
Numbers and functions. Introduction to Vojta’s analogy

Seminar talk by A. Eremenko, November 23, 1999, Purdue University.

Absolute values. Let k be a field. An absolute value v is a function k → R,
x 7→ |x|v with the following properties:

1. |x|v ≥ 0, and |x|v = 0 iff x = 0,
2. |xy|v = |x|v|y|v,
3. |x + y|v ≤ |x|v + |y|v ≤ 2 max{|x|v, |y|v}.

If 3 is replaced by the stronger property

3′. |x + y|v ≤ max{|x|v, |y|v},

then v us called non-archimedian. For an absolute value v we put

v(x) = − log |x|v.

Then v : k → R ∪ {−∞},

v(xy) = v(x) + v(y), and

v(x + y) ≥

{

min{v(x), v(y)} in non-archimedian case, and
min{v(x), v(y)} − log 2 in archimedian case.

Example 1. (Classical). For k = Q, x 7→ |x|∞ is the usual, archimedian
absolute value. For each prime p we can write every rational number as
x = psm/n, where m and n are not divisible by p. Then

|x|p = p−s, vp(x) = s log p (1)

is called p-adic absolute value. Up to proportionality of v-functions, these
are the only absolute values in Q (A. Ostrowski’s theorem). We have

∏

v

|x|v = 1 or
∑

v

v(x) = 0 for every x.

This is called the Artin–Whaples Product Formula. For the filed Q it is
equivalent to Euclid’s theorem, that every rational number is a product of
powers of primes:

x = ±
∏

p
sj

j ,
∏

v

|x|v = |x|∞
∏

v 6=∞

|x|v = |x|∞
∏

p
−sj

j = 1.
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Example 2. (Classical). For k = M(C), the field of meromorphic functions
on the Riemann sphere C, and f ∈ k, |f |p = e−p(f), where p(f) is the
multiplicity of zero of f at p ∈ C (it is negative if p is a pole; p(0) = ∞).
This time the Product Formula is

∑

p

p(f) = 0.

Each absolute value defines a metric and thus a topology on k. Equiv-
alent topologies correspond to proportional functions v. One also considers
completion of a field with respect to an absolute value. Thus in Example
1 we obtain R as the completion of Q with respect to | |∞, and Qp, the
p-adic numbers fields. In Example 2 we obtain for each p the field of formal
Laurent series (with finitely many negative powers) at p. Absolute values
can be extended to algebraic extensions of a field. In Example 2 one obtains
the Puiseaux series in this way.

Example 3. (Vojta). Let f be a meromorphic function in |z| ≤ r with
f(0) = 1. Then, for θ ∈ [−π, π)

|f |r,θ = |f(reiθ)|

is an archimedian absolute value (well, almost; the second part of condition
1 is not satisfied), and for each p ∈ C, |p| < r:

|f |r,p =
∣

∣

∣

∣

p

r

∣

∣

∣

∣

−p(f)

, vr,p = p(f) log
∣

∣

∣

∣

p

r

∣

∣

∣

∣

is a non-archimedian absolute value (compare with (1)). To write the Product
Formula, we have to average over the infinitely many archimedian absolute
values:

∑

|p|<r

p(f) log
∣

∣

∣

∣

p

r

∣

∣

∣

∣

+
1

2π

∫ π

−π
log |f(reiθ)| dθ = 0.

Another name for this is Jensen’s formula.

Heights in projective spaces. Let Pn be the n-dimensional projective
space over k, that is the set of non-zero vectors (x0, . . . , xn) ∈ kn+1 up to
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proportionality. The (logarithmic) height is a function h : Pn → R defined
for a point P = (x0 : . . . : xn) ∈ Pn by

h(P ) =
∑

v

log max
j

|xj|v = −
∑

v

min
j

v(xj),

where the summation extends to a set of absolute values, satisfying the Prod-
uct Formula. It follows from the Product formula that h is well defined.

Example 1, again. If k = Q, we use P = (m0 : . . . : mn), where mj are
integers without a common factor, and obtain

h(P ) =
∑

p6=∞

log max{|m0|p, . . . , |mn|p} + log max{|m0|∞ . . . , |mn|∞}

= max{log |m0|, . . . , log |mn|},

because max{|m0|p, . . . , |mn|p} = 1 for each prime p, because our homoge-
neous coordinates mj have no common factor.

