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 A DETERMINATION OF THE NUMBER OF REAL AND

 IMAGINARY ROOTS OF THE HYPERGEOMETRIC SERIES*

 BY

 EDWARD B. VAN VLECK

 If the axis of x between 1 and co is considered to be a cut, the hypergeo-
 metric series

 a. /3 a(a + 1)/(,Q + l)2 F(a,8, 7, x) = 1+ x+ l.2yy?l

 with its analytic continuation, will define a function which is one-valued over

 the remainder of the plane of x. The number of roots of this function between

 0 and 1 was ascertained first by STIELTJES t and HILBERT t for the special case
 in which a- n, when the series reduces to a polynomial. Later the deter-

 mination for the general case was effected by KLEIN ? in a memoir notable both

 for its results and for its method. The number of roots between 0 and -o

 can be obtained from KLEIN'S results by means of the equation

 F (a, 8, ty, x) =(1 - )-a Fy y s - 'Y $ y )

 So far as I am aware, the number of imaginary roots has not been known, and

 is ascertained for the first time in the pre4ent paper.
 For this purpose KLEIN's geometrical method has been further developed.

 In the memoir above cited KLEIN made use of the conformal representation

 which is effected by the quotient of any two solutions of the hypergeometric

 differential equation. This quotient; as SCHWARZ showed, builds the positive
 half plane of x upon a triangle, bounded by arcs of circles, the sides of which

 * Presented to the Society October 26, 1901. Received for publication December 3, 1901.

 tComptes Rendus, vol. 100 (1885), p. 620.
 lCrelle, vol. 103 (1887), p. 337.
 ?Mathematische Annalen, vol. 37 (1890), p. 573.

 Other methods of finding the number have been given since by the following writers: HuR-

 WITZ, Mathematische Annalen, vol. 38, p. 452; GEGENBAUR, Wiener Bericbte. vol.

 100, p. 225, and Monatshefte fur Mathematik und Physik, vol. 2, p. 124; PORTER,
 American Journal of Mathematics, vol. 20, p. 193, and Bulletin of the American

 Math ematical Society, vol. 6, p. 280. The simplicity of the form in which the results are

 obtained by HURWITZ is worthy of note.

 110
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 E. B. VAN VLECK: ON THE HYPERGEOMETRIC SERIES 111

 correspond to the three segments into which the axis of x is divided by the

 singular points, 0, 1, X, of the differential equation. KLEIN derives a for-

 mula for the number of times which any side returns upon or overlaps itself,
 and shows that either this number, or this number increased by 1, must be
 equal to the number of roots of any real solution of the differential equation

 within the corresponding segment of the axis. By taking the side which cor-

 responds to the segnment (0, 1), the number of roots of the hypergeometric
 series between 0 and 1 is determined to within a unit. To decide, however, be-

 tween the two values thus obtained, KLEIN abandons the triangle and settles
 the question by considering the sign of F(a, /3, ry, x) when x approaches 1.

 This departure from the fundamental principle of many of his investigations,

 -to wit, the determination of the properties of the integrals of a differential

 equation from the shape of the corresponding triangle-is, however, unnecessary.
 For, as will be shown here, the number of roots of certain particular integrals
 in each segment of the real axis can be ascertained directly from the triangle.

 These integrals correspond to the exponents of the singular points. Since
 F (a, 13, y, x) is such an integral, the number of its roots in each interval of
 the axis can be determined without any other aid tVhan the triangle.

 The completion of KLEIN'S method leads immediately to the determination of
 the number of roots of the hypergeometric series in the imaginary domain.

 The theory can also be extended to any regular linear differential equation of
 the second order with real parameters (real singular points, exponents, etc.). If
 the analytic continuation of its solutions across the real axis from the positive

 into the negative half plane is forbidden, the fundamental integrals which cor-

 respond to the exponents of the singular points will define functions which are

 one-valued throughout the positive half plane. To find the number of roots of
 each function within the half plane, or in any of the segments into which the
 real axis is divided by the singular points, it is necessary only to construct the
 circular polygon into which the positive half plane is built by the quotient of
 any two solutions whatsoever of the differential equation.

 One other important question is solved by means of the polygon. The differ-
 ential equation in special cases may possess one or more integrals whose values
 are altered only by multiplicative constants for circuits around each of two or
 more singular points. The shape of the polygon reveals the existence or non-

 existence of such integrals, and, when they exist, it indicates what integrals have
 this property.

 1. THE GENERAL THEORY.

 ?1. Notation and preliminary explanations.
 Let

 P. (x) dX2 + P, (x) dy +P2(X)=0
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 112 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 be any regular linear differential equation in which p0(X), PI(x)p2(x) are
 polyniomials with real coefficients. We will suppose also that the roots of p0 (x),
 which are the finite singular points of the differential equation, and the ex-

 ponents of these points are real. The singular points will be denoted by

 e,(i = 1, 2, *.., n), the subscripts being so assigned as to indicate the order in
 which they succeed eachi other upon the axis of x. If the point at infinity is it-

 self a singular point, we shall include it as the last of these points, en. Lastly,
 we shall denote the larger of the two exponents of e. by X, the smaller by X".

 If the exponent difference X. = - X" is not an integer, there are two in-

 tegrals of the equation which in the vicinity of et have the form

 p (x - ej)A [1 + (x - ei) P1 (x e- ]

 P = (x - ej)A' + (x - ei) P2 (x e- ]

 P1, P2 being ordinary series in ascending powers of their arguments with real
 coefficients. We shall use the symbols PAs, P< to represent not merely the
 above expressions but also their analytic continuations over the positive half

 planie of x, inclusive of its boundary. Their continuation across the boundary
 is to be excluded. Upon this understanding PAi, PAi are one-valued within the

 half plane, and each is a definite linear combination of PAJ, .2
 As is well known, the conform of the positive half plane which is obtained

 from the quotient of any two solutions of (1),

 a,PAk'+ bPA('
 (2) cP.d

 ck +. dPk:'

 is a polygon bounded by arcs of circles. The side which corresponds to the
 segment e ei?1 will be denoted by E.-Ei?. The angle at E. is equal to Xi7r.

