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Consider two polygons in the plane, and let f be a conformal map of one
onto another sending vertices to vertices. Suppose that interior angles at the
corresponding vertices are equal. Then f(z) = az + b.

To prove this statement, consider the Schwarz–Christoffel maps from the
upper half-plane onto our polygons. Since the polygons are conformally
equivalent both maps must be of the form

fj(z) = Cj

∫ z

z0

n∏
k=1

(ζ − ak)
αk−1dζ + C ′

j, j ∈ {1, 2}, (1)

with the same sequences ak and αk, and the statement immediately follows.
Christoffel–Schwarz formula also proves the existence of a polygon with

given angles and in given conformal class, provided that the following relation
for the angles holds

n∑
k=1

αk = n− 2. (2)

This condition ensures that fj(∞) in (1) is not a corner. Notice that αk can
be arbitrarily large, so our polygons are not always subsets of the plane.

By gluing a polygon to its reflected copy isometrically along the sides, we
obtain a sphere with Euclidean metric with conic singularities. A general-
ization of the previous statement is the following:

For any given points a1, . . . , an on the Riemann sphere, and any positive
numbers α1, . . . , αn satisfying (2) there exists a conformal metric of zero
curvature on C\{a1, . . . , an} with conic singularities at aj with angles 2παj.
This metric is unique up to scaling.
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This is also true for any compact Riemann surface S, if one replaces 2 in
(2) by the Euler characteristic χ(S).

Similar statement holds for metrics of constant negative curvature on any
Riemann surface:

Theorem. (Picard) For any given points a1, . . . , an on a compact Riemann
surface S, and any positive numbers α1, . . . , αn satisfying

χ(S) +
n∑

k=1

(αj − 1) < 0, (3)

there exists a conformal metric of constant curvature −1 on S\{a1, . . . , an}
with conic singularities at aj with angles 2παj. This metric is unique.

Notice that Picard’s theorem implies the Uniformization theorem for com-
pact Riemann surfaces, which corresponds to n = 0, and uniformization
theorem for 2-dimensional orbifolds, which corresponds to integer αj.

In this lecture we consider metrics of constant positive curvature with
conic singularities on compact surfaces, for which the corresponding questions
are wide open. Only for small angles we have a complete result:

Theorem. (Feng Luo and Gang Tian [8]) A metric of curvature 1 on the
sphere with prescribed singularities ak and angles 2παk, αk ∈ (0, 1) exists if
and only if

0 < 2 +
n∑

k=1

(αj − 1) ≤ 2min
j
{αj},

and such a metric is unique.

A necessary condition on the angles which corresponds to the Gauss–
Bonnet theorem, in the case of positive curvature reads:

χ(S) +
n∑

k=1

(αj − 1) > 0. (4)

For an n-tuple of positive numbers

α = (α1, . . . , αn)

we denote by Sphg,n(α) the set of Riemannian metrics of curvature 1 on a
surface of genus g with n conic singularities with angles 2παj. (Conformal
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structure is not prescribed!) A natural topology on Sphg,n(α) is given by
bi-Lipschitz distance.

Theorem 1. (Mondello and Panov [10]) For g ≥ 1, Sphg,n(α) ̸= ∅ if and
only if (4) holds.

The situation for the sphere is much more complicated:

Theorem 2. (Mondello and Panov [9]) If Sph0,n(α) ̸= ∅, then (4) holds,
and in addition

d1(α− 1,Zn
o ) ≥ 1, (5)

where 1 = (1, . . . ,1), d1 is the ℓ1 distance, and Zo is the odd lattice, the set
of vectors in Zn with odd sum of coordinates.

Conversely, if (4) and the strict inequality in (5) hold, then Sph0,n(α) ̸= ∅.

Theorem 3. (Eremenko [4]) Suppose that (4) holds, and that we have equal-
ity in (5). Then Sph0,n(α) ̸= ∅ if and only if the following conditions are
satisfied:

Suppose that αm+1, . . . , an are integers while α1, . . . , αm are not.

a) There exists a choice of signs ϵj ∈ {±1} and an integer k′ ≥ 0 such that

m∑
j=1

ϵjαj = k′, (6)

and the number

k′′ :=
n∑

j=m+1

αj − n− k′ + 2 is non-negative and even. (7)

b) Let

c := (α1, . . . , αm, 1, . . . , 1), where 1 is repeated k′ + k′′ times.