Example 2, again. If k = M(C), the field of rational functions, a point
P ∈ Pn can be written as P = (f0 : . . . : fn), where fj are polynomials
without a common factor, and again only the summand with p = ∞ is
different from zero:

h(P ) = log max{|f0|∞, . . . , |fn|∞} = max{deg f0, . . . , deg fn}.

In particular, h(x) for x ∈ k is the degree of a rational function x.

Example 3, again. Take k = C and consider a holomorphic curve f :
B(r) → Pn, where B(r) = {z ∈ C : |z| ≤ r} and Pn is complex projective
space. We write f = (f0 : . . . : fn), where fj are holomorphic functions
without common zeros. Then the logarithmic height should be

hf (r) = “
∑

v

” log max{|f0|v, . . . , |fn|v} = “
∑

v∈S

” log max{|f0|v, . . . , |fn|v}

=
1

2π

∫ π

−π
log max{|f0(re

iθ)|, . . . , |fn(reiθ)|}dθ,

where S = {v = (r, θ) : |θ| ≤ π} is the set of archimedian absolute values.
Another name for this is the Nevanlinna–Cartan characteristic of a holo-

morphic curve, Tf (r). When n = 1 one obtains the usual Nevanlinna or
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Ahlfors characteristic. (They differ by a bounded term, but coincide if
f(0) = 1).

Lang writes:

“The CR note where Cartan announced his Second Main Theo-
rem for the case of hyperplanes was published in 1929, essentially
at the same time as Weil’s thesis in 1928, where he uses the height
which today bears his name and which was defined simultane-
ously by Siegel [1929]. But no one at the time saw that Cartan’s
definition of this height was entirely analogous to the definition
of the heights in algebraic number theory, and that both were
based on the product formula. This gap in understanding is,
to me, almost as striking as the gap in understanding between
Artin and Hecke in Hamburg about the connection between non-
abelian L-series and modular forms. One had to await 40 to 50
years for the connections to be made, conjecturally, by Langlands
and Vojta respectively in these two cases. In both cases, some
algebraic number theorist’s failure to relate properly to analysis
(and conversely) contributed to that gap of understanding”.

Thue–Siegel–Roth Theorem. Usual formulation: for every algebraic
number x, and all but finitely many rational numbers P = m/n we have

|x − y| ≥ max{m,n}−2+ǫ,

or, using our notation,

− log |x − y|∞ ≤ (2 + ǫ)h(y),

except for finitely many y. The following generalization to p-adic absolute
values is due to Mahler: let k be a number field (= finite extension of Q),
S a finite set of absolute values, and ǫ > 0. For each v ∈ S choose av ∈ Q.
Then the inequality

∑

v∈S

v+(y − av) ≤ (2 + ǫ)h(y)

holds for all but finitely many y ∈ k. Notice that “all but finitely many” is
the same as “all but a set of bounded height”.
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Weak form of the Second Main Theorem of Nevanlinna. For every
non-constant meromorphic function f in C, for every finite set of constants
{a}, for every ǫ > 0 we have

∑

a

1

2π

∫ π

−π
log+ |f(reiθ) − a|−1 dθ

=
∑

a

1

2π

∫ π

−π
v+

r,θ(f − a) dθ ≤ (2 + ǫ)hf(r), (2)

where r /∈ Ef (ǫ), an exceptional set of finite length. Notice that a “non-
constant meromorphic function” is the same as a “meromorphic function of
bounded height”.

We call this form of the Second Main Theorem “weak” for two reasons.
One is that one can write better “error term”, then ǫhf(r). But more im-
portant omission in (2) is the ramification term N1,f (r), which counts the
total multiplicity of a-points in B(r). In particular, the Second Main The-
orem with the ramification term implies: for three non-proportional entire
functions f0, f1, f2 without common zeros, and with f0 + f1 + f2 = 0

1

2π

∫ π

−π
log max{|f0|, |f1|, |f2|}(re

iθ) dθ ≤ (1 + o(1))N(r, f0f1f2), r /∈ E

where N is the usual averaged counting function of different zeros, and E is
a set of finite length.

