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On Certain Differential Equations of the Second Order
Allied to Hermite’s Equation.

By Epwarp B. VAN VLECK.

Hermite’s differential equation
d
g =he+1)pw+ily

can be thrown by the substitution

~ olu v — dx
x=p(u) or f W @)= (@—ea)(z—a)([z—e)

into the form

f()dwz f(w) d1 n(n+1)w+ky=0.

4

As is well known, it admits of two solutions whose product is a polynomial in .

Other differential equations of the second order which have the same or an
analogous property have been given by Fuchs,* Brioschi,} Markoff,{ Linde-
mann,§ and G. W. Hill.||] Markoff confines his attention to the hypergeometric
equation, Fuchs and Brioschi to differential equations in which the coefficient of

ailkcy— is one-half the derivative of the coefficient of 3—'1;2 . Lindemann, in his dis-
cussion of the ““ differential equation of the functions of the elliptic cylinder,” a
limiting form of Hermite’s equation, proves that it admits of two solutions whose
product is a holomorphic function. Hill’s equation is an extension of this equa-

tion, and possesses the same property.

* Annali di Matematica, Ser. II, t. IX. t Annali di Matematica, Ser. II, t. IX, p. 11.
i Math. Ann., Bd. 28. § Math. Ann., Bd. 22. |l Acta Mathematica, Bd. 8.
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Van Vieck: On Certain Differential Equations of the Second Order, etc. 127

The object of the first section of this paper is to determine in general what
regular differential equations of the second order admit of two solutions whose
product is a polynomial. It will be found that there are several distinct classes
of such equations under which those hitherto considered are comprised as special
cases. Incidentally we shall obtain a class of irregular equations with three
singular points, which includes the equations of Lindemann and of Hill.

The properties of the two solutions and of their quotient » will be developed
in the second section. In particular, it will be shown that the monodromic
group of substitutions of » can be thrown into the form

, n= (7,

n= e
n
and that, conversely, if the group of any regular differential equation can be
thus expressed, there will be two solutions whose product is a polynomial
multiplied by certain factors which correspond to the singular points and
can be removed by an elementary substitution. So far as I am aware, the
identity of these two classes of equations has not been hitherto noted.
The other properties developed are for the most part extensions of properties
given by Hermite and Klein for Hermite’s equation, but to effect the generaliza-
tion a new method is employed which is independent of elliptic integrals. The
third section of the paper is devoted chiefly to an investigation of the position of
the real roots of the polynomial product with reference to the singular points,
when these points are real and their number is limited to four. Klein’s investi-
gation* for Hermite’s equation here also paves the way, but the ¢ Oscillation
theorem ” upon which it is based is inadequate to the more general discussion,
and recourse is had to the method of conformal representation.

I.

§1. Any regular linear differential equation of the second order with a sin-
gular point at o may be written in the form

—@+§ (1 M—2"\ dy

T —e¢; dx

AL —ZSAA e a3 .. Fa, Il
+( M(o—2) Y p)v=0 [

* Math. Ann., Bd. 40.
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128 VAN ViEck: On Certain Differential Equations of the

where SMEA)+ AL+l =r—1. [2]

The singular points e¢; will here be supposed to be given, but the “accessory
parameters” aj, «.. ., a._, and the exponents A/, 4{’ are to be so determined
that the product of two particular integrals shall be a polynomial P, of the
n'® degree. The two fundamental integrals for ¢; have in general the form

Pr=[+@—e|[1+B@—e)+ Cl@a—eaf+... .]}’ (5]
Pl =[x (w—eM][1+ B(x—e) + Cx —e)l + ....]

the leading coefficient in each series for convenience being taken equal to unity.
When, however, the difference of the two exponents is an integer, one of these
integrals must in general be modified by the introduction of a logarithmic term.
In the first factor of each expansion a definite sign is to be attached to the bino-
mial, but for the present it is immaterial which sign is selected. The corres-
ponding expansions for the singular point « are

Pio=[= (%)%][1+-f—+_g +.end]

and a similar series for P* .

The foregoing expansions hold only over a limited portion of the a-plane.
When, however, the product of two solutions is a polynomial, the integration of
the equation can be effected by familiar methods, and its general integral will
be expressed in terms of two particular integrals which hold over the entire
plane. Two cases are possible, according as the two solutions forming the poly-
nomial product are identical or distinct. In either case the polynomial itself
satisfies the differential equation

dy dy dp 2 dy aQyN, —
dad +3p do® +(dx + 2 +4q)~d—w~+<4pq+2%>y-—0,

where p and ¢ denote the coefficients of 3—':/0 and of y in [1], and it is obtained by
substituting for ¥ in this equation a polynomial of the »™ degree with unknown
coefficients. When the two solutions are identical, their common value y, is the
square root of the polynomial. A second integral can be obtained by means of

the well-known relation ‘
hYs— Y1% = OH (w—e)¥+2 —1, [4]
i=1
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Second Order Allied to Hermite's Equation. 129

which exists between any two independent integrals of the equation. This gives
for the quotient of the two integrals

— Y Cdx
Ty Yl (x—e)l —H—H"" (5]

In the second case, if 7, y, represent the distinct solutions, differentiating the
equation g, ¥, = P, and combining with [3], we find

. —cf dz
Yo= C"V P,e "P.T(z—el NN

where C, C' and 0" are constants. These formulse hold equally well when for
P, a holomorphic function can be substituted.

o /‘ da
—_—0, '\/.Pne P,. H(w—ei)l M—AT }’ [6]

§2. We proceed now to determine the conditions under which the square of
a single solution y; can be a polynomial of the nt* degree. Let y, at any singu-
lar point in the finite plane be expressed as aP% + bP%". Since the expansion
of its square into a series is to begin either with a constant or with a positive
integral power of x —e¢;, the exponents A/ and A/ must be restricted in value.
If neither @ nor & is zero, both exponents must be positive integers (including
zero) or each must be the half of an odd positive integer. If, on the other hand,
either a or b is zero, y; is one of the fundamental integrals for ¢;, and only the
single exponent which belongs to this integral is thus restricted. It is necessary,
therefore, that at least one exponent of each singular point in the finite plane,
say A/, shall be equal to the half of a non-negative integer. Also, since the
square of g, is a polynomial of the »'® degree, one of the two exponents for

infinity, say A/, must be equal to — % . The proposed solution can therefore

now be expressed in the form IT(x —e)*'Y, where ¥ is a polynomial whose

degree is 7' = — —34;' = — (A + 34/’). The substitution of this in [1] gives
as the diﬁ'erentml equation for Y
eY  sl=r d¥
x—e dx
Qe QAN T+ A P BTy g

IM(x—e)
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130 VAN VLEck : On Certain Differential Equations of the

where 2, is the exponent-difference A;— A;’. This equation has been shown by
Heine* to admit of a polynomial solution of degree #/, provided the parameters
A, B, ....are properly determined, and the number of such determinations for
any given set of exponent-differences 2, is

W, r—1) =" ;r 1)(%’; 2) = (n’(;k_r;) 2 + [8]

We conclude therefore that the differential equation [1] will admit of a particwlor
solution whose square ts a polynomial of the n'™ degree only when the exponents satisfy
the following conditions :

(1). One exponent Al of each singular point in the finite plane must be half of a
non-negative integer.

(2). —Z— — 3} must be @ non-negative integer n'.
(8). One exponent of the singular point at infinity must be equal to — —Z .

When any set of ewponents is given which conform to these conditions, the
number of such equations will be (n/, r — 1).

It will be noticed that when neither @ nor b is zero, the exponent-difference
2; must be an integer. The logarithmic term, which ordinarily appears in the
expansion of P% or P%" when this is the case, must necessarily be eliminated by
the conditions imposed upon the accessory parameters; that is, ¢ is an apparent
singular point. Furthermore, since neither exponent is negative, it follows that
¢; cannot be an infinity of any solution of [1]. Hence the product of any two
solutions will be holomorphic in the vicinity of the point.

§3. The simplest application of this result is to the differential equation for

the hypergeometric series F (a, 3, 7, ). The exponents for this equation are
0 ® 1

1—y a y—a—@|. If, therefore, n is even, the sufficient condition is
o B 0

that o or 3 shall be equal to — —Z— ; if » is odd, not only must o or 3 be equal

to — % , but either 1 —4 or ¥y —a—( must be the half of an odd positive

* Berliner Monatsberichte, 1864, or Handbuch der Kugelfunctionen, Bd. I, s. 478.
}+If » = 2, this number is unity.
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Second Order Allied to Hermite's Equation. 131

integer not greater than —7;— . These results comprise four of the six cases given

by Markoff in which the product of two solutions of the equation is a polyno-
mial of the nt* degree. In two of these four cases he fails, however, to notice
that the polynomial is the square of a single solution.