If c = ηb where where coordinates of b are integers with greatest common
factor 1, then

2 max
m+1≤j≤n

αj ≤
q∑

j=1

bj, where q = k′ + k′′ +m.
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(If the coordinates of c are incommensurable, then condition b) is void).

Example 1. If S is the sphere, and all αj are integers, then the necessary
and sufficient condition for existence of the metric is

2d− 2 :=
n∑

j=1

(αj − 1) is even, and max
j

αj ≤ d.

So we know when Sphg,n(α) ̸= ∅. Since every metric defines a conformal
structure, we have the forgetful map

F : Sphg,n(α) → Modg,n

where Modg,n is the moduli space of conformal structures on a surface of
genus g with n punctures.

In terms of this forgetful map, our main question is what is its image and
valence. We list some general results and conjectures. Consider the set of
real numbers

Critn,α = {∥αI∥1 − ∥αcI∥1 + 2b : I ⊂ {1, . . . , n}, b ∈ Z≥0}

and define the non-bubbling parameter

NBg,n,α = dR(χ(S\A),Critn,α),

where A is a set of n points, and dR is the distance on the real line.

Theorem 4. (Mondello and Panov [10]) If NBg,n,α > 0 then the forgetful
map is proper.

This means that metrics cannot degenerate unless the conformal structure
degenerates. Without the non-bubbling condition, such a degeneration is
possible.

Under the condition NBg,n,α > 0, the forgetful map has a degree, and
this degree has been computed by Chen and Lin. In particular, the forgetful
map is finite-to-one when NB > 0.

Chen and Lin use the generating function

g(x) = (1 + x+ x2 + . . .)−χ(S)+n

n∏
j=1

(1− xαj).
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Suppose that

g(x) = 1 + b1x
n1 + b2x

n2 + . . .+ bkx
nk + . . . ,

(this defines the numbers bk).

Theorem 5. (Chen and Lin [2]) Let us define the integer k by

2nk < χ(S) +
n∑

j=1

(αj − 1) < 2nk+1

this is well defined when NBg,n,α > 0). Then the degree of the forgetful map
is

k∑
j=0

bj.

Example 2. For a torus with one singularity with angle 2πα, the degree is
defined when α is not an odd integer. It is equal to m where 2m is the closest
even integer to α. When α = 2m, then the forgetful map has m preimages
for every generic point. In fact the forgetful map is complex analytic in this
case, so the number of preimages is equal to the degree.

Three main methods are used to study metrics of constant positive cur-
vature with conic singularities:

a) Synthetic geometry (partition of the surface into geodesic triangles, appli-
cation of spherical trigonometry etc.)

b) The direct study of the non-linear PDE

∆u+ e2u = 2π
n∑

j=1

(αj − 1)δaj ,

where ds = eu|dz| is the line element of the metric in a conformal local
coordinate.

c) The study of the linear Fuchsian ODEs associated with the problem.

We explain the third method. A small smooth piece of a surface of con-
stant curvature 1 is isometric to a region on the standard sphere, this iso-
morphism is complex analytic, so by an analytic continuation we obtain a
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(multi-valued) developing map

f : S\A → C,

where A is the set of singular points. The monodromy of this map consists
of rotations of the sphere, so the Schwarzian derivative

f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

= R(z) (8)

is single valued. This R(z) is actually a quadratic differential on S. Local
behavior at a singularity implies that all poles of R are double with principal
parts

1− α2

2(z − a)2
,

where 2πα is the angle at the singularity a. To determine R completely one
has to know the residues of R(z)dz which are called accessory parameters.
They should be found from the condition that the monodromy of f belongs
to PSU(2) ∼ O(3).

The differential equation (8) is equivalent to a linear differential equation:
setting f = w1/w2 we obtain that wj are two linearly independent solutions
of

w′′ +
R

2
w = 0. (9)

So to find the metrics of curvature 1 with prescribed angles 2παj at the sin-
gularities aj one has to solve the accessory parameter problem: to determine
the accessory parameters from the condition that the projective monodromy
of (9) is unitarizable that is conjugate to a subgroup of PSU(2).