 The term polygon must be interpreted from the point of view of the theory of

 functions. Not only may the point at infinity be contained within the polygon,
 but its surface may be composed of several leaves or partial leaves. If, for exam-
 ple, 'X > 2, the surface will wind around E. so as to overlap itself. It is pos-
 sible also for a side to overlap, including one or more complete circumferences.
 We shall not find it necessary to enter into any further discussion of the form
 of the polygon except for the special case in which it is a triangle (? 5). For

 any fuirther information desired the reader is referred to KLEIN,* SCH6NFLIESt
 and SCHILLING.*

 * Lineare Differentialgleichungen and Ilypergeometrische Panction.
 tMathematische Annalen, vols. 42 and 44.
 4 Ibid., vol. 44, p. 162.
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 1902] OF THE HYPERGEOMETRIC SERIES 113

 ? 2. On the connection between the roots of the fundamental integrals

 and the shape of the polygon.

 We shall now place

 PA:

 pA.

 so that E. shall coincide with the origin. Since pAs, PA< are real between e.

 and ei l, the side E~E-+1 is rectilinear and falls upon the real axis. The same
 two integrals will be real between ei_l and e. if multiplied by e1r A and eif A'.
 Hence E. E. is also rectilinear, making an angle X.7r with the axis. The

 second intersection of these two sides, produced if necessary, will be denoted by

 E'.. In this case it lies at infinity.

 Consider now the zeros of PAi and P'*. It is a familiar fact that two inde-
 pendent integrals of (1) can vanish simultaneously only in the singular points.

 Such zeros need not be considered here. The reniaining zeros of PA:. and PA' give
 rise respectively to the zeros and infinities of . The number of zeros of
 PA: within the positive half plane of x is therefore equal to the number of times

 the polygon includes the origin of the n-plane in its interior, and the num-
 ber of zeros in either of the segments e i_e. and exei?1 is equal to the number

 of times the corresponding side passes through the q-origin. In general the
 remaining sides do not pass through the origin, and the real roots of PA: are
 therefore usually included in the above segments. In special cases, however,

 some of the sides may pass through the origin, and every such passage of a side
 indicates the existence of a root in the segnient corresponding to the side. The

 zeros of PA' are indicated in like manner by the passage of the sides and inte-
 rior of the polygon through the point at infinity.

 Let now any other two solutions aPA + 3PA: and yPAP + ePA' be substi-
 tuted for our two integrals. Obviously the polygon undergoes the transformation

 (4) '- .

 The origin and point at infinity will be converted into the intersections of E_1E1
 and E.E. in the transformed polygon, but the number of times the surface of

 the polygon or any one of its sides passes over either intersection is in no wise

 altered by the transformation. We reach therefore the following result:

 THEOREM. If X- X7is not an integer, and if X denotes the larger of the
 two exponents of ej, the number of zeros of PA: within the positive half plane
 of x is equal to the number of times that the interior of the polygon corre-

 sponding to any two solutions of (1) passes over E.. Thte number of its zeros
 in any segment of the axis between two successive singular points is equal
 to the number of times the corresponding side passes over E.. The zeros

 Trans. Am. Math. Soc. 8
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 114 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 of PA$' are indicated in like manner by the passage of the sides and interior

 of the polygon over Es, the second intersection of the sides E-_,E, and
 E.AE+. , produced if necessary.

 When X, is a positive integer, the expression for the integral belonging to the

 larger exponent is the same as before, but, in general, the form of the other

 integral must be modified by the introduction of a logarithmic term so that it

 becomes

 p = (e - ej)P2(x-e,) + CPA; log (x - e.).
 For the class of equations which we are considering, C and the coefficients of P2

 are real. The integrals have also the same form when the two exponents are

 equal. In this case necessarily C $ 0, and the two integrals can therefore be

 distinguished by the presence or absence of a logarithmic ter-m. We denote

 the non-logarithmic integral by pA*.

 Suppose now that in all these cases we put v equal to the quotient (3). It
 is evident that when x = ei, the quotient must vanish, and the vertex E. will
 coincide again with the origin. From this it follows that

 If X. is a positive integer or 0, the roots of P'K will be indicated in the same
 manner as above.

 We cannot, however, reach a similar conclusion concerning the other integral.

 For, though Ei E.1+ will coincide again with the real axis, E._Ei will be, in
 general, the arc of a circle tangent to the axis. The point at o is therefore no

 longer an intersection of the two sides, and it is in no wise apparent what point

 in EjEL+' is to take the place of this point, when the polygon is transformed
 by (4).

 ? 3. On the coincidence of fundamental integrals belonging to two

 dife-rent singular points.

 The values of PAs, PAi are altered only by a multiplicative constant when x

 describes a circuit around ei. If, however, X. is an integer and C * 0, PA
 does not have this property. The case in which C = 0 is also an exceptional one,

 inasmuch as the two integrals are then multiplied by the same constant. Hence

 every solution of (1) must be modified in like manner. This is the only case in

 which any other independent solution shares with the two fundamental integrals

 the property under consideration. The occurrence of this exceptional case is

 sbown at once by the polygon, for the two sides which meet in Ei at the angle
 'Xi.fr are then arcs of a common circle, and only then. We may therefore dis-

 miss from further consideration in this paragraph the singular points which cor-

 respond to such vertices, and confine our attention to the remainder.