§4. We have now to consider the conditions under which the product of
two distinct solutions will be a polynomial. Let the requirement be first made
that it shall be finite and one-valued. In the vicinity of ¢; it will have the form

e =a (P + b (P + PP

If neither @ nor & nor ¢ is zero, it can be argued in the same manner as before,
that the exponents are both non-negative integers or are each the half of an odd
positive integer, and that e; is again an apparent singular point, in the vicinity
of which every product of two integrals is holomorphic. The same conclusion
holds if either a or b singly is zero. If cis zero, the only condition is that the
two exponents are each the half of a non-negative integer. Hence unless ¢, is
again an apparent singular point, one exponent must be half of an odd positive
integer and the other a non-negative integer. Finally, if « and b are both zero,
AL+ 2! shall be a non-negative integer. Setting aside the apparent singular
points, we have then some such scheme as

e e e cie ety
F4m F4mb A+A=mg......
m{/ my’

for the exponents of the singular points in the finite plane, the m being zero or positive
inlegers.

Such a scheme suffices to ensure at each of the points separately the exist-
ence of a one-valued finite product which has either the form a (P¥)? + & (PX")?
or ¢cP% P%°, We have next to learn under what conditions the product of two
integrals will be one-valued when « makes a circuit around two singular points.
Let ¢, and ¢, be two singular points whose circles of convergence overlap, and
suppose also their exponents to have the values written down in the above
scheme. Place

Pi=qaP%+ 8 p%;’,} (9]
PY =y Pk 4 § P

This content downloaded on Mon, 28 Jan 2013 18:36:50 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

132 VAN ViECK: On Certain Differential Equations of the

In the vicinity of ¢, the product can be expressed as

a (PX)! + by (P¥)+ ¢ P P,
in the vicinity of e, as

(@02 + byy* + ey} (PP + (@ + b3 + 0,88)(Py
+ (20,08 + 2b,y8 + c,ad8 + ¢,By) P* PY. [10]

By a circuit about e, the sign of ¢, is changed; by one about ¢,, the sign of the
coefficient of P% P%’. Comparing [10] with its value after both changes have
been made, we obtain as the conditions that the product shall remain unaltered
by a circuit around the two points,

=0, aaf+byd=0. [11]

There s, therefore, save for a numerical factor, one product of two integrals, and only
one, which remains unaltered for a circuit about ¢, and e,.* In the region common
to the two circles of convergence this product can be written in either of the

forms
a (PR + by (PR, (@ + b ) (PR + (@ + b) (PR,

which shows that the product is also unaltered jor a circutt around e, and e,

separately.
There remain yet two other possible exponent-schemes for ¢; and ¢, to be

/
examined, namely, <% -I-an Ay 4 Ay = m2> and (A + A/ =m;, A+ A/ =m,),
my

but in neither case can a one-valued product be obtained without a specialization
of the accessory parameters of the differential equation. For, assuming the first
case, a; (P%)*+ b, (PX')® must in the vicinity of ¢, become equal to ¢, P% P*s.
But if ¢, = 0, the coefficients of (P%)? and (P*')* in [10] can vanish only when
2 2
2
tial equation. On the second assumption P*, P4 in the vicinity of e, can differ
from P%*, P% only by constant factors, and this involves a two-fold specializa-

tion of the parameters.

= 0, and this imposés a condition upon the parameters of the differen-

*In case the two circles of convergence do not overlap, the reasoning still holds good. The right-
hand members of [9] must then be taken to represent what the left-hand members become, when con-
tinued analytically along some definite path to the vicinity of e, .
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Second Order Allied to Hermite's Equation. 133

The conclusions which have been reached for the singular points in the
finite plane apply with only slight modifications to the point . When the
product of two integrals is here one-valued, either (1) the point is an apparent
singular point, and A, A are congruent both to ¥ or both to 0, mod. 1; or (2)
they are congruent to § and 0 respectively; or (3) AL + A is an integer. The
exponents must be still further restricted if the product is a polynomial of the

-n

n'™ degree. When expanded in series for x = o0, it begins with (-3—6— . Hence
in the first two of the three cases just specified, the exponent which is the
smaller algebraically must be — —Z—, and in the third case the sum of the two

exponents must be —n.

§5. These considerations suffice for the solution of our problem, when there
are three singular points e, ¢,, . The differential equation then contains no
accessory parameter. To obtain a one-valued product we are therefore limited
to taking two pairs of exponents which differ by the half of an odd integer. To
make this product a polynomial, the exponents must also be so chosen that the
product shall be finite in ¢, and ¢, and have at o« a pole of the n™ order. Accord-

ingly we can take for the exponents either of the two following sets of values,
but no others:

61 62 [o¢]
I \34+m 34+ m ’
1 2 2 / 1o
n " Ao F Ao =—7
my my
€ € o0
1 / / - Ny
m A =m
I 3+ my 2 + Ay 2 B , e >—n
n
my -
2

the m being positive integers and », an integer, positive or negative, so chosen as
to make in agreement with [2] the sum of the six exponents equal to unity.
The first of these exponent schemes comprises those equations which can be
reduced by elementary transformations to the hypergeometric form without
destroying the polynomial form of the product. For if m{ = m]=0 and

=1, e, =10, we have at once the hypergeometric equation. When these con-
18
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134 VAN VLECK: On Certain Differential Equations of the

stants have other values, an entire linear transformation of the independent
variable will reduce ¢, ¢, to 0, 1, and the substitution

y=(x "‘ﬁ)g (x— 32){’ Y [12]

in which A, 4, denote respectively the smaller of the two exponents at ej, ¢, will
reduce one of the exponents at each of these points to zero. Applying, in par-
ticular, the exponent scheme to the differential equation for F(a, 8, y, x), we
see that the product of two distinct solutions of that equation will be a polyno-
mial, when «, 3, y have values in accordance with the following scheme :

0 ® 1
1—y=3%+m y—a—pB=%+m, |, m+m=mn.
0 atf=—n 0

This scheme embraces the two cases distinguished in Markoff’s investigation,
which were not included under §3.

§6. The same line of reasoning may be applied to a differential equation

Py | (LM L=y dy
+< x——el + w'—ez %
Zlﬂq Zé?bé’ A+B;Z:—|—0x2+.... _—
+<(w—-—e 2+(ac—-—62)2 (x—ey)(x — e) )y—-O

with two singular points in the finite plane and an essential singularity at .
The product of two solutions will be holomorphic when

M=1+mf, M=i+m,
M=mf,  a=m].

To this form both “the differential equation of the functions of the elliptic

cylinder”
a@
’Jq% = (4 cos’p+ B)y
and also the equa.tion

d<p2 =(4d4+Bcos2p+4 Ccosdp+ ....)y

which Hill uses in his calculation of the motion of the lunar perigee, ““so far as
it depends on the mean motions of the sun and moon,” can be reduced by the
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Second Order Allied to Hermite's Equation. 135

substitution @ = cos 2¢. The resulting finite singular points and exponents are
<+1 —1
: %
0 0
§7. The case in which there are four singular points can be discharged with
almost equal rapidity. The sum of the eight exponents is 2 and the differential

equation contains one arbitrary parameter. Consider first the following scheme
of exponents:

61 61 63 oo
/ / /11 P
m m m —_
| mAd mibd mid S
/ I / n
m) my mi — -

in which the m and n, have the same significance as before. It has been pre-
viously demonstrated that, except for a multiplicative constant, there is one, and
only one, product whose value is independent of a circuit about two singular
points, and that the same product is independent of a circuit about either sepa-
rately. Since a circuit about two points is at the same time a circuit around the
other two, it follows that there is one, and only one, product which is one-valued
over the entire plane. The exponents show that it is everywhere finite except
at o, where it has a pole of order ». It is therefore a polynomial of the n'®
degree. Special interest attaches to this case, since no restriction whatever has
been placed upon the arbitrary parameters. We shall subsequently see that this
is impossible when the number of singular points is greater than four.

The general differential equation given by the foregoing scheme includes
Hermite’s equation as a special case. To obtain the latter we have only to
place m{=m/ = .... =my =0 and n, =n+ 1. As already noticed, the sub-
stitution = = p (u) will remove the first derivative from this equation and reduce
it to the form

Py = [n(n+1)p @) +Hy-

A corresponding reduction can be made in the more general equation. First, by
a substitution similar to [12], we may reduce the differential equation to one
which has an exponent-scheme of the form III but in which one exponent m;’
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136 VAN ViLECK: On Certain Differential Equations of the

of each finite singular point is equal to zero. When this is done, the substitu-
tion of the new independent variable

dx

%=} . . ) 13

g,/'(ac-—-el)“"“ v (B—e) "N (@ —e) ... (—6) (23]

which makes « an elliptic function of w, say p,(u), will remove the second
derivative and reduce the equation to the form

Ty _ nenp; + B
du2 (pl - 61 e e o0 o (pl —_— 63)2""5

§8. A second group of equations with four singular points can be obtained
by combining with two such singular points as occur in III an apparent singular
point. Since the sum of the eight exponents is 2, two exponents for the fourth
singular point must be chosen whose sum is an integer. According as the appa-
rent singular point is at o or in the finite plane, the exponents will therefore be

N
mi+ % mi+ % 5
v ‘ A5+ A5 = my n |
mem —5
I 1 / mg
m+3 my+ 3 5
v y Mt Al=—n
m!! m!! mg
! 2

The accessory parameters in the differential equation will in either case be
determined by the condition that the logarithmic term in the expansions for the
apparent singular point must be made to vanish.

