLARY 1 I f f  is a meromorplzicfunction offinite lower order with 
b(0,  f) = b ( m ,  f )  = n then log T ( t ,  f )  -- logr, r + CQ. 

Theorem 1 is analogous to the following theorem of D. Drasin, confir- 
ming a conjecture of F. Nevanlinna of 1929. 

THEOREM 2 Let f be a meromorphicfr~nction ofjinite lower order with 
the property 

Then 

where 1 is a slowly vntyingfiinctiort in the sense of Karamatu, n 1 2 is 
an integer and S(a, f ) = 2p(a ) /n  with some integers p(a). 
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DEFECT RELATION 147 

(The regularity propeny (5) is not stated explicitly in Drasin's paper 
[4]. A simplified proof of his theorem, including (5) was given in [6]. 
Later in [7] the conclusions of Theorem 2 were derived from a weaker 
assumption then (4)). 

Instead of b(a, f) one can consider V. P. Petrenko's "deviations" 

Recall that for meromorphic functions of lower order 1/2 c A < oo we 
have B(a, f) 5 nA, a E [15] and 

[13]. The arguments we use to prove Theorem 1 also give 

THEOREM 3 Let f be a merornorphic function of lower order 1/2 c 
A c co for which equaliry holak in (6). Then = n / 2  for an integer 
n 1 2 and all positive numbers B(a, f )  are equal to IT. 

The following questions remain unsolved: 

1. Does one really need the assumprion that the lower order is finite in 
Theorem l ?  It seems plausible that there are no functions of infinite 
order with equality in (2). 

2. Do the assumptions of Theorem 1 imply the regularity property (5), 
which is stronger then (3)? 

3. Do the assumptions of Theorem 3 imply (3) or even (5)? 

Our proof of Theorem 1 is based on a potential theoretic method 
developed in [8], [6] and [7]. We also use some notations from [5], 
which we recall now. 

2. DELTA-SUBHARMONIC FUNCTIONS 

A delta-subharmonic function is the difference of two subharmonic 
functions. We consider only delta-subhmonic functions in the plane 
C with the property rr(0) = 0. By p = pu we denote the Riesz charge 
of u. We have the Jordan decomposition p = ,LL+ - p-, where pf and 
p- are Bore1 locally finite measures in the plane. We consider the space 
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148 A. EREMENKO 

of locally finite Bore1 charges in the plane with weak topology: p,  += p  
means that 

J p d P n  += J O d p  

for every continuous function 40 with compact support. The non-negative 
charges (measures) form a cone in this space, which defines a partial 
order. The least upper bound v and greatest lower bound A are defined 
for finite families of charges. We use the following notations: 

BU(r) = sup u(reie), 
e 

The Poisson-Jensen Formula in these notations takes the form Tu(r) = 
T-u(r). 

For every r > 0 denote by  re") the even function of 8,181 < n, 
decreasing for 8 E [0, n] and equimeasurable with 8 I+ u(reie). This 
means rhat the sets (8 E [-n, n] :  re re") > x )  and {8 E [en, n] : 
u(rei8) > x )  have the same measure for all x  E R. Define the Baernstein 
*-function [2] by 

This function is subhmonic in the upper half-plane, continuous in the 
closed upper half-plane and has the following properties: 

a 1 
AT:(-r) = - inf u(rei8), r > 0, 
34 n e 

max T: (rei6) = Tu(r). 
6 (11) 
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DEFECT RELATION 149 

In addition to these properties we will use the fact that the function 
r n con re'^) is convex with respect to logarithm for every 8. 

The following inequality is a slight modification of the one used by 
M. Sodin in [17]. 

LEMMA 1 Let u be a delta-subhannonic function, such that 

inf u(reie) 5 0, r > 0. 
e (12) 

Choose 0 < P < Q < co and 112 < A < oo. Set B = r / (2A) ,  denote by 
v the Riesz measure of the subhannonic function T: and put 

where D(r, B )  = ( z  : 0 < lzl < r, 0 < argz < B). Then 

where c is an absolute constant. 

Sketch of the proof: First remark that the conditions (12) and (10) imply 
that T i  has a subharmonic extension to the whole plane. Namely we set 
T:(i)  = Tt(z) ,  3 2  > 0. We assume that T* is smooth in the upper half- 
plane. The general case is obtained using the standard approximation 
arguments given in [17]. Put D =  ( z :  P < / z J  < Q,O -c argz < B}  and 
define V(reie) = r-A cos A@. Apply the Second Green identity 

where a/an is differentiation in the direction of outer normal, ds is the 
length element and da is the area element. 