 We proceed to determine when there is a solution which is altered only by a

 multiplicative constant for a circuit around either of two singular points, ei and

 ej. One of the two fundamental integrals of ei will then coincide, except for a
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 1902] OF THE HYPERGEOMETRIC SERIES 115

 numerical factor, with a fundamental integral of e>. Since this coincidence is

 a special property of the differential equation, it must, of course, manifest itself

 in some feature of the polygon which is unaltered by linear transformation.

 Suppose first that the integrals which thus coincide are the two which belong

 to the larger exponents of ei and e W. We shall take v -, = 1P. so that EJ
 will be situated at the origin. Then, in consequence of the hypothesis just

 made, i7 must also have the form
 aP"i

 cP\ ?+ dPA.

 But the latter expression vanishes for x = e.. In other words, E, coincides
 with the origin and hence with Ej.

 Conversely, when these two vertices coincide, the two integrals differ only by
 a numerical factor. For if by a linear transformation of the n-plane the coin-

 cident vertices are brought to the origin, r1 will vanish both for x = ei and
 for x e. It follows that b =0 in (2), and sq has accordingly the form (5).
 Since it has a similar form at e>, we conclude that PI' and PI. coincide.

 We will next suppose that PA. and Pv' coincide. If vq is taken as before

 and X. is not an integer, EJi-Ej and Ej E+L will not only meet at the origin but
 will be rectilinear. Accordingly -E lies at co. But in consequence of our
 hypothesis, x7 must also have the form

 (6) aPA' + bPk'
 CPA.,

 from which it follows that E lies at oo and coincides with E.. Conversely

 when these two points coincide (Fig. 1), the two integrals must coincide. For

 Et= E.

 vE A-4 Y~~~~~~~

 E,l= Ej' xE
 FIG[. 1. FIG. 2.

 let E. be 1irought to the origin by a linear transformation of v and at the same

 time let the -two coincident points be removed to co. Then on the one hand 7q
 m'ust take the form (6), while on the other hand it must be the quotient of the
 two- fundamental integrals of e.. It follows that PI-, and PI-. differ only by a
 numerical factor.
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 116 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 The coincidence of PA' and PA7 may be discussed in similar fashion provided
 neither \ noi X. is an integer. The conclusion thus reached may be recapit-
 ulated as follows:

 THEOREM.- When the fundamental integrals PA and P?-, which belong to

 the larger exponents of e. and e. respectively, coincide except as to a numerical
 factor, this is revealed in the polygon by the coincidence of the vertices E. and

 EL. If Ei coincides with E, the second intersection, EL E. and E.E.+
 (produced if necessary), and if X. is not an integer, P" and pA7 difer only by a
 numericalfactor. Lastly, when neither X. nor X. is an integer, the coincidence
 of P^7 and PI' is indicated by the coincidence of El, and E (Fig. 2).

 An interesting application of this theorem may be made to the case in which

 three or more consecutive sides, or sides produced, pass through a common

 point. Let these sides be E. E ?I, E? +E1?2, *.2, Ei+1 E+r* Then there
 is one integral which is modified only by a constant factor for circuits around

 any of the singular points ei+1 , ei?2, ..., ei+r-. When all the sides pass
 through a common point, the polygon may be made rectilinear by removing the

 point to co. The differeintial equation then possesses an integral whose value is
 changed only by a constant factor for any circuit described in the x-plane. This

 equation and the corresponding polygon have been studied by KLEIN.

 II. ON.THE DISTRIBUTION OF THE ZEROS OF THE HYPERGEOMETRIC SERIES.

 ? 4. Introductory remarks.

 As is well known, the hypergeometric differential equation

 x(x-l)dz j- (y -(a + 8+ 1) x) dx + a,8Y = ?

 has three singular points, el =0, e1 - 1, and e3= O , with the exponent differ-
 ences

 11 -l1y ', =2 Iy - a 1 X3 =a -31.

 The two exponents of e, are 0 and 1 - y, and the corresponding fundamental
 integrals are F (a, /3, 7y, x) and

 F1(x) =xi-F(a- y + 1, /- 3 y + 1, 2 - y, x).

 As we wish to consider here the functions which are obtained by continuing

 these two series analytically over the positive half plane of x-inclusive of its
 boundary-the usual meaning of the symbols F and Fj will be extended so as
 to include the two analytical continuations over this half plane.

 In accordance with ? 2, we can find the number of roots of either integral
 in each of the segments into which the axis of x is divided by the singular points,
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 1902] OF THE HYPERGEOMETRIC SERIES 117

 and also the number within the half plane, by constructing the triangle which

 corresponds to the differential equation. The theory fails only when X1, and
 hence y, is an integer, and then only for the integral which belongs to the

 smaller exponent. Now when fy is a negative integer or zero, F (a, /3, , xc),
 which is this integral, is devoid of meaning. If 7 = 1, the two integrals coin-
 cide, and either is the non-logarithmic integral of e1. Lastly, if 1-7y is a
 negative integer, F1 (a, /3, 7y, x) has no meaning. We conclude therefore that
 as long as either integral has a meaning, the distribution of its zeros can be ob-

 tained by the construction of the triangle.

 By properly choosing the two solutions whose quotient is taken for the con-

 formal representation, the vertices of the triangle may be made to take any

 assigned position. Its essential shape depends therefore only upon the magni-

 tude of the angles. Since these are equal to Xi7r (i = 1, 2, 3), our problem is
 to construct the triangle when the exponent differences are given.

 ? 5. Construction of the hypergeometric triangle.

 The construction of the triangle is usually somewhat complicated, but KLEIN *

 has shown how it can be constructed from a simpler or reduced triangle. By a
 reduced t triangle is to be understood one in which there is no angle greater
 than 27r and not more than one greater than 7r.