With the first of these two exponent schemes a differential equation first
given by Brioschi* and later applied by Haentzschelt to the theory of potential
is closely connected. Haentzschel’s form of the equation is

TY = [(m*— ) p () — 4]y,
n—1

in which m is an integer equal to Brioschi’s . If we free the equation

from doubly periodic coefficients by the substitution « = p (u), it becomes

2
(4w"—gzw—-gs)%m% + (6% — 3 ¢5) fl—i —[(m*—Hx—h]y=0.

* Annali di Matematica, Serie 2, t. 9.
t ¢ Studien iiber die Reduction der Potentialgleichung,’’ p. 54.

This content downloaded on Mon, 28 Jan 2013 18:36:50 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Second, Order Allied to Hermite's Equation 137

Both writers prove that this equation admits of two integrals whose product is a
polynomial multiplied into &/ —¢,. Brioschi, however, appears to leave % arbi-
trary, an oversight which is corrected by Haentzschel. The exponent scheme for

the equation is (i L 5 (m + %)> , but by setting y = #x — ¢; 9 it may

0 0 —i(m—1})
1
AR S S
be reduced to " 1 and thus brought under I'V. Brioschi
0 0 —1 — ;'

gives the equation as an instance in which the square of the product of two solu-
tions is a polynomial, but the modification just made shows that the equation
does not differ essentially from those which we are here considering. Indeed,
more generally, whenever the product of two solutions of a regular differential
equation containing any number of singular points is equal to a polynomial mul-
tiplied by a product of powers of the binomial z—e;, these factors may be
removed and the equation reduced to the form treated in this paper by an appro-
priate substitution of the form

y=I(x—¢)*y. [14]

§9. In the general case, where 7, the number of singular points in the finite
plane, is greater than 3, the differential equation contains » — 2 accessory
parameters. On these we are at liberty to impose an equal number of condi-
tions in order to secure, if possible, a polynomial product. The consistency of
the conditions thus imposed will have its verification in the existence of the poly-
gons hereafter to be introduced in connection with the conformal representation
of #, the quotient of two solutions. Consider first the case in which the expo-
nents are

b4ml F4m....d4om Lo
I L]
my my ... F+m! _%

We have seen that, irrespective of the values of the accessory parameters, there
is one product of two integrals which is one-valued for circuits around
e and ¢;,. Let it be required that this product shall be one-valued for circuits
around the remaining » — 1 singular points. If r is even, the exponent differ-
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138 VAN ViEck: On Certain Differential Equations of the

ence for the point « is an integer. One condition must consequently be
imposed to remove from P** or P*¥ the logarithmic term which would naturally
appear. This leaves » — 2 singular points, all of the same character, and » — 3
independent parameters. If 7 is odd, one exponent for o« is an integer and the
other is half of an odd integer. Whether then 7 is even or odd, the singular points
which remain for consideration are all of the same character, and their num-
ber exceeds by a unit the number of remaining parameters. Of these singular
points, two may be disregarded, for it has been shown that when the sum of
the exponents of each of the two points is the half of an odd integer, the product
of two integrals will be one-valued for circuits around these points, provided it is
one-valued for circuits around every other point. The number of singular points
left is therefore now one less than the number of parameters. At each of these
points let y,y, be expressed in the form a, (P¥) + b,(P%")? 4 cP% P»". The
values of the coefficients here obviously depend upon the accessory parameters
of the differential equation. The condition that the product shall be one-valued
over the entire plane requires that each coefficient ¢; shall vanish. Since this
imposes a single condition upon the parameters for each remaining singular
point, a one-valued product can be obtained by imposing a total number of con-
ditions which is one less than the number of parameters. When this is'eﬂ'ected,
the values of the exponents ensure that the product will be a polynomial. 7o
each set of exponents 1 there belongs therefore a differential equation containing a
single arbitrary parameter, for which the product of two particular solutions will be
a polynomial.

This result may be regarded as an extension of one obtained by Brioschi

for differential equations in which the coefficient of g—z is one-half of the deriva-

2,
tive of the coefficient of % . Such an equation is evidently obtained by placing

all the m of scheme I equal to 0.
Similar considerations apply to such exponent schemes as

F4+mie b+ my
1 i my et =-—n>,
/ 1 / nno
P4+ml.oe o d 4 m_, -5
11T M4 =m
m! ... ml_, "
2
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Second Order Allied to Hermite's Equation. 139

Since, however, the introduction of a singular point whose exponent-sum is
an integer imposes two conditions upon the parameters, the total number of con-
ditions will be equal to the number of accessory parameters. They will, there-
fore, be completely determined. It follows also that a scheme with more than
one pair of such exponents will be in general impossible. It is, however, con-
ceivable that in exceptional cases the conditions imposed at the several singular
points might not all be independent. Cases may therefore arise where more
than one such pair of exponents is present, as will indeed be obvious later when
the conformal representation is considered.

This exhausts the possibilities of our problem except in so far as apparent
singular points are introduced instead of those whose exponent-sums are the
halves of odd integers. This can be done, since an apparent singular point, like
the point it replaces, imposes but a single condition upon the accessory parame-
ters. The number of points whose exponent-sums are the halves of odd integers
must not, however, be made less than 2.

II.

§10. To distinguish briefly between the singular points whose exponent-
sums are the halves of odd integers and those whose exponent-sums are integers,
we will hereafter refer to them respectively as singular points of the first and
second kinds. When the two solutions are distinct, we can, by a suitable substi-

tution of the form [14], reduce the exponents for a singular point of the first

kind to ¥ 4 m;, 0 and those for a singular point of the second kind to =+ %

without destroying the property that the product of the two solutions is a poly-
nomial. In the same manner the exponents for an apparent singular point can
be reduced to zero and a positive integer. It becomes then what has been
termed a semi-singular point, in the vicinity of which all solutions can be
expanded in an ordinary power series. For convenience we will henceforth
assume that these reductions have been made for all the singular points. The
only effect of the reductions upon the polynomial is to remove from it all the
factors @ — e;.

§11. At any singular point of the first kind the two solutions can be
expressed as follows:

p= C(Wa Pt V=5 P™H), yy= - (Va Py — V=5, PH).
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When « describes a circuit around the point, these will be changed into

- ; — 1
n=C0C%,, y,= W?/l'

The result of a circuit around two such points is therefore to multiply the one solu-
tion by a constant p, the other by its reciprocal 1. If, now, only singular points

of the first kind are present, a hyperelliptic integral similar to [13] may be
introduced as the independent variable in place of . Since the periods of
are due to circuits of « around pairs of singular points, the proposition last enun-
ciated shows that there are two solutions of the differential equation, each of which
is multiplied only by a constant whenever a period is added to w. This theorem is
well known in the case of Hermite’s equation, the two solutions being then ordi-
nary doubly periodic functions of the second class. In Hill’s equation® the mul-
tiplication results upon the addition of the period 27 to the argument ¢.

When the circles of convergence of the two singular points overlap, a
formula can be given for the computation of p. Suppose the two points to be
e, ;. By a circuit around these points &/ a; P} &= o/ — b, P™+# will be replaced
by (Vaa F& —byy) Py — (W a,BF &/ —5,8) P+4, or, expressed in terms of
P}, P+ with the help of equations [9] and [11], by

. L p—
(Way P + &5, Pm1+%~)<“3 + %iﬂ;/aﬁya) '

We have therefore the formula

— ad + By F 24/ aByd
p= a3—-—,39/ . [15]

A circuit around an apparent singular point is obviously without effect upon
the two solutions. On the other hand, near a singular point of the second kind,
each solution is, except for a constant factor, identical with one of the two funda-
mental integrals, and they will therefore be multiplied, the one by e**™ and the
other by e=#™ | where x describes a circuit around the point. Combining these
results with the preceding we obtain the following noteworthy proposition :

*See either Hill’s article in the 8th volume of the Acta Mathematica or one by Callandreau,
Astronomische Nachrichten, No. 2547.
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If the two solutions, whose product is the polynomial, are selected as the bases of
the monodromic group of substitutions of the equation, this growp will take the form

L ?;1=°'?/2: yz——yi
or IL. Y1= oY1, %:—Zz’-

§12. The essential character of the group of a linear equation of the second

order is more commonly exhibited by means of the quotient » = zl . For the
2
equation under discussion the substitutions of n have the form

2
1. Z:;—, or II. %= p’. [16]

In the Autographie of Klein’s lectures upon ‘Linear Differential Equa-
tions,” 1894, p. 148, a list of 11 cases is given in which the substitutions are sim-

pler than the general substitution % = 0;:7 __t ‘g . Most of the differential equa-
n

tions which correspond to these cases are well known, as for instance the equa-
tions belonging to the groups of the regular solids. The chief case which has
not received a general investigation is that in which the group has the form to
which we have just been led by the consideration of the polynomial product.