This problem reminds the early approach of Klein and Poincaré to the
uniformization theorem: in a second order Fuchsian equation with prescribed
principal parts at the poles, the problem was to determine accessory parame-
ters so that the monodromy group is conjugate to a subgroup of PSL(2,R).

In general, the preimage of the forgetful map can be infinite. This occurs
when the monodromy of the developing map is a subgroup of the unit circle.
Such metrics are called co-axial.

Metrics on the sphere for which equality holds in (5) are always co-axial.
For a co-axial monodromy, there is always an infinite set of transfor-

mations in PSL(2) which commute with all monodromy transformations.
Composing transformations of this set with the developing map, we obtain
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an infinite family of metrics with the same angles in the same conformal class.
This family is actually one-dimensional in the case of non-trivial monodromy,
and three-dimensional in the case of trivial monodromy.

Let us call two metrics with developing maps f1, f2 equivalent if f1 = ϕ◦f2
for some ϕ ∈ PSL(2).

Conjecture 1. For any given angles and any given point in Modg,n the
number of equivalence classes of metrics in the preimage of this point under
the forgetful map is finite.

In general, Sphg,n(α) has no natural complex analytic structure such that
the forgetful map is analytic.

One case is known when such structure exists, and in fact Sphg,n(α) and
F are algebraic in this case.

Example 1, continued. For metric on the sphere with all αj integers, the
monodromy is trivial, and the developing map is a rational function, and
the singularities are critical points of this rational function of multiplicities
mj = αj − 1. So the problem in this case becomes: how many equivalence
classes of rational functions exist with prescribed critical points (of given
multiplicity)?. The answer is called the Kostka numberK(m1, . . . ,mn), there
is no simple analytic expression for it but it can be simply described as the
number of ways to fill a rectangular table of size 2× (2d− 2) with numbers
1, . . . , n so that the number k occurs mk times, and so that the entries are
strictly increasing in columns and non-decreasing in rows.

When mk = 1 for all k ∈ {1, 2d− 2}, we have an explicit expression

K(1, . . . , 1) =
(2d− 2)!

d(d− 1)!
,

the d-th Catalan number.

Theorem 6. (I. Scherbak) For given integers m1, . . . ,mn such that

n∑
k=1

mk = 2d− 2

there is at most K(m1, . . . ,mn) equivalence classes of rational functions with
critical points of order mk at the prescribed points ak. For generic points ak,
there are precisely K(m1, . . . ,mn) classes.
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This has been generalized to the case of the sphere with any number of
singularities, all but 3 of them with integer angles.

Theorem 7. (Eremenko and Tarasov [6]) If α1, α2, α3 are not integers, while
α4, . . . , αn are integers, then the necessary and sufficient conditions of exis-
tence on a non-coaxial metric on the sphere with these angles are (4) and (5)
with strict inequality. The number of these metrics with given singularities
is at least 1 and at most α1 . . . , αn, and it is equal to α4 . . . αn for generic
position of singularities.

This theorem contains all cases when the forgetful map is known to
be complex analytic with respect to an appropriate complex structure on
Sphg,n(α).

Example 3. Consider the angles 2π(1/2, 1/2, 1/2,m) on the sphere, where
m ≥ 2 is an integer. Theorem 7 implies that there are m metrics with these
angles for generic location of singularities. These metrics can be lifted on a
torus via the standard 2-to-1 ramified covering, and the resulting metric on
the torus will have only one singularity with angle 4πm. One can show that
all equivalence classes of metrics of positive curvature with one singularity on
a torus can be obtained by such liftings. According to Theorem 7, there are
m such classes for generic singularities. This can be compared with Theorem
5, which gives m as the degree of the forgetful map in this case.

There is a complete description of metrics on the sphere with 3 singu-
larities: each such metric is obtained by gluing a spherical triangle with its
reflection, and all spherical triangles are described by the following

Theorem 8. (Klein and Eremenko [3]) 1. If none of the α1, α2, α3 is an
integer then the necessary and sufficient condition of existence of a spherical
triangle with angles παj is

cos2 πα1 + cos2 πα2 + cos2 πα3 + 2 cosπα1 cos πα2 cos πα3 < 1.