Example 1, again. Let us denote by n(m) the number of different primes
which divide an integer m. The following statement is known as the abc-
conjecture of Masser and Oesterlé: for every ǫ > 0 there exists C(ǫ), such
that for any non-zero relatively prime integers a, b, c with a + b + c = 0

max{|a|, |b|, |c|} ≤ C(ǫ) (n(abc))1+ǫ .

This easily implies that each Fermat’s equation has only finitely many solu-
tions, but unlike the Fermat Theorem, abc is still a conjecture.

Example 2, again. Let us denote by n(f) the number of different zeros of
a polynomial f . The following statement is known as Mason’s theorem: for
any relatively prime non-proportional polynomials a, b, c, with a + b + c = 0

max{deg a, deg b, deg c} ≤ n(abc) − 1.

Lang writes:
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“Mason started a trend of thought by discovering an entirely new
relation among polynomials, in a very original work as follows...”

HW Exercise: Derive Mason’s theorem from the Riemann–Hurwitz for-
mula.

Appendix (not included in the seminar talk)

A1. The following generalization of the Thue–Siegel–Roth Theorem to sev-
eral dimensions was obtained by Schmidt. For a hyperplane H ⊂ Pn given
by a0x0 + . . . + anxn and an absolute value v we define the Weil function

λv,H(P ) = − log
|a0x0 + . . . + anxn|v
max{|x0|v, . . . , |xn|v}

, P = (x0 : . . . : xn).

Let k be a number field, S a finite set of absolute values, H1, . . . , Hq, q ≥ n+2
hyperplanes in general position on Pn, and ǫ > 0. Then

q
∑

j=1

∑

v∈S

λv,Hj
(P ) ≤ (n + 1 + ǫ)h(P ),

except those P lying in a finite collection of hyperplanes (depending on {Hj}
and ǫ.)

The corresponding statement for holomorphic curves is called Cartan’s
Second Main Theorem (in an improved form, due to Vojta): Let H1, . . . , Hq, q ≥
n + 2 be hyperplanes in general position on Pn, and ǫ > 0. Then

q
∑

j=1

m(r,Hj, f) :=
q

∑

j=1

1

2π

∫ π

−π
λ(r,θ),Hj

(f) dθ ≤ (n + 1 + ǫ)hf (r),

for all non-constant holomorphic curves f : C → Pn, except those which lie
in a finite collection of hyperplanes (depending on {Hj} and ǫ.)

A2. A common use of the Second Main Theorem(s) is to prove Picard-
type theorems, that certain equations do not have meromorphic solutions,
or have very few of them. Similarly, theorems on diophantine approximation
can be used to prove that certain diophantine equations have few solutions.
Thus the arithmetic counterpart of the classical Picard’s Theorem is the
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theorem of Thue and Siegel, about integral points on an affine curve of genus
zero. Another example is Borel’s Theorem: if f1, . . . , fq are zero-free entire
functions, and

f1 + . . . + fq = 0,

then some of these functions are proportional. The arithmetic counterpart
is due to Schlickewei.
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A3. We summarize what was said (and a part of what was not) in the
following table, partially taken from Vojta’s book.

Vojta’s Analogy

Function Theory Number Theory
f : C → P1 {y} ⊂ k

r y
θ ∈ [−π, π) a finite set S

log |f(reiθ) − a|−1 v(y − a), v ∈ S
p(f), p ∈ C v(y), v /∈ S

Jensen’s Formula Artin–Whaples Product Formula
Proximity function Weil’s function

Nevanlinna’s characteristic Height on k
Cartan’s characteristic Height on projective space

Selberg–Valiron characteristic Absolute height
Nevanlinna’s SMT Thue–Siegel–Roth Theorem

Cartan’s SMT Schmidt’s Theorem
and its improvement by Vojta and its improvement by Vojta

Borel’s Theorem van der Poorten’s Theorem
Selberg–Valiron SMT Wirsing’s Theorem

Picard’s Theorem Thue–Siegel’s Theorem
Another Picard’s Theorem Faltings Theorem

Borel’s Theorem Schlickewei’s Theorem
Precise error term in SMT Lang’s conjecture

SMT with the ramification term ???
its corollary for 3 functions abc-conjecture

?? (some arguments of Osgood?) Roth’s proof
?? Ahlfors’ proof of Cartan’s SMT Schmidt’s proof
Cartan’s and Nevanlinna’s proofs ???

(Lemma on log derivative) ???
Curvature ???

moving target generalizations even better analogy?
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