Conversely, if for any regular differential equation the group of n = z‘ can be

expressed in the form [16], the product of the two solutions y,, y, must either be a
polynomial or a polynomial multiplied by powers of the binomials x — e;, and the
latter case can evidently be reduced to the former by such a transformation as [14].
The form of the substitutions of the group shows, in fact, that the product is
multiplied by a constant when « describes a loop enclosing one or more singular
points. Such a product is expressible as a holomorphic function multiplied into
powers of the « — e¢; which correspond to the multiplicative constants and to the
infinities of the product. Moreover, since the differential equation is supposed
regular, the holomorphic factor must have a pole for @ = o, and hence it is a
_polynomial.

§13. We shall hereafter confine our attention to real differential equations,
i. e. to those in which all parameters, whether singular points, exponents, or
19
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accessory parameters, are real. Subscripts will be assigned to singular points
of the first and second kinds according to the order in which they occur on the
x-axis, the apparent singular points being, for convenience, omitted. We will
now consider some properties of the solutions which relate to the segments into
which the axis is thereby divided.

Consider first the four fundamental integrals which belong to the two
extremities of any segment. KEach integral has been defined by a power-series
[3] which holds throughout a portion or the whole of this segment. Since the
differential equation is real, the coefficients of each series must be real, and the
signs in [3], which till now have been left arbitrary, can be so chosen that the
integrals shall be real as long as the series converge. But any solution of the
differential equation which is real along a finite portion of the axis, will, if con-
tinued analytically, remain real, until the first singular point is reached where
an ordinary power-series fails to hold. The four fundamental integrals, when
thus continued, will therefore be real throughout the entire segment irrespective
of the apparent singular points which it contains. If, now, in [9], whether the
circles of convergence of ¢, and ¢, overlap or not, the right-hand members of the
equation are taken to represent what the left-hand members become when con-
tinued analytically from the vicinity of ¢, to that of ¢,, the constants a, 3, y and
d must be real. It follows that p in formula [15] is either a real quantity or a
complex imaginary with unit modulus according as a3y4d is positive or negative.
The substitutions which result from a circuit around two consecutive singular points
;1 and e; of the first kind must therefore be either both hyperbolic or both elliptic.

Following a precedent set by Klein, we shall apply the terms hyperbolic
and elliptic not only to the substitution but to the segment ¢,_, ¢ around which
the corresponding circuit is made. FEquation [11] shows that the sign of a8yd
a4
B
can be expressed as A?(P?)?— Bi(P™*1)? and in an elliptic segment as
A2 (P?)+ B (Pm™++%)? in both of which 4, and B, denote real constants. The two
component solutions may therefore be so taken as to be real throughout a hyper-
bolic segment; on the other hand, in an elliptic segment, they will be conjugate
imaginaries. A segment, one or both of whose extremities are singular points
of the second kind, will here be classed with the hyperbolic segments, since in
this segment both solutions can be taken as real. This follows from the fact

will be opposite to that of Hence in a hyperbolic segment the product
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that in the vicinity of such a point the two solutions differ only by constant
factors from the two real fundamental integrals. On the other hand, the seg-
ments which terminate in a singular point of the first kind are the one
elliptic and the other hyperbolic, because the sign of the second term of
A% (PY) = B} (P™ +*)® will be changed when « describes a circuit around ¢;. The
order of succession of the segments between any singular point of the second kind and
the next point of the same kind is therefore a definite one. The hyperbolic and elliptic
segments alternate with each other, beginning and ending with a hyperbolic segment.
In agreement with this, the number of singular points of the first kind included
between two consecutive points of the second kind must be even, as must also
be the total number of points of the first kind.

A difference between the two varieties of segments again appears, when the
roots of the polynomial are considered. In an elliptic segment the polynomial
consists of the sum of two positive terms. Both of these cannot simultaneously
vanish at any point of the segment, for if this were possible, two independent
solutions of the differential equation would have at this point a common real
root, which contradicts a well-known theorem concerning the alternation of the
real roots. It follows therefore that the real roots of the polynomial are situated
only in the hyperbolic segments.

§14. The foregoing theory can be advantageously set forth, and might,
indeed, be independently developed, with the aid of the theory of conformal rep-
resentation. As is well-known, the quotient » of two independent solutions of
[1] builds the positive half of the ax-plane conformally upon a polygon
E E,.... E.E, whose sides are arcs of circles. The angles at the vertices
which correspond to the singular points e are successively equal to
M7, «ooo, Ao. The conformity of the representation ceases not only at the
vertices but also at the points 7' of the boundary which correspond to the appa-
rent singular points. The latter points will, however, not be here classed with
the vertices of the polygon. The angle between the two arcs which meet in
such a point is a multiple of 7, and, because there is no logarithmic term in
the expansion of » at an apparent singular point, the two arcs must be arcs of
a common circle. Hence the point is to be regarded as a sort of turning-point
(see Fig. 1) where the direction of a side is reversed one or more times.*

* For a further discussion of such points, see my article in the 16th volume of the American
Journal.
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Fig |

The general shape of the polygon can be determined from the following con-
siderations connected with the substitution-group of %. If the polygon be
reflected on any one of its sides, we shall have a new polygon which is the image
of the negative half-plane. A reflection of the second polygon upon one of its
sides gives a second image of the positive half-plane which is connected with the
first by a substitution of the group of ». If we suppose that the first reflection
is on the side E;_, E; and the second upon E; B/, (Fig. 2), the substitution will
be due to a circuit around ¢,. The invariant points of this substitution will be
the intersections of these two sides, produced if necessary, and hence also of the
sides H;_, F; and K, E, _, of the first polygon. If ¢ is a singular point of the
second kind, the substitution is of the form (16, IT), whose invariant points are
n=0 and n=o. The two sides E;,_, E; and K, E,,, are therefore parts of
straight lines which meet at the origin [Fig. 2 (a)]. If the singular point is of
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the first kind, the substitution is of the form (16, I), whose invariant points,
+ ¢, are symmetrically situated with respect to the origin. Since the angle at Z;
is (m;+%) =, the two circles of which E;_; E; and E; E; ., are arcs which cut each
other in these points at right angles. But one of the singular points adjacent to
e;, say ;4 1, must likewise be a singular point of the first kind. It follows also
that B; K, , (see (b) of Fig. 2) must cut a second circle at right angles and in
two points which are symmetrically situated with respect to the origin. Rvi-
dently therefore E; E; , is the arc of a circle whose center is at the origin and
E; _, E; the segment of a straight line which passes through the origin, or vice
versa. These conclusions concerning the shape of the polygon can be summed
up in the following statement :

When the two solutions y,, y, are distinct, the sides of the polygon are arcs of
concentric circles and segment of straight lines which cut the circles at right angles.

§15. The methods by which polygons of this character are constructed will
be discussed in a later paragraph. In the meantime some of the conclusions
already obtained may be easily verified by means of the conformal representa-
tion. To a circuit around two consecutive singular points of the first kind cor-
responds a series of four reflections, as indicated in Fig. 2 (b). These result
either in a simple revolution of the initial polygon through an angle ¢ or in
increasing the distance of all its points from the origin in the ratio p?:1. In
other words, the resulting substitution is either elliptic or hyperbolic. Clearly
also the straight sides correspond to the hyperbolic and the circular sides to the
elliptic segments. The theorem which has been already given concerning the
alternation of these two kinds of segments is now immediately evident from an
inspection of the figures. Furthermore, the roots of y, and y, are respectively
the zeros and the infinities of their quotient . Hence we conclude #iat if a
side E; E; | of the polygon passes p times in all through the zero and infinity points
of the n-plane, the polynomial has p real roots situated between e; and e, ; tf also
the interior of the polygon includes the zero and infinity points g times in all, ¢ pairs
of roots of the polynomial are imaginary. Since also only the straight sides of the
polygon can pass through the origin or infinity, the real roots must lie exclu-
sively in the hyperbolic segments.

§16. The conformal representation also makes apparent the significance of
the singular points of the second kind. Should one of the circular sides of a
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polygon be contracted to a point situated either at the origin or at o« (Fig. 3),

Fig 3

the union of its extremities would evidently produce a vertex which would cor-
respond to a singular point of the second kind. It is also obvious, conversely,
that any such vertex can be regarded as having been formed in this manner.
Hence any differential equation with singular points of the second kind which satis-
Jies the conditions of our problem can be regarded as the limit of an equation contain-
ing only singular points of the first kind, each singular point of the second kind being
created by the union of two points which terminate an elliptic segment. Thus, for
example, when m; =m, =0, the hypergeometric equations discussed at the close
of §5 are limiting cases of Hermite’s equation. It is sometimes possible, also
without changing the angles of the polygon, to contract a circular side to a point
which does not coincide either with the origin or infinity (see again Fig. 8). In such
instances the contraction of an elliptic segment gives rise to an apparent singular
point. The result is also the same when it is possible to shrink a hyperbolic seg-
ment to a point. From these instances it is clear that the various limiting forms
of a given differential equation can be immediately inferred, when the shape of the
corresponding polygon is known. In this respect, as in many others, the method
of conformal representation has a decided superiority to analytical methods.