Using the property (9) of T' and harmonicity of V we get 

0 1  / P { -& ( r )  - A ~ ; ( r e ~ ~ ) }  -$ 
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A. EREMENKO 

+ lP p-A (AT; (Pe8) + P - 7: (pei6) cos A e  do 
ar a ) 

Now we perform the following transformations of this formula: 

1. Drop the third integral in the left side. (This integral is positive 
because r H ~ t ( r e ~ ~ )  is a convex with respect to logarithm); 

2. Drop cosAB in the second integral in the left side (the integrand is 
positive). 

3. Use the estimate 

1 1 
= -T:(2Qeie) log 2 5 -Tu(2Q). log 2 

4. Integrate the right side by parts 

and estimate the integrated term using Jensen's formula (recall that T i  
has been defined in the whole plane in the beginning of the proof) and 
(1 1) in the following way: 

Combining all these estimates we get the conclusion of the lemma. 

2. Proof of Theorem 1 We may assume without loss of generality that 
ca is not a Valiron exceptional value of f .  This means 

and 

r ,  f - T f 1, r + oo. . (15) 
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DEFECT RELATION 15 1 

Fix a A between the order and the lower order of f .  Then there exist 
Pdlya peaks of order A. This means that there is a sequence r j  -t w 
such that 

In what follows we will select if necessary subsequences of Pdlya peaks 
without changing the notations. Let B (f) = {ak) c C. Using the 
theorem of Anderson-Baernstein [I], we may find a subsequence of 
Pdlya peaks such that the following limits exist in I$,: 

The Riesz charges of delta-subharmonic functions in (17) converge 
weakly. The limit functions uk is (17) are non-negative, which follows 
from (14). They also have disjoint supports, because the numbers ak are 
distinct. 

Denote by K the measure in the plane, which counts poles of f 
(according to their multiplicity). In other words, K(E) is the number 
of poles of f on E. Then define K ~ ( E )  = (T(rj, f ))-'K(~,E). We have 
the weak convergence of measures 

Similarly we define the limit function To for the Nevanlinna 

It is clear from ( 15) that 

We also have 

and 
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152 A. EREMENKO 

Now from (16) we conclude that 

T O ( ~ ) S $ ,  r > O  and T o ( l ) = l .  (23 

LEMMA 2 ([8]) Let (uk, ] be a family of non-negative delta- 
subharmonic functions with disjoint supports and p i  _( po for some 
Bore1 measure po. Then Ck p;fx 5 2p0. 

Using this lemma, (20), (21) and (22) we conclude that 

We are going to apply the inequality (13) to functions uk. But first 
we make an additional transformation in this inequality. Put F,(r) = 
T,(r) - T,*(reiB) 2 0,  substitute Tik = T,, - F,, in (13) and integrate 
by parts using (22): 

Denote in addition G, ( r )  = ( 1  /n)B,  (r )  -p;f (D(r)). We obtain from (1 3) 

Now from the assumption of the theorem follows that for every E > 0 
there exists natural q such that 

1 
- x l o g t ~ ( r , a k ,  f ) > ( 2 - r ) A ( r ,  f ) = ( 2 - e ) r T 1 ( r .  f ) .  (26) 

k=l 

This implies 

almost everywhere. To derive (27) from (26) one uses a continuity 
property of B, with respect to u, see for example [9,1 I ] .  
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DEFECT RELATION 153 

As E can be chosen arbitrarily small we obtain using Lemma 2 and 
the definition of G,: 

Now we add the inequalities (25) for all k and apply (24) to the right 
side. We obtain 

where we use the notations 

Remark that all functions under the integral are non-negative and the 
integral with P = 0 and Q = w is convergent in view of (23). 

We would like to conclude that all these functions are identically equal 
to zero. Unfortunately this may not be the case and we may need another 
limit procedure similar to (17). We consider three cases. 

CASE 1. lim infQ+m Q - ~ T ~ ( Q )  > 0. Notice that from (23) follows 

lim sup Q-~TO(Q) 5 1. 
Q-rm 

So one can find a sequence Q, -, oo such that the following limit 
functions exist (here we apply again the Anderson-Baernstein theorem). 

It is clear that each of these functions wk is not identical zero (in fact 
B,,(r) > 0 for some r). Similarly we define, choosing if necessary a 
subsequence of Qj: 

T;(reiQ) = lim Q ; ~ T ; ( Q , ~ ~ ~ ~ ) ,  
j+m 
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154 A. EREMENKO 

We have ~ k +  ) p:k and p; 2 pLk but in general the equalities may not 
hold, though of course 

Similarly it may happen that T i  # TG, but we still have 

where RWk is the decreasing rearrangement of wk on the cimle Izl = r. 
Thus, as in (9) and (8) 

Now we put @(r)  = Go(r)+AFo(r)+ASo(r) and notice that for every 
M > 1 we have 

as j + cc because the integral 

is convergent. We conclude that the Q,"(Qjr) -t 0. Because all three 
summands in @ are non-negative we conclude the following: 

Tk ( r )  = T,' (reiB) (35)  

where vk is the Riesz measure of T;. 
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DEFECT RELATION 

Now we have from (27) 

where p is the limit measure of po that is 

Combining (37) with (34) and taking into account that Ck p: 5 2 p  
(which follows from Lemma 2 )  we conclude that 

and 

We denote by T the limit function of To,  that is 

We have in view of (23) 

CASE 2. liminfp,o P - ~ T ~ ( P )  v 0. Then we apply a similar argument 
using the fact that 

is convergent. Again in this case we arrive to the limit functions wk, T i ,  
Tk and T and limit measures p:, p; and p with the properties (35), 
(36), (38) and (40). 