 We shall first explain how the angles of the reduced triangle are to be obtained.
 For this purpose put

 1 1 + Xi X2 rnZ2 + X[" , 3 = m3 ? X3
 in which m. denotes the integral part of X. and X'. the fractional remainder.

 Two cases are to be distinguished. In the first, some one of the integers inl,
 m2, m3-call it m.-is greater than the sum of the other two, m. and m*.
 We then make use of the reduction:

 X= M. + m l + 2n + + es,
 (7) k- = . + n X,

 Xk= 7nk + Mks

 in which n is a non-negative integer and e, is equal to either 0 or 1. If then
 we set

 (8) X7=$-1-Ei, x:;= x k k

 the angles of the reduced triangle are X>7r, X.7r, X>kr.

 * Math em ati sch e A n n a I en, vol. 37. See also his Hypergeometrische Fanction, p. 404-
 424, where SCHILLING'S definition of the reduced triangle is used.

 t SCIIILLING, loc. cit., p. 217.
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 118 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 In the second case each of the three integers m is equal to or less than the

 sum of the other two. In this case, if

 MA_i ml + m2 + m3
 is an even integer, place

 m2 + m3 -ml m3 + ml m2 ml + rn2 n73
 (9) al 2 32- 2 a3- 2 3
 Then

 (10) X1=a2+ a3+ X, X2= a3+ a, + X3= a, +a2 + 3

 and to obtain the angles X'"7r of the reduced triangle we have merely to take

 On the other hand, if ! is an odd integer, we will set *

 (12) a m2+ m3 mM-1 a n3+ ml- i2 ?1 a m?l+ i2- m3 = 1
 (12)a1= 2 2 2 a3 2

 so that a1, a2, "F will again be non-negative integers. Where the ambiguities
 in sign occur, the upper sign is to be selected unless 'X\ \X + X3, when, for a

 reason which will appear later, the lower sign shouild be taken. From (12) we get

 (13) X1 a2+ a3+ X, X2= a3+ a, + X2 X 3al+a2,+X + a

 where e2, e3 have the values 1 and 0 respectively, unless X2' >-\ + X3, when

 their values are to be interchanged. The angles of the reduced triangle are then

 specified by the equations:

 (14) X''X, X'2'=Xj2,+e29 X3=X'+63.
 The various types of reduced triangles will be given later. After the proper

 one has been picked out, the construction of the triangle may be completed by

 the attachment of circles to the reduced triangle. The term circle is here to be

 understood in the general sense of the theory of functions. It may, according

 to circumstances, signify the portion of the plane within or without the bound-

 ing circumference, and in special cases the radius of the circle may be infinitely

 great so that the circle becomes a half plane.

 Two modes of making the attachment have been given by KLEIN. By the
 first mode a circle is added laterally along a side, as in Fig. 3, where it is at-

 tached to E. E If two successive lateral attachments are made upon the same

 side, the one adds the portion of a plane exterior (interior) to the bounding cir-

 cumference, and the other adds the portion interior (exterior) to the same circle.

 Hence the two together add an entire plane. Each lateral attachment on a side

 * A very slight change is here made in the form of KLEIN's reduction.
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 1902] OF THE HYPERGEOMETRIC SERIES 119

 BE.B increases the angles E. and Ek by x, and the triangle is bounded ater- j k F

 nately by LEjAEk and the complementary arc EI BE*.

 The second mode of adding a circle is known as polar attachment. A circle

 of the same radius as one of the sides EB Bk (Fig. 4) is taken and placed above

 B~~~~~~~~

 C 4 J

 FIG. 3. FIG. 4.

 or below the triangle so that its circumference shall coincide, in part, with

 E. E. A common cut is then made in the triangle and circle from the side to

 the opposite vertex, and the triangle and circle are then connected in the manner

 customary in the construction of a Riemann surface.* Each polar attachment

 increases a single angle by 27r and adds an entire circumference to the opposite
 side.

 The reduced and completed triangles have, of course, the same vertices. An
 inspection of (7) and (8) shows that to complete the triangle when the first re-
 duction is used, m. and mk lateral attachments must be made upon the sides

 EBEj. and EBEk, while n circles are to be hung to a cut from E, to the oppo-
 site side. If the second reduction is employed, the construction is completed

 by the lateral attachment of a1, a2 and a3 circles upon E2E3, E3. 1 and E1 E2
 respectively.

 ? 6. On the reduced triangle.

 All the various types of reduced triangles are shown in the accompanying

 plate.f The triangles are there divided into three sets of five each, which cor-
 respond to the tbree distinct positions which three intersecting circles may take

 relatively to one another. If the circles pass through a common point, this

 point may be removed to infinity by a linear transformation of i, and then the
 triangle becomes rectilinear as in the second section of the plate. We shall pay

 * If one part of the triangle is- placed above and one part below the circle before the pieces

 are connected, the completed figure will not intersect itself. . See Fig. 4.

 f Copied from KLEIN'S Iypergeometrische Function, p.. 405. See also g 16 of the article by
 SCLIILLING previously cited. Triangles 2 and 8 in the plate should be turned over in or(ler that
 the interior may lie to the left of EiE1.
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 120 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 no special attention to the cases in which two of the circles are tangent to

 each other, since these are merely the limiting cases of those here considered.

 For each position of the three circles there is a triangle in which the sum of

 the angles is equal to or less than the sum in any other triangle bounded by

 arcs of the same circles. This triangle is called the minimal triangle and is

 placed first in each of the three sections of the plate. If X0, L, v0 denote the
 magnitudes of its three angles in terms of 7r, the triangle is distinguished from

 the remaining triangles by means of the relations

 X0 + --h1, IL0 + vo1, vo + X01,

 and it will belong to section I, II or III according as

 xo + /Lo + v0 > 1 (triangle 1),

 (15) 1 (triangle 2),

 < 1 (triangle 3).