I11.

§17. Our attention will now be restricted exclusively to such of our differ-
ential equations as contain only singular points of the first kind. If the number
of these points is greater than 3, the differential equation will contain an arbi-
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trary parameter which can be continuously varied. The polygon undergoes in
consequence a continuous deformation, and the properties of the polynomial
product also change. The present section will be devoted to a study of some of
the changes in its properties which can be discovered by means of the conformal
representation. Special attention will be paid to the changes in the distribution
of the real roots of the polynomial among the segments of the axis of x.

§18. The general theory of these equations is similar to the well-known
theory of Hermite’s equation. When the parameter of the latter is continuously
varied from — o to 4 o, for certain critical values the two solutions forming
the polynomial product become identical. The equation then becomes a Lamé’s
equation, and the two identical solutions, when divested of all factors (x—e;)",
(x—e)™, (x — eg)", are simply Lamé polynomials. At the same time a
change takes place in the distribution of the roots of the polynomial product
among the segments of the axis. We will now show that for our more
general differential equations the changes in the distribution of the roots
occur only when the two solutions become identical. Since the coefficients
of the polynomial are real, a change can be supposed to take place in only two
ways: either (1) by the passage of one or more roots through a singular point
from one segment into the next, or (2) by the conversion of pairs of real roots
into conjugate imaginary roots. In the latter case a multiple real root must
“first be formed. But it is well-known that no solution can have a multiple root
at a non-singular point of the plane, neither can two independent solutions have
a common real root at such a point. It remains therefore only to examine when
the polynomial has a root which coincides with a singular point. This again is
impossible when the two solutions are distinct, because then in the vicinity of
the point the polynomial may be written in the form A4? (P} + B? (P *4) only
the second term of which vanishes for x =¢,. The changes in the distribution of
the roots of the polynomial can therefore take place only when the two solutions
become identical.

§19. When this is the case, a change simultaneously occurs in the character
of the conformal representation. To determine the shape of the polygon we
must take as before the quotient of two independent solutions. One of these,
¥1, may be assumed to be, as in section I, the square root of the polynomial, and
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can accordingly be written in the form (x — ¢,)»h - - - . (@—e) &4 P, where each & is
either zero or unity and P denotes a polynomial which does not vanish at any
singular point. Formula [5] then shows that the generating substitutions of the
group of » will have the form

n=emnt+B=—n+p3.

One of the two invariant points of every such substitution is o, and it follows
that every side of the polygon, produced if necessary, must pass through this
point. When, therefore, the two solutions forming the polynomial are coincident, the
polygon s rectilinear.

The position of the roots of the polynomial product can be directly deduced
from the polygon. For it is clear from [5] that the roots of g, are the only
infinities of v. Hence if a side E; E;, , of the polygon pa:s*ses p-tvmes through o, p
roots are situated between ¢; and ¢ 1; if the interior of the polygon includes the
point o« q times, q pairs of roots are imaginary ; and lastly, if a vertex of the polygon
is situated at «, the corresponding singular point is a root. It will be noticed that
each of these roots is a double root of the polynomial product unless it coincides
with a singular point. In this case the order of its multiplicity is 22;.

§20. We have shown that in every instance the distribution of the roots
among the segments is determined by the form of the polygon. To ascertain
the changes in their distribution which result from a variation of the parameter,
we have need therefore only to determine the changes in the shape of the poly-
gon, and since a change can occur only when the two solutions become identical,
it will suffice to follow the successive transitions through a rectilinear form.
This will presently be done in detail for the case in which there are only four
singular points.

§21. Before doing so, however, it is necessary to say a few words concern-
ing the methods by which the polygons are constructed. The term polygon is to
be understood in the broad sense in which it is employed in the Theory of Func-
tions. As has been already said, the polygon may include either in its interior
or on its boundary the point . It will be necessary, therefore, in our diagrams
to indicate upon which side of its boundary the polygon lies. This will be done
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by shading the diagrams. The polygon may also contain overlapping portions
or leaves somewhat after the manner of a Riemann’s surface. To facilitate the
construction of the more complex polygons of this character, we shall have
recourse to Klein’s processes of attachment of circles or planes to polygons of
simpler type. A polygon is said to be “reduced’’ when it cannot be constructed
by such attachment from any simpler polygon. The different modes of attach-
ment may be most easily illustrated by reference to Fig. 4, which represents the

B A
e
¢ D C )

Fig 4

simplest type of a reduced polygon of four sides. To increase 4 by 27 a circle
is taken with the same radius as one of the opposite sides, say OD, and is placed
above (or beneath) the polygon so that its boundary shall fall upon this side.
The circle and polygon are then cut along a common line from 4 to OD, and the
two are united across the cut like the two leaves of a Riemann’s surface, the por-
tion of either of which lies on one side of the cut being connected with the oppo-
site portion of the other. In the resulting polygon the side UD must overlap
itself. This process is known as the polar attachment of a circle, and may be
repeated any number of times. If the same process be applied to increase the
angle C, which, with the surface of the polygon, lies upon the convex side of
AB, the portion of a plane exterior to a circle having the same radius as 4B is
to be employed. To cover such cases, the term circle, as in the Theory of Func-
tions, will here be used to denote alike the portion of a plane within or without
the bounding circumference. To increase two angles each by 27, the process of
diagonal attachment may be used. An entire plane is placed upon the polygon,

20
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the two are then cut along a common line between the
vertices of the two angles (Fig. 5), and finally are con-
c » nected in the manner before described. A third process,
known as lateral attachment, increases each of two adja-
cent angles by =. Along the intervening side a circle is
placed which has the same radius and which continues
the surface of the polygon across this side. The connecting side is then erased
so that the two figures form a continuous surface. Fig. 6 gives the result of such

Fig §

fic. 6

attachments on the sides D and BC of Fig. 4. Two successive attachments on
the same side are together equivalent to a single diagonal attachment of an entire
plane between the two extremities of the side. It is to be observed that this
attachment is not applicable to a side which overlaps itself. A fourth process,
known as transversal attachment, adds to the polygon a circular ring, and is suffi-
ciently explained by Fig. 7. The attachment can only be made to two sides,
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which are arcs of non-intersecting circles, and leaves the angles of the polygon
unaltered. The various attachments which have been described are not always
possible, nor, when separately possible, are they always compatible one with
another, but a glance at the polygon is usually sufficient to determine what system
of attachments is applicable. It is therefore unnecessary to discuss the limita-
tions upon their use further than to say that no cut can cross itself or any other
cut. Whenever we have occasion to employ these attachments, they will be
indicated merely by drawing the cuts and placing beside each cut a number to
show how many attachments are to be made upon it. In the case of lateral
attachment on any side, the number will be placed adjacent to the side.

§22. We may now return from our digression and take up the case of four
singular points. The exponents in this case are

Ne
P4+m F4+my 4+ my 5
n

0 0 0 —_—
2

and the differential equation takes the form

dzy +< _ml mz_l_%——m3 d_y

x— € w—ez x—eg/ dx

+<4(m —n,nxr+h >y=0. [17]

— &)@ — &) (@ — &)

If m, is used to designate the integral component of A, = e '2" ™ it is easy to

prove that the sum of the four m is equal to the degree n of the polynomial.

The polygon corresponding to this equation, whether it consist of one or
many leaves, is in general a curvilinear quadrilateral bounded by two arcs of
concentric circles and by two straight lines which cut the circles at right angles.
By geometrical considerations, which will here be only briefly outlined, it can be
shown that there are eleven types of reduced polygons of this character and no
more. These are shown in Plate I. The apparent form of some of these types

can be altered by the substitution » = % , which exchanges g, and g,, but for

This content downloaded on Mon, 28 Jan 2013 18:36:50 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