CASE 3 .  liminfp,o PmATo(P) = 0 and IiminfQ,, Q-'To(Q) = 0. In 
this case the integral is the left side of (29) with P = 0 and Q = CQ is 
ionvergent and non-positive. So the function under the integral is zero 
almost everywhere and we just take wk = uk, T k  = T,,, Tz = T;, and 
SO on. 
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156 A. EREMENKO 

In any case we get (38), (35) and (36).  Let us draw the conclusions 
from these equations. 

First from (36) follows that TI are harmonic in the sector 0 < 
argz < p for all k = 1 , 2 , : .  .. Second, from (35) we conclude that 
T;(reiB) = Tk( r )  = supe T;(reie) so, as T;(rei@) is increasing with 
respect to 8, 

Now we want to conclude with the help of (38) that T;(r) = 0, r > 0, 
which is a bit more complicated. Consider the function 

where we use the branch zS/" which is positive for z > 0. Extend U 
to the lower half-plane by U ( z )  = U(2).  The function U ,  defined in 
this way in the whole plane, is subharmonic and its Riesz measure is 
supported by the positive ray. This follows from harmonicity of T i  for 
0 < argz < p, (41) and (32). Furthermore, it satisfies 

So we have the Weierstrass canonical representation 

where n( t )  = pu(D(t)) .  The Riesz measure of U can be expressed in 
terms of Bwk using (32). Namely, 

Now we have 
u ( - r )  = ~ ; ( r ~ ' " e ' ~ )  = ~ ~ ( r " " ) .  (45 

The equality (38) means ( l /n)Bw,(r )  = p k f ( ~ ( r ) )  or, after integration 
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DEFECT RELATION 157 

Combining (44, (45) and (46) we get 

We consider (47) together with (43) as an integral equation with respect 
to n( t ) ,  which satisfies 0 < n(r)  < c , h  in view of (42). An application 
of Mellin or Laplace transform as in [16], [18, p. 3051 shows that the 
only solutions are n( t )  = ~ 4 .  Now the evaluation of the integral in 
(43) shows that U(r)  = 0 ,  r > 0. Recalling the definition of U ,  we 
obtain that T;(r) = 0 ,  r > 0,  which implies (see (33)) that p; = 0. In 
particular, wk are subharmonic and 

in view of (30). Inequality (21) implies p: 5 p, thus pwk I p. SO we 
have from (39) 

Cpwk = 2 ~  > 2Vpn 
k k 

The functions wk are non-negative and have disjoint supports. This 
follows from the corresponding properties of uk. Now from (40), (24) 
and the definition of T and wk follows 

So from the subharmonic version of the Denjoy-Carleman-Ahlfors 
theorem (see for example [l I ] )  follows that the number of functions 
wk is finite, namely at most 2A. Denote this number by n. 

Now we are in position to use the following 

LEMMA 3 Let w 1 ,  . . . , w,, be non-negative subharmonic functions in the 
plane with disjoint supports, satisfying (49) and (48). Then 2h = n 1 
2 and 

4 

wk(rei*) = cr" cos h(8 + Bo)l 

with some constants C > 0 and 10ol 5 n. 

This lemma was first proved in [6], see also [7] for a slight 
generalization. 

Now we can finish the proof of the theorem. First we conclude that 
only half-integral orders of Polya peaks h are possible. On the other 
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158 A. EREMENKO 

hand it is known that possible orders of Polya peaks fill the interval 
between the lower order and the order. So we conclude that this interval 
is reduced to a point, which gives ( 3 ) .  Then we conclude from the 
lemma that b(a, f )  5 2rr/n, a E B ( f )  and cardB ( f )  = n. So if we 
have equality in ( 2 )  then b(a, f )  = 2 x / n ,  a E B ( f  ). This proves the 
theorem. 

Remark The proof of Lemma 3 in [6], [7] is quite technical. We can 
simplify the argument using the result of M. Essen and D. Shea [lo], 
which states that if w is a subharmonic function and 

then the support of w is a sector of the form I argz - 901 < rr/(2A) and 
w is positive and harmonic in this sector. As soon as we know that our 
functions wk have such form, Lemma 3 becomes almost trivial. 
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