 The angles of the remaining reduced triangles are expressed in terms of X0, * , vo.
 The expressions for the angles given in the plate will enable us to decide

 which of the reduced triangles should be selected for given values of X, X 2, X3.
 It will not, however, be necessary in the subsequent work to distinguish between

 triangles 1 and 4, nor among 7, 10 and 13.

 For convenience of treatment, we shall first divide the triangles into two

 groups, the first group comprising nos. 1-6, in which all the angles are acute,

 while the seconid group contains the remainder. An inspection of the reduction

 processes will show that if M is an even integer, X '- ' (i= 1, 2, 3), and con-
 sequently the angles of the reduced triangle will all be acute. On the other

 hand, if ! is odd, one angle will be obtuse.

 In the first group we have already distinguished the first three triangles from

 the others. No. 6 is characterized by a relation of the form

 X- + MX-= (1 Ho) + (1 -vo) -X0 > 1
 or

 (16) X + X> 1?X
 while for no. 5 we have

 (17) X' + Xk 1 + Xi .

 In the second group of reduiced triangles let the obtuse angle be denoted by
 \i7r. ThenB' =1 +X', while for each of the two remaining angles X'"=X.
 The expressions for the angles of no. 9 give

 (1 + x) + X - XK = (1 + A) + X0 - (I - V?) <1,
 or

 (18)
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 122 E. B. VAN VLECK: REAL AND IMAGINARY ROOTS [January

 in which one qf the two subscripts on the right hand side refers to the obtuse
 angle. Similarly for triangle 12 we obtain

 (19) V > V + ';C

 n which the subscript i refers to the obtuse angle. It can be easily verified

 that these relations hold for no other triangles of the second group. Triangle I 5
 is distinguished by means of the inequality

 (20) Xi + X' + X >2,

 and the characteristic relations for nos. 8, 11, and 14 are obtained by merely
 replacing the sign > by = in the last three inequalities.

 The possibility of making the attachments required by the reductions has yet
 to be considered. From a glance at the plate it is apparent that a circle can be

 attached laterally to any side of a reduLced triangle with the exception of nos. 11

 and 12. In each of these triangles lateral attachment upon E.E., the side op-
 posite to the obtuse angle, is impossible owing to the fact that the side returns

 upon itself. But it can be shown that such attachment is not required by the re-

 ductions. For, by (7) and (8), when the first reduction is used, the attachments

 upon the side opposite to an obtuse angle of the reduced triangle must be polar.

 On the other hand, when the second reduction is employed, it follows from (14)

 that E,2 is the vertex of the obtuse angle unless X' ="X? + V. The reduced
 triangle would then be of type 11 or 12. But in this exceptional case we so

 modified the form of the reduction as to make E3 the vertex of the obtuse angle
 and thereby avoided the use of the two triangles. The requisite lateral attach-
 ments can therefore always be made.

 Polar attachment is demanded only by the first reduction and the attachment
 is then made to a single side. If the reduced triangle has an obtuse angle, the

 side lies opposite to this angle. An inspection of triangles 7-15 and of 1-4

 TRIANGLE 16. TRIANGLE 17.

 shows that in these triangles the attachment is always feasible. In nos. 5 and 6

 polar attachment to E1jk is impossible, since in no. 5 the boundary of the
 half plane to be attached would pass through E., while in no. 6 the cut would
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 cross the boundary of the circle to be attached. When the form of the reduc-

 tion leads to these exceptional cases, the construction of the triangle is to be ef-

 fected as follows. Instead of making the first attachment triangles 16 and 17

 are to be substituted. The angle E. is thereby increased by 27r just as in

 polar attachment. The remaining n - 1 polar attachments, as well as the lateral

 attachments required, may then be made in the usual manner. For convenience

 of statement we shall hereafter include these two triangles under the term re-

 duced triangle.

 ? 7. On the distribution and number qf roots of F(a, /3, cy, x)
 when 1 - ry < 0.

 All the needful preparation for the determination of the number of roots

 of F(a, /3, fy, x) in each segment of the real axis and in the imaginary domain

 has now been made. When 1 - ry < 0, F(a, ,B, y, x) belongs to the larger
 exponent of 'el, and its roots are indicated by the passage of the sides and in-
 terior across El.

 The number of real roots in the interval (0, 1) is exactly equal to the number

 of times E1E, crosses E, or overlaps itself. Now the only reduced triangles
 which contain an overlapping side are nos. 11, 12 and 16. But E1 E2 will be iden-

 tical with this side of no. 11 or no. 12 only when in3-> inm + m2 and then only if
 X is odd andX' =' X + x. The corresponding conditions for no. 16 are that
 1 should be even and 1 + X3-= + XV. In every other case the overlapping of

 El E2 is due solely to polar attachments upon this side. Each such attachment
 adds an entire circumfereilce which covers Fl. Now the attachments upon El E2
 are polar only if in3> mn1 + m2, and by (7) the number of such attachments

 (which we before denoted by n) is equal to the integral part of (3- m2 M-)/2.
 The first attachmeilt, however, is not to be counted when triangle 16 or 17 is

 employed, that is to say, if 1 + X' \ X, + X. The form of this condition sug-
 gests the introduction of the number*

 E(3 -X-1 X2?+1 EV ~~2J
 in place of n, and this will be seen at once to agree exactly with the number of

 times El E2 overlaps itself.t
 Further attention should, perhaps, be called to triangles 11 and 16. In each

 of these triangles two vertices coincide. If the two are E1 and E2 the side
 E1E2 just closes, and there is a root of F(a, /3, ry, x) in e2- 1. If this root
 is included in our enumeration, we reach the following result:

 * By E(q) is to be understood a number which is equal to the integral part of q if q > 0, and
 which is equal to o if qc0.

 t We come thus to KLEMN's formula for the number of times any side overlaps itself.
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 If 1 - ry < 0, the number of roots of F(a, 8, ry, x) between 0 and 1 inclu-
 sive is E{(X3 -X1 X2 + 1)/2}.