152 VAN ViEck: On Certain Differential Equations of the

our purpose the original and the transformed polygon are obviously equivalent.
In the case of types 2, 4 and 6, both forms of the polygon are presented.
The construction of these eleven types is based upon
Fig. 8, which consists simply of two concentric circles
cut by two straight lines through their common center.
The vertices of the polygon must be selected, one from
each of the four pairs of intersections 4,, 4,; B;, B,;
Cy, Cy; Dy, D,. We will first suppose that no side of
the reduced polygon overlaps itself. If neither of the
rectilinear sides passes through 0 or o, the one must
be either B,0; or B,C, and the other D, 4, or D,A,.
The boundary of the polygon has therefore the form
represented in type 1. To show that the polygon itself
must lie with reference to the boundary as represented
in our diagram, it suffices to observe that if it were on the other side of the
boundary it would contain the whole of the circle of which AB is an arc, and
would therefore be reducible by a lateral detachment of this circle. These con-
siderations, however, as yet only determine the angles to within multiples of 2n.
But any other polygon, bounded in the same manner as the first polygon of the
plate, would contain at least two angles which would exceed the corresponding
angles of the latter by multiples of 27, and would therefore permit of the diago-
nal detachment of one or more planes. Type 1 therefore represents the only
type of reduced polygon which has no side which overlaps itself or passes through
0 or . In the discussion of subsequent types similar reasoning will show, after
the boundary of the polygon has been determined and also the side of the boun-
dary upon which the polygon lies, that there is only one reduced polygon which
meets the requirements. This will hereafter be assumed without further remark.
We proceed next to determine the reduced polygons which have but a
single side which passes through either the origin or infinity. It is immaterial
through which poixit the side is assumed to pass, since the points may be

exchanged by the substitution » = —3— This side may therefore be taken as

D, w4, or D;»A4,, and we may also suppose that the adjacent surface of the
polygon is the border shaded in Fig. 8. The second rectilinear side must be
either B,C, or B,C,. If, now, the first side terminates in 4,, this vertex must
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be connected with B, and B, respectively by the arcs 4,B,; and 4,B,B,, because
otherwise the polygon would contain the whole of the circle lying within the
circumference 4,B,B, and would consequently be reducible. Completing, finally,
the polygon by the addition of a fourth side, we obtain types 2, 3 and 4. The
polygon in which the fourth side is the arc C,0,D, is excluded, because it would
necessitate a winding point at D, and would therefore be reducible by lateral
detachment along this side. If, on the other hand, the first rectilinear side termi-
nates in A4, the second cannot be B,C,. For if it were, the whole of the half-
plane adjacent to the former side would be contained in the polygon and could
be detached laterally. We have therefore only to connect D, «A4; with B,C;,
and this can be done in two ways, as shown in types 5 and 6.

If both the rectilinear sides of the polygon pass through the origin or
infinity, we may distinguish the following cases:

(1). One rectilinear side D; « 4, passes through « and the other, B,B,C, or
B,B,(,, through the origin (Types 7 (a) and 7 (b)).

(2). Both sides pass through the origin or through oo, say the origin. We
have then to connect two such segments as D, 4,4, and B,B,C, (Type 8).

(3). One side D; 4, passes through the origin and infinity, and the other
only through the origin. The segment B,B,C, must be selected as the second
side, since otherwise the polygon could be reduced by the lateral detachment of
the half-plane adjacent to the former side (Type 9).

(4). Each side passes through the origin and infinity. With D, w4, must
be associated the segment B, » 0,, since otherwise a half-plane could be removed

(Type 10).

It remains now to consider the possible forms of a reduced polygon, one or
more of whose sides overlap. Examples of such polygons can be obtained from
two of the preceding types, namely, Types 4 and 7(b) by prolonging the opposite
arcs each by a semi-circumference. We shall, however, still consider the polygons
to be of the same type. The only other typesin which the arcs can be produced
till they overlap are the 1st and 3d, but these polygons will then be reducible
either by transversal or by polar detachment. There are therefore no other
reduced polygons in which the sides overlap because the polygon winds in ring-
form between the concentric arcs. We have therefore only to consider the cases
in which the overlapping is effected in some other way. Since the surface over-
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laps at the same time as the side, it must wind around one or both of the vertices
opposite to the side. If the side be rectilinear, it is easy to see (compare Fig. 9)

%l//////{///////” /1117777

Fic. 9

that the surface makes a complete winding around one of the two vertices. The
polygon can therefore be reduced by polar detachment. The same is true if a
complete winding takes place around a vertex opposite to a circular side. There
remains therefore only the case where there is a partial winding around both
vertices, so that the angles here are §nx. The only reduced polygon of this
character which can be constructed is presented in Type 11. Our list of reduced
polygons is therefore now complete.

Each reduced polygon gives rise by attachment to a system of polygons.
Many of the polygons thus constructed can, however, be constructed from two or
more distinct types. We will, for example, obtain the same form of polygon by
a lateral attachment on BC in Type 3 as by a diagonal attachment between B
and D in Type 4; or again, by a lateral attachment on DC in Type 8 as by a
lateral attachment on BC in Type 7 (a).

§23. We are now prepared to construct for any given values of the m a
polygon which corresponds to the differential equation [17], and to trace the suc-
cessive changes in form, when the parameter % of the equation is continuously
varied. A complete determination of the polygon depends, of course, upon the
anharmonic ratio of the singular points as well as upon the accessory parameter.
A two-fold variation in the form of the polygon is accordingly possible. Either
the ratio of the radii of the two concentric arcs or the inclination of the two
rectilinear sides may be continuously altered. We shall, however, take account
only of such changes of form as affect the type of the reduced polygon and the
corresponding system of attachments. With this understanding it will be first
found that by continuous geometrical deformation a series of different forms is
obtained, which succeed one another in definite order, and subsequently it will be
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shown that a variation of the parameter %4 alone gives rise to the series thus
obtained. We may start with any polygon having the angles (m; 4+ %)=, for
from it all other forms of polygons with the same angles will be subsequently
obtained. We will first consider the case in which some one of the m, say m,,
is equal to or greater than the sum of all the others.

L mSmy 4+ my + mg.

To bring the m to a form corresponding to the system of attachments to be
employed in the construction of the polygon, we shall avail ourselves of one of
the four following arithmetical reductions, in which s, ¢,  and z denote integers,
positive or zero.

Q) m=2s+ 2+ ax+2 (2 my=2s+2t+ax+2+1
m; = x my =
my, = 2¢ my = 2t-4 1
Mmg = 2. mg = z.

(8) my=2s+24+ax+24+1 (4) my=2s+ 2%+ 4+2+ 2
m = m =
my= 2¢ my,= 2t + 1
mg = 2. my=z.

The first two reductions are to be employed when the polynomial is of even
degree; the last two, when the polynomial is of odd degree. In all four cases
the form of the reduction shows that after the selection of a suitable reduced
polygon, a system of attachments may be employed consisting of ¢ diagonal
attachments between £, and E,, « and z lateral attachments on the sides E.FE,
and E,F; respectively, and s polar attachments from Z, to one of the two oppo-
site sides, say E,E;. In the first case we must select the first type of reduced
polygon, in the remaining three cases types 7, 4 and 3 respectively, 4, B, C
and D being taken in each case as the vertices &, , E,, L,, F;.

All possible changes in the form of the polygon for case 1 are shown in
Plates IT and III. As before pointed out, the essential features of the polygon are
modified only by transition through a rectilinear form. It suffices therefore to
indicate in our figures these successive transitions. The rectilinear forms are
marked in the plates with even numbers, the intermediate stages with odd
numbers. The passage to a rectilinear form is effected, of course, by withdraw-
ing the center of the concentric arcs to . With the exceptions to be hereafter
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noted, the successive transitions can be effected only in the order in which they
are given in the plates.

The two plates, taken together, are divided into four sections, each of
which illustrates a cycle of changes which is to be repeated as many times as
possible. In the first cycle a polar attachment is transferred from E,E; to E,E,,
as is seen by a comparison of the first and last figures of the cycle. The lateral
and diagonal attachments remain, however, unaltered. The corresponding index
numbers have been inserted only in the first and last polygons, it being under-
stood that in each intermediate polygon there is an equal number of lateral, as of
polar, attachments. The second figure may be obtained from the first by with-
drawing the center of the circular sides to «. The only new form which is pos-
sible when it reappears in the finite plane is that represented in Fig. 3 (a)
or a similar figure in which E,Z, is the inner and Z_F, the outer arc. These

two figures are, however, equivalent by virtue of the substitution # = % . Figure

3 (b) is of the same form as 3 (a), one of the s polar attachments being explicitly
represented. If, now, in this figure the center of the concentric arcs is carried
to the right along the side E,F;to oo —if carried in the opposite direction, we
return to Fig. 2—the vertices E; and E, both pass to o, but &, must remain in
the finite plane, since otherwise the polygon would degenerate into a triangle.
We thus arrive at Fig. 4. The passage thence to Fig. 6 requires no comment.
The seventh and eighth polygons have been omitted, inasmuch as they can
readily be supplied by the reader, being similar in structure to the fifth and
fourth polygons respectively, but with an interchange in the roles of E, and Ej;.
Omissions of like character will likewise be made in subsequent cycles. This
cycle is to be repeated s times, that is, until all the polar attachments have been
transferred to £ K,. It may then be applied once more, until the reduced poly-
gon 3 (a) is reached, when it will be found impossible to proceed further. The
polygon thus obtained is the initial figure of the second section.