A triangle with such angles is unique.

2. If α1 is an integer while α2, α3 are not then a spherical triangle with angles
παj exists if and only if either α2+α3 or |α2−α3| is an integer m of opposite
parity to α2, and m ≤ α1 − 1. For any such angles a 1-parametric family of
triangles exists.
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3. If two of the αj are integers then all three are integers, and the necessary
and sufficient condition of existence of a spherical triangle with angles παj

is that α1 + α2 + α3 is odd, and

max{α1, α2, α3} ≤ (α1 + α2 + α2 − 1)/2.

There is a two-parametric family of triangles with given angles in this case.

There are only few cases when all questions stated in the beginning were
completely answered: besides those already listed the case of torus with one
singularity with angle 6π is completely understood. In this last case we have

Theorem 9. (Lin and Wang) Depending on the conformal modulus of the
torus, there is one or none classes of conformal metrics of curvature 1 with
one conic singularity with angle 6π. The curve in the τ plane separating
these two possibilities is described by the equation

Im
η1 + ω1ej
η2 + ω2ej

= 0, j ∈ {1, 2, 3}. (10)

In particular, there is such a metric on a hexagonal torus, and no metric on
the square one.

This was first proved in [7] with the PDE methods. Then a much shorter
proof was proposed in [1].

We describe the idea of this proof. Equation (9) in this case is the Lamé
equation

w′′ − (2℘(z) + λ)w = 0.

This equation can be explicitly solved, which gives

f(z) = e2zζ(a)
σ(z − a)

σ(z + a)
, where λ = ℘(a).

are pure imaginary.A simple computation shows that the monodromy is uni-
tary iff one complex linear equation

Aa+Ba+ ζ(a) = 0, (11)

holds, where

A =
π

4ω2
1Imτ

− η1
ω1

, and B = − π

4|ω1|2Imτ
.
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These are unique constants which make the LHS of (11) periodic.
Equation (11) has another interpretation. The Green function G of the

torus is defined as the real solution of

∆G = −δ + 1/|T |,

where δ is the delta-function, and |T | is the area of the torus with respect to
the flat metric. The question is how many critical points can G have? The
answer is 3 or 5, depending on the conformal modulus of the torus, and it is
amazing that this answer was obtained only in 2012!

One can show that the gradient of G is exactly the LHS of (11).
Notice that the LHS of (11) is an odd function, and every odd periodic

function is zero at the half-periods, so (11) always has 3 solutions which are
called trivial.

Equation (11) can be re-written as the fixed point equation of the anti-
holomorphic map

a 7→ −(ζ(a) + Aa)/B =: g(a).

This is where (anti)-holomorphic dynamics comes into play. Function g is
anti-holomorphic, so its second iterate is holomorphic, and Fatou’s theorem
from holomorphic dynamic applies. Since the derivative ℘−A has two zeros
on the torus, Fatou’s theorem implies that there are at most two attracting
fixed points.

On the other hand, consider the map ϕ(z) = z − g(z) : T → C. It has a
degree and looking at preimage of ∞ we conclude that the degree is −1. This
map preserves or reverses orientation, depending on the sign of its Jacobian.
It is easy to see that J = 1 − |∂g|2, so the fixed points in the region where
orientation is preserved are attracting. If N+ and N− are the numbers of
orientation preserving and reversing zeros of ϕ, then the degree formula gives
N+ −N− = −1, while Fatou theorem implies that N+ ≤ 2. This shows that
the total number of zeros is

N = N+ +N− = 2N+ + 1 ≤ 5,

as advertised.
Trivial solutions do not give any metrics, while non-trivial are a,−a (since

the function is odd) and they give one metric.
The separating line (10) is obtained from the condition that g has a

neutral fixed point.
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To conclude, we briefly mention the original problem of classification of
polygons. By gluing a polygon to its reflection we obtain a metric with a
special property: its conic singularities lie on a circle of the Riemann sphere,
and the metric itself is symmetric with respect to the reflection in this cir-
cle. When all angles are integers, we have a remarkable fact: each class of
metrics whose singularities lie on a circle contains exactly one symmetric rep-
resentative [5]. This fact does not generalize to the metrics with non-integer
angles.
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