 From considerations of symmetrv it follows immediately that the number of

 roots between 0 and - o must be E {(X2 -X -X + 1)/2}.

 To find the number of imaginary roots we nmust determine how often the suir-

 face of the triangle passes over E1. Now the interior of a reduced triangle
 never crosses any of its vertices, and obviously it can only be made to do so by
 lateral attachment. If, in particular, it crosses E1, the attachments must be
 made to the opposite side, E2 E3 .

 Before taking up these attachments it will be convenient to dispose first of

 the case in which mn1 > m2 + in3. As the attachments upon EE3 are then
 polar, we draw at once the following conclusion:

 Case 1. If 1 - cy < 0 and ni,> in2 + M3, the number of imaginary roots
 of F(a, ,B, y, x) within the positive ha?f plane is equal to 0.

 We returin now to the consideration of lateral attachments upon 2 F3.

 When two consecutive lateral attachments are made upon any side of a reduced
 triangle, an entire plane is added which generally passes over the opposite vertex.

 The only exceptions are triangles 11 and 16 in which the vertices E. and E,
 coincide. It is therefore impossible to make the surface cross either vertex by
 lateral attachment. These two triangles can be obtained only if the first reduc-
 tion is used and then only under the following conditions:

 Xeven 1 + ' .- .+ ,
 Mi.> m. + m

 Modd, \ + .
 But these are precisely the conditions which nmake (XX -X -X? 1+)/2 an iinteger.

 The effect of an even number of lateral attachments upon E2 E3 has thus been

 ascertained. If the total number is odd, there remains one more attachment to
 be considered. Suppose first that 3! is evel, and let a single circle be
 added laterally along a side of the reduced triangle. It will fail to cover the
 opposite vertex unless attached to E.Ek in no. 6 or to a side ending in E. in
 no. 17. As we are considering only attachmenits upon E2F3, the conditions
 for the occurreince of these exceptional cases must be

 1) X\ + x > 1 +
 and

 2) Inz M 7 + ??km \ + \Av > 1 + X

 Suppose next that 1 is an odd integer. As by hypothesis n I m2? + in3,
 the vertex of the obtuse angle in the reduced triangle must be either E, or E.
 Hence we have only to consider the effect of a lateral attachment upon one of
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 the sides passing through the vertex of the obtuse angle. It will be found that

 the circle added will pass over the vertex opposite the side of attachment unless

 it is attached to triangles 11 and 12 or to E. E. in 8 or 9. The conditions for

 the occurrence of these exceptional cases are

 1) ~ ~ ~ ~~ m qn> M. M, -B + X'-
 and

 2) 1xl + X3
 The effect of the attachments upon E-E3 has now been completely determined.

 It remains only to ascertain their number and to apply our results. Three

 cases must be distinguished according to the number of attachments made.

 Case 2: mi2 > m3 + mIn. The form of reduction (7) shows that their num-
 ber is

 m M 2+ m3 1M+ 1 m2 -iM3 -nl +1
 M 3= - 2 2

 Except in the special cases which have just been singled out the nunmber of im-

 aginary roots within the half plane will be E(m3/2) or E{(M3 + 1)/2} accord-

 ing as M is even or odd. The form of the conditions for the existence of the

 exceptional cases suggests, however, the introduction of the number

 U= 2 + 3 -I ? x (2 X3 \ ?I 1)
 ( 2 ) (2 )

 in terms of which our final result can be most simply expressed.

 If 1 -. ey 0 and min> nil + M3 the number of imaginary roots of
 F(a, 83, y, x) within the positive half plane of x is equal to E(U/2) unless

 X X1 3is an odd integer when the number is equal to 0.
 Case 3: mi3> mI + M2. The result is the same as in case 2 with the inter-

 change of the subscripts 2 and 3.

 Case 4: No one of the integers mi greater than the sum of the other two.

 The number of lateral attachments uponi EE3 is E { (ni2 + m3 - m)/2J}, and
 we obtain at once the following result:

 If 1 - ry < 0 and each of the integers inl, in2, m3 is equal to or less than
 the sum of the other two, the number of imaginary roots within the positive
 half plane is E( V/2), where

 V 1 E(2 + X3_2 _ -X ). V= EQ 23y+?1

 It is interesting to note how the changes in the number of imaginary roots

 take place when X,, X21, X3 are continuously varied. Since the roots of
 F(a, /3, y, .c) are symmetrically situated with respect to the real axis and since
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 also a multiple root of any solution of the differential equation must coincide

 with a singular point, the change can conceivably take place in just two ways.

 Either a number of roots of F(a, 3, 'y, x) unite for an instant with a singular

 point and then separate and distribute themselves differently between the real

 and imaginary domains, or a root of a second branch of the function we are

 considering must cross the cut e2e3 and thus become a root of the branch

 F(a, /3 'y, x).
 Conisider the first alternative. When x 0, F(a, ,3, ey, x) = 1. It is im-

 possible therefore for roots of F(a, /3, ry, x) to unite with el so long as this
 symbol continues to have a meaning. We shall not consider here the changes
 which ensue when 'y passes through a negative integral value. The union of

 the roots with e2 or e3 is shown by the coincidence of E1 with E2 and F3 re-

 spectively. But, as we have seen, the number of imaginary roots is then 0.
 For an instant they are all absorbed into the singular point. It is possible also

 for two real roots to unite simultaneously with the same point, one being taken
 from each of the two segments which terminate in the point. Hence when the

 roots separate again, the numnber of imaginary ifoots in each half plane may be
 increased by a uniit.