The second cycle removes a diagonal attachment and replaces it by a pair
of polar attachments to E,F,. At the same time the number of lateral attach-
ments on E_F;, is diminished and the number on E;E, increased, each by two.
The successive changes require no particular comment, until we reach the two
polygons 5. These (as later other pairs of polygons) are numbered alike to call
attention to the fact that, although constructed from two different types of
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reduced polygon, they are identical in form. On leaving this figure, two alter-
native courses are open, either to proceed as in the plate to the ninth polygon or
to pass from the one to the other by means of 5 (b) and 5 (c) (see adjoining Fig. 10)

Fig. /0

without the insertion of any rectilinear form. Either succession of changes is geo-
metrically possible, and a decision between them cannot here be made. Pre-
sumably it is dependent upon the position of the singular points upon the axis.
The cycle can be repeated until either all the diagonal attachments or all the
lateral attachments on E,F, have been removed. The former is the case when

—;— >t, that is, my >m, ; the latter, when mz;<m,.

The third cycle is applicable only when m;>m,, and the effect of its
repeated application is to remove the remaining lateral attachments. The
changes for the first half of the cycle are the same as in Figs. 1 to 5 of cycle 2.
We then insert two new figures, numbered 5 (a) and 5 (b), and thence proceed
as in polygons 10 to 18 of cycle 2 to the ninth and final figure of the cycle.
Each half cycle removes a lateral attichment on E_FE; and replaces it, the one
by a polar attachment from E, to E,E,, the other by a polar attachment from
E; to the same side. According as the number of lateral attachments to be
removed is odd or even, the reduced polygon with which we conclude the last
application of this cycle will have the form given in 5 or in 9. Hach of these
polygons contains part of a circular ring included between the sides K FEj;

21
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and FE,E,. Since all the lateral attachments have been removed from these
sides, they can be indefinitely prolonged, thus adding an indefinite number of
circular rings to the figure. This, as will be later shown analytically, is always
the final outcome of an indefinite increase of the parameter.

When my;<m,, the prolongation of the two circular sides begins immedi-
ately upon conclusion of the second cycle, the reduced polygon being then either
5 or 13 of cycle 2. Owing, however, to the presence of diagonal attachments
between K, and F,, this will not result at once in the addition of circular rings
to the polygon. The last section of Plate ITI shows the effect of a prolongation
of each of the circular sides for a complete circumference, a diagonal attachment
being of necessity replaced by two polar attachments, the one from F, to the
side E\E,, the other from E, to the side E E;. By a repetition of this process
the diagonal attachments will be removed, but at any time before this has been
accomplished another change in the form of the polygon may be made. By
passage through a rectilinear form, the circular sides to which the polar attach-
ments are made may be converted into the rectilinear sides. But if this is done,
to continue the transformation of the polygon, it will be necessary to re-exchange
the circular and rectilinear sides either by retracing our steps or by completing
the series of changes as indicated in Fig. 11* of the text. The final outcome
will be the same whether these changes be included or not. The diagonal
attachments will eventually be all replaced by polar attachments, and the further
prolongation of the circular sides E,E, and E,E, will thereafter result in the
addition of circular rings ad infinitum.

We have now traced all possible changes in the form of the polygon upon
the hypothesis that the parameter is varied continuously in one direction. It
remains to consider what changes the polygon will undergo when the parameter
is varied in the opposite direction. As already stated, the only difference be-
tween the first polygon of cycle 2 and the first of cycle 1 is that the polar attach-
ments are all made to E\E, in the one case and to E,F, in the other. By a
change of subscripts, the subsequent cycles will therefore apply equally
well to either side of the first cycle. A variation of the parameter in the
opposite direction will also ultimately result in the addition of circular rings,
which, however, will be included between the sides £, ¥, and E,E;.

* The transition from 3 (a) to 8 (b) is effected by increasing in the former polygon the radius of the
inner arc E,E, until it exceeds the radius of E,E;. The two rectilinear sides then overlap, as in polar
attachment.
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This completes the discussion for case 1. The second case differs from the
first in no essential feature. Plate IV gives the first cycle of changes. By its
repeated application the polar attachments, as before, are transferred from E,K;
to £, E,. In the last application of the cycle it will be found that the seventh
polygon is identical in structure with the fifth of cycle 2, case 1, except that
there is no lateral attachment upon #,F,. From this point on, the discussion is
the same as in case 1. In the subsequent figures there will be an even or an odd
number of attachments on this side according as the number of such attachments
was in the former case odd or even.

The changes for case 3 are shown in Plates V and VI and for case 4 in Plate
VII. The successive cycles are in every way similar to those of the first two cases,
and case 4% is related to case 3 precisely as case 2 to case 1.

§24. When no one of the m is greater than the sum of the remaining three,
we may, without loss of generality, assume that

I my+ my2ms 4 my,  my+ my=my+ ms.

One of the four following arithmetical reductions may then be made, 7, z and x
being non-negative integers and y a positive integer.

(5). my=2+z2+= (6) my=2t+z+4z+1
m=x+y m=x+y
my= 2t + y m,=2t+y+1
my=z. my = z.

(7). my=2%+z2+4+x+1 8) my=2t+z+x+ 2

m=a+y m=z+y
my, = 2t+vy my,=2t+y+1
mg=z. mg=1z.

In the first two of these four cases the polynomial is of even degree ; in the last
two, of odd degree. The same reduced polygons may be selected as in the cor-
responding cases of I, namely, the first, seventh, fourth and third types,
B, C, D and A4 being taken as before for the vertices F,, £,, F; and E,. The

*The seventh polygon of cycle 1 of this case, after the polar attachments have all been transferred
to E,E,, is converted into one similar to 5 (b) or 9 of cycle 2, case 3, by enlarging the radius of the inner
arc until it exceeds that of the other arc.
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polygons are then completed by ¢ diagonal attachments between E, and H, and
by «, y and z lateral attachments along the sides E_E,, E\E,and E_E,. The
polygon for case 8 can also be built up from Type 4, since the first lateral attach-
ment on BC in Type 3 is equivalent to a diagonal attachment between B and D
in Type 4, and the polygon will therefore differ essentially from that for case 7
only in the selection of the vertices #;.

The first cycle of changes for cases 5-7 is shown in Plate VIII. The changes
in case 8 are similar to those in case 7. With each repetition of the cycle the
number of lateral attachments on each of two opposite sides, B\ E, and E,E,_, is
diminished by a unit, while the number on each of the other sides is increased a
like amount. The cycle is to be repeated until all the lateral attachments have
been removed from one of the first two sides. This side is then free for polar
attachment, as was also E,E, at the outset. The cycle is therefore to be both
preceded and followed by other cycles in exactly the same manner as was cycle 1
in the corresponding cases of I. We may therefore limit our attention altogether
to the present cycle of changes in the polygon, this being the only one of a new
character.

§25. We have now seen for each case all possible changes in the form of the
polygon. It remains to prove that when the parameter is continuously varied,
the polygon will pass through the series of changes which have been described.
For this it will evidently suffice to show that an indefinite increase or decrease of
the parameter will result in the addition of an indefinite number of circular
rings included in the one case between E;E, and EE,, in the other, between
E_E, and E,E;,. To demonstrate this we first reduce equation [17] by the sub-
stitution

y=(—ea)™m .. .. (x—eg)l™m ity
to the form

& h
ZZZI}?/T-I-(R(w)-l-4(9&‘——61)(.’0——62)(&7—63))‘?/:0’ [18]

in which R (x) is a rational fraction that is finite except at the singular points.
If 2 is then taken sufficiently large, the coefficient of y will have for any given
h
(x—e)(x— &) (x—e5)”
of & the sign will therefore be positive in the segments e, and e; o, for large
negative values in the segments «e; and ee;. The coefficient can, moreover, be

value of « the same sign as For large positive values
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made greater than any given positive constant a. Now it is well known that
every real solution of the equation ¢”+4 ay = 0 has an infinite number of real
roots which cumulate in both directions in the vicinity of the point at <. But,
by a theorem of Sturm,* if @’ and G” are two functions of # which are finite and
continuous for any interval of the axis of #, and if G’ is algebraically less than
@', then between any two successive roots of a real solution of ' + G'y =0,
which are situated in this interval, there must lie at least one root of every real
solution of y” + G"y=0. It follows that when h is indefinitely increased, any
real solution of [17] will have an infinite number of roots in the segment e; », and
when h is indefinitely decreased, an infinite number of roots in the segment e .
Like results must also hold for the segments e, and ey, respectively, since by a
linear substitution the singular points e, and o can be interchanged and at the
same time the value of 4 is multiplied by a negative constant.t Thus, whether
h is indefinitely increased or diminished, every real solution will have an indefi-
nitely large number of roots in alternate segments of the axis. Furthermore
these segments cannot be hyperbolic segments, because in such segments the
two factors of our polynomial product are real solutions and its degree would
then be infinite. In the elliptic segments the two solutions will have the form
AP? + &/—1 BP™+% in which P? and P™ ** will each have an infinite number
of zeros, the zeros of P! alternating with those of P™+% Hence as x traverses
either elliptic segment, the argument of », which is equal to 2 tan—?! B————i;; ' % )
will increase without limit. It follows that when % approaches o, an indefinite
number of complete circumferences will eventually be added to the circular
sides of the polygon. Since the angles of the polygon remain unaltered, this
can be done only by the successive addition of circular rings.

§26. Our figures may now be applied to a study of the polynomial product.
First consider cases 1 and 2 in which the product is of even degree. Upon
examination of the rectilinear polygons it will be found either that the vertices
all lie in the finite plane or that two of the vertices E,, E,, E, are situated
at . For the critical values of the parameter the square root of the polyno-

* Lionville, tome I, p. 135.
t8ee my article in the Bulletin of the American Mathematical Society, June, 1898, p. 482.
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mial product can therefore be expressed in one of the four following forms:
(n. P,
PR

(2). (w—e)yti(x—e)™** P,

?—m,-ma—l,

3). (x—e)mFi(x—e)™t+* P,
7

5 —m—ms—1,

(4). @—e)" T (@—eg)y P, _, 1
3 1— Mg —1,

The polynomials P thus introduced fall into four distinct classes, and those

which belong to the same class are solutions of differential equations with com-

mon exponent-differences. According to Heine’s formula [8] the number of

polynomials in the several classes must be equal to

n n n
(1). '—2—+ 1, (2). —2~ —'m2"'— ms, (3). ?—ml—mg, (4). -‘Z;— _ml_mz,

and the total number will be

1, case 1;
3, case 2.

2n 41— 2[m; + my 4+ mg] = 4s + 4¢ 4 22 + 2z+{

The number of rectilinear polygons will not, however, necessarily be so great,
inasmuch as they correspond only to real values of the accessory parameter, that
is, to polynomials with real coefficients. The lower limit to the number of such
polygons can be obtained by a count of the minimum number of rectilinear poly-
gons included between the two polygons with series of ring attachments, and it

will be found to be 4s 4+ 2x + 2z + 1, case 1 Our geometrical tnvestigation
g g

— 1, case 2°
Surnishes, therefore, for the cases under consideration, a supplement to Heine's
theorem. The missing polynomials belong to the first and third classes.

An inspection of the plates also shows that the polynomials of the several classes
recur in each cycle in a definite order. The first cycle is, however, the only one in
which all four classes are included. The order in which they there recur is for
case 1 the same as that in which they were above enumerated; in case 2 they
recur in opposite order.

As before explained, the changes in the distribution of the real roots of the
polynomial product which result from a continuous change of the parameter &
can easily be traced by comparing successively each rectilinear polygon with the
polygons which immediately precede and follow it. In the two cases before us,
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as also in all cases to be hereafter examined, each passage of the polygon through
a rectilinear form exchanges the rectilinear with the circular sides. As therefore
the accessory parameter passes successwely through the critical values, each segment
of the axis will be alternately elliptic and hyperbolic.

The successive changes in the position of the roots may be advantageously
shown by a graphical representation such as was introduced by Klein in his dis-
cussion of Hermite’s equation. For this purpose the values of A are plotted as
ordinates and the roots of the corresponding polynomials as abscissas. The
resulting curve F(P,, h) = 0 shows at a glance the dependence of the roots upon
the parameter 2. Specimen sections of the curve, which correspond to the first
applications of the various cycles, are given in the first half of Plate IX for
case 1. Horizontal lines which represent the critical values of the parameter are
added and numbered to correspond with the rectilinear polygons in Plates IT
and III. These, together with the vertical lines x=¢,, ¢,, ¢;, divide the plane
into rectangles, in which alternately the two solutions are elliptic and hyperbolic
To each successive repetition of cycle 1 corresponds a branch of the curve simi-
lar to that drawn in the plate, but the number of oscillations between ¢, and e,
which corresponds to the number of polar attachments on the rectilinear side
E, B, is every time diminished by a unit, and the number of oscillations between
e, and ¢, is increased by a unit. In like manner the number of oscillations
between e, and e, is increased by two units with each successive repetition of cycle
2 or 3. The dotted portions of the curve correspond to the series of polygons in
cycles 2 and 4 whose presence cannot definitely be affirmed. The ovals are to
be included in the curve only when the numbers which they enclose are odd.
Below the first section of the plate are to be added sections similar in structure
to those above it, but the roles of the segments e ¢, and e¢,¢; must be inter-
changed. The first section of the curve for case 2 is indicated at the foot of
Plate IV. The second and third sections are similar to the corresponding sec-
tions of case 1 but with the insertion of an oval in the lowest rectangular space
between x =e¢, and « = ¢;.

The curve given by Klein for Hermite’s equation is comprised under case 1,
when the degree of the polynomial-product is even, and is the special case in
which there is but a single cycle of changes. The curve therefore consists
entirely of sections similar to that given for the first cycle, but without the ovals.
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§27. Cases 3 and 4.

The theory of these two cases, for which the polynomial-product is of odd
degree, runs parallel to that of the first two cases and may therefore be very
briefly indicated. In each rectilinear polygon either all three of the vertices
E,, E,, E;lie at « or only one. For the critical values of the parameter the
square root of the polynomial has accordingly one of the four following forms:

(1) e—e)m+iP_y_
=

- Mg

(2) @—e)m+iPu_y_, ,
2

Mg

(3): (x—e)y tiP,_,
P

m,

=My — Mg — Mg

We have again -four classes of the polynomials, and by [8] the total number in
each class is as follows:

1 1
(1. 2T —m, 2. 2t —m,
1 —1
(3). n-iz- '—'ml, (4), n 2 _ml_mz—ms;

in all, 22 4+ 1 — 2 [m, + my + m;] = 4s + 4¢ + 20 + 2z+§:1;’ gase ® . A count

of the total number of polygons will show that at least 4s+ 2w+ 2z + 3 + :13, g;:: i

are real. The missing polynomials belong to the first and third classes. In each
cycle there is again a definite order in which the classes recur, the order in
which they were just enumerated being that for the first cycle of case 3. Speci-
men sections of the curve F(P,, h) =0 are drawn for case 3 in the second half
of Plate IX and for the first cycle of case 4 at the foot of Plate VII. The curves
differ mainly from those of the first two cases in that the principal branches for
the separate cycles are no longer closed curves, but form one continuous curve
which traverses the entire plane. The curve given by Klein for Hermite’s equa-
tion, when the degree of the polynomial-product is odd, is included under case 3
and consists entirely of sections similar to the first of the plate, but with the
omission of the ovals.
22
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§28. II. Cases 5-8.

An inspection of Plate VIII shows that the nature of the cycle there repre-
sented varies greatly in the several cases. In the fifth case the vertices of the
polygon remain throughout the entire cycle in the finite plane. There is there-
fore but a single class of rectilinear polygons, and all the corresponding polyno-
mials have the form P,. The cycles which precede and follow that given in

2

the plate introduce three other classes of polynomials. If 2>y, that is, if
my~+ mg > m, + m,, we have the same four classes of polynomials as in cases 1
and 2, and their total number

2n— 2 [m; + m, 4+ ms] + 1 is equal to 4f 4 2z 4+ 20 4 1.

Of these all except possibly 4/ must be real. The missing polynomials belong
to the first and third classes. If, on the other hand, 2 <y, the fourth class of
polynomials must be replaced by one for which the square root of the polyno-
mial product has the form (x — ¢;)™+*P, ,- The reduction of the degree

2 mg—my—
P] 3 4

of this expression below _n2_ is due to the coincidence of 2 (m,+ %) roots of the

polynomial-product with the singular point . Such a reduction can take place

Ny

only if » —m,— 1, which is the negative of or the second exponent

for «, is positive, and the necessary condition for this is easily seen to be the
condition which is common to cases 5-8, viz. m, < m; + my, + mz. The total
number of polynomials in the four classes is

Of these all except 4¢ must certainly be real. All the unreal polynomials belong
again to the first and third classes.

Case 6. Two alternatives are apparently possible in the first cycle, between
which we cannot here decide. The cycle may, namely, be concluded, as in the
plate, without the insertion of any rectilinear polygon whatever, or at its close a
series of changes similar to the series given in figures 5b to 9 of cycle 2, case 1,
may be added. The case differs essentially from the preceding in this, and only
in this, cycle.

Cases 7-8. In the first cycle each vertex of the polygon in turn recedes
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Second Order Allied to Hermite's Equation. 167

to «. Accordingly, for critical values of the parameter, the square root of the
polynomial-product will have the form :

(1). (w—egym+t n—1_, 1 (2). (x—e)™"P, s
2 3 5 2
3). (w—e)ym+iP,_; (4). Poow g
™ P —me=—"

Four classes of polynomials are thereby distinguished, and their total number is

3, case 7,
5, case 8.

2n— [my + my+ my + my] 4+ 2= 4¢ 4 2 + 2y+2z+{

4¢, case 7,

4(t + 1), case 8, belonging to the 1st and 3d classes can be

Of these only {

imaginary.

It is noteworthy that in all 8 cases, with the single exception of case 6, the
maximum number of imaginary polynomials is either 4f or 4 (¢4 1), depending
solely upon the number of diagonal attachments in the initial polygon.

‘WESLEYAN UNIVERSITY, Aug. 1898.
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