 Wheni the change takes place in the second manner and a root crosses the

 cut, E2E3 for the moment passes through E1. The three sides of the reduced
 triangle then meet in a common point and it accordingly belongs to the second

 section of the plate. Now the only triangles of this section in which it is pos-

 sible to make a side pass completely through the opposite vertex by lateral at-

 tachment are nos. 5 and 8. This happens when an odd number of attachmnents

 is made upon EjEk and E.E. respectively. If we impose the condition that
 E2 E3 shall be this side, we obtain the following results:

 If 1 - ry < 0, the nutmber of real roots of F(a, /3, 'y, x) included between

 1 and a) is equal to 0 unless (X2 + X3 - X + 1)/2 is a positive integer. Then

 if mn in case 2, m2 in case 3, or E{(M2 + n3 - m,)/2} in case 4 is an odd
 integer, there will be a single root between 1 and o, and in no other case.

 ? 8. On the nu?mber and distribution of the roots wvhen 1 - ry > 0.

 If 1 - ry > 0, the roots of F(a, /3, ry, x) are indicated by the passage of the

 sides and interior of the triangle across E,, the second intersection of the sides
 E, E and E,E3 . We will determine first the number of real roots, ascertaining
 for this purpose the number of times which E, E passes over E.

 Case 1: in, > m2 + Mn. When M1 is odd, the vertex of the obtuse angle is

 * The same four cases are distinguished here as in the article by HuRWITZ, but the number of
 roots is here expressed in terms of the exponent differences, while HURWITZ gives it in terms of
 a, ,B, y. The change to the latter form is easily made.
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 El. The point El is contained within E1 E2 only if the triangle is of type 6,
 9, 12 or 17, and one of the following sets of conditions must then hold:

 (1) Mis even and either X; + X3 > 1 + X2 or X' + X' > 1 + X;

 (2) Mis odd and either X' > X2 + X3 or X > X; + X.
 The lateral attachments upon E1 E2 have no effect upon its position if their

 number be even, but if their number be odd, it must be replaced by the comple-

 mentary arc. Now when one of the two complementary arcs contains E,, the
 other will not. Exceptions arise only from the coincidence of El and E2, when
 both arcs terminate in El. Such a coincidence occurs in figures 8 and 5 and
 then only if X' + X3 = X2 and 1 + X2 = X + X3 respectively. The total number
 of lateral attachments upon E E2 is

 m l _ Ml + m3-m2 + 1 ml - m2-V3-1I
 M2 12 2 -

 and the final result in each triangle depends upon whether this number is even

 or odd. Taking proper account of the exceptions noted, we obtain the follow-

 ing result:

 If 1 -ry > O and ml > m2 + m3 the number of roots of F(a,13, ry, x)
 between 0 and I will be 0 or 1 according as

 (21) X _ E(X1) E( +1 3 2XX2 + 1)-E(X1-X2- +X31)

 is even or odd, unless (X1 + X3 - X2 + 1)/2 is an integer. In this special case
 there is a single root, in the interval, which coincides with x = 1.

 Case 2: m2> ml + mn3. If there is an obtuse angle, its vertex is E2. Then
 El E2 can not contain El. As also the number of lateral attachments on this

 side is n1,, we conclude at once that
 If 1 - vy> 0 and in2 > mn1 + ?n3, the number of roots between 0 and 1 will

 be either 0 or 1 according as E(X1) is even or odd.

 Case 3: i3> m1 + n2. The attachments upon E1E2 are polar, and their
 number is equal to the integral part of

 m3 - - 2 n _1 n1 + mi3 - in2
 2 = 2 -i1

 Each adds a circumference containing El. If M is odd, E1E2 lies opposite
 to the obtuse angle and contains El unless 'X > X?X + X. lf M is even, this
 point is included only if X' + X3 > 1 + X2 or X' + 'X - 1 + X . In the latter
 case the substitution of figure 17 for figure 6 takes the place of the first attach-
 ment. The final conclusion is as follows:
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 If 1 - ry> 0 and n3> mI + in2, the number of roots of F(a, r3, ry, x) in
 the interval (0, 1) is

 E l1+ X3-X2+ 1) (

 one of them coincides with x = 1 if X1 + X3 - X2 is an odd integer.
 We give without further discussion the result for

 Case 4: If 1 ry> 0 and if no one of the integers inl, mi2 ,in3 is greater
 than the sunm of the other two, the number of roots in the interval (0, 1) will
 be either 0 or 1 according as

 E (xl(X1E X3- X2+ )

 is even or odd, unless X1 + X3 X2 is an odd integer. In the latter case there
 is a single root which coincides with x = 1.

 We proceed next to determine the number of imaginary roots, observing for

 this purpose how often the interior of the triangle passes across E'. The only
 reduced triangle which can contain the point E' in its interior is no. 15,

 and El must then be the vertex of the obtuse angle. This holds in case 1.
 Furthermore, this case is the only one in which the surface of the triangle can

 be m-ade to include E' by polar attachment. On this account we shall postpone
 its consideration to the last.

 In the remaining cases we have only to&trace the effect of the lateral attach-

 ments. Each pair of consecutive attachments to a side adds an entire plane

 which necessarily contains E'. If the number of attachments is odd, there re-
 maiins one more attachment to be taken account of. Suppose first that this is

 upan E1E2. Then if E' was originally contained within this side, it becomes

 an interior point in consequence of the attachment. Now we have already deter-

 mined, in studying the number of real roots, under what conditions E' will be

 contained in E,A2 in the reduced triangle. The result applies with change of
 subscript to E,E3.

 The effect of a single attachment upon E2E3 remains to be considered. If

 M is even, the circle attached will cover E' unless 'X + X' + 'X C 1 (triangle 3)
 or X' + Xk ' 1 + V.. When M is odd, the side necessarily passes through the
 vertex of the obtuse angle (E2 or E3 being its vertex), and it will be seen that

 E' is made an interior point by the attachment olnly if X' + X2 + X3 > 2 (no.
 15) or if, when E. is the vertex of the obtuse angle, Xk > X + X. (no. 9).

 We are now prepared for the consideration of case 2. If the number of at-
 tachments upon E2E3 is written in the form

 mi1 + m2 + Mn3 + 1 in + m2 - m3 + 1
 2 2

 we are led to express the final result as follows:
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 Case 2: If 1 -y > 0 and n2 > ml + in, the number of imaginary roots oJ
 F (a, 8', y, x) within the positive ha?f plane of x is E (X1 /2) + E (q/2) in
 which

 q E7 + X2 +X3 1) - Xl+ x2 X3 + 1)

 unless X1 + X2 -3 is an odd integer, when the number is E(XI/2).
 It is evident also that in

 Case 3: 1 - 7y> 0, M3 > mI + n2. The same result holds after the inter-
 change of the subscripts 2 and 3.

 In case 4 there are three sets of lateral attachments to be taken account of.

 If Mis odd, one of these is upon the side opposite to the obtuse angle. Now
 this side is E1 E3 unless 'X > XB +?X when the triangle is of type 9 and E1E3
 coincides with E. H. It follows that if 3 is odd, -E is contained in E1E3 un-
 less X2 > X? + X3 or X3 > X? + X. On the other band, when 3 ils even, this
 point is excluded unless X' + X2 > 1 + \3. These exceptions suggest that the
 introduction of

 (22) S= E(X1) - E ( +X2-X3+1)

 in place of a2, the number of lateral attachments upon E1 E3 . For a corres-
 ponding reasoin we shall express the number of attachments upon .E2E3 in the
 form:

 a, = E(_ 2 +_S+ )-E (- _ 2 -E(_ 22

 Finally, to simplify the result, we shall introduce analogous expressions in terms
 of the exponent differences. The simplest form for the result which I have
 been able to find is the following:

 If I - ey > 0 and if no one of the integers mnl, m2, in3 is greater than the
 sum of the other two, the number of roots of F(a, 3, ry, x) within the positive
 half plane is equal to

 E1( W/2) + 1E(Sj2) + 1E(T12) + C,

 in which S is defined by equation (22), Ti is a like expression, with the sub-
 scripts 2 and 3 interchanged, and

 w= E(x?E2 -?X 1) {Q1z2j 3? 1 17X+ X2-X3?1) W_ E-- ~2- J E 2 J 2 J

 while c = 1 or 0, the-former value being taken unless 3 is even and simul-
 taneously neither x' + X2 > 1 + X3 nor X' + X > 1 + X2, or unless 31 is odd
 and either X > X' + X2 or X2 > X' +XI

 Trans. Am. Math. Soc. 9
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 We return now to the case in which mi > m2 + in3. The interior of the re-

 duced triangle will contain E' only if X' + 'X + 'X > 2. Each circle added by

 polar attachment to E2 E3 will cover E, if this point lies on the same side of
 E2 E3 as does El, or, in other words, if the reduced triangle belongs to the
 third section of the plate. The total number of polar attachments is

 E{(MI -iM2 m3)/2},

 but it should be remembered that if 'X + )X3 > 1 + X' and M is even, triangle

 17 is to be substituted for no. 6, and this substitution .takes the place of the
 first polar attachment. The effect of the lateral attachments depends upon the

 number X which we introduced in considering the number of real roots in

 case 1, but in certain cases this number should be replaced by X + 2. If we

 introduce a similar number to correspond to the side El E3, we arrive at the
 following result:

 Case 1: If 1 -y > 0 and ml > m2 + m3, the number of imaginary roots
 of F(a, 83, y, x) within the positive half plane is equal, in general, to

 E(X/2) + E(Y/2),

 in which X is defined by equation (22), and Y is a similar expression with

 the subscripts 2 and 3 interchanged. If, however, any one qf the following
 sets of conditions is fuliled

 1) m + m2 + m3 even and 'X + 2 + V < 1 or X'? + X > 1 + xi
 (23) 1 (k --, 2, or 3),

 1 2) m,+m2+m3 odd and 'X +X2+X3> 2 or X>X' > +XV.

 the number of such imaginary roots must be increased by

 E(1 2 X ?) +E,

 in which e is 0 unless either 1 is even and X - ' - X + 1 (i = 2, 3), or X

 is odd and either X' > X? + X3, or 'X + 'X + 'X > 2, when its value is 1.
 One interesting remark may be made concerning the number of real roots be-

 tween e2 1 and e3 o. If in (23) the sign of inequality is replaced by the
 sign of equality, we shall have the conditions that the triangle shall belong to

 section II of the plate. The side E2 E3 passes through -E, and the number
 of real roots between 1 and co is then usually E {(X1 - X2 X3 + 1)/2}. This
 shows that the additional imaginary roots, noted just above, enter the half plane

 by crossing the cut simultaneously. This is the only case in which the number
 of roots between 1 and co ever exceeds 1.
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 WVTe leave to the reader all further consideration of the transitional cases which

 arise when the triangle belongs to the second section of the plate.

 In conclusion, it may be pointed out that the number of roots of F1(a, i3, ry, x)

 can be obtained by interchanging the conditions 1 -y > 0 and 1 - ry < 0.
 The number of imaginary roots in the entire plane is, of course, double the num-

 ber in the half plane.

 WESLEYAN UNIVERSITY, MIDDLETOWN, CONN.
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