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Value distribution of a rational function f is controlled by its degree d,
which is the number of preimages of a generic point. If we denote by n(a)
the number of solutions of the equation f(z) = a, counting multiplicity, in
the complex plane C, then n(a) ≤ d for all a ∈ C with equality for all a with
one exception, namely a = f(∞). The number of critical points of f in C,
counting multiplicity, is at most 2d − 2.

Nevanlinna theory generalizes these facts to transcendental functions f :
C 7→ C. The main tool is the characteristic function Tf (r) which replaces
the degree in the case when f is transcendental.

1. Jensen’s formula

Let us denote by n(r, a) = nf (r, a) the number of solutions of the equation
f(z) = a in the disk {z : |z| ≤ r}, counting multiplicity. Here a ∈ C. By the
Argument Principle and the Cauchy–Riemann equations we have for a 6= ∞:

n(r, a) − n(r,∞) =
1

2πi

∫

|z|=r

f ′

f − a
dz =

r

2π

d

dr

∫ π

−π
log |f(reiθ) − a| dθ. (1)

We divide by r and integrate with respect to r, assuming for a moment that
f(0) 6= a,∞ and using the notation1

N(r, a) =
∫ r

0

n(t, a)

t
dt

∗Supported by NSF
1If f(0) = a this has to be regularized in the following way:

N(r, a) =

∫ r

0

{n(t, a) − n(0, a)}t−1dt + n(0, a) log r.
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to obtain

1

2π

∫ π

−π
log |f(reiθ) − a| dθ = log |f(0) − a| + N(r, a) − N(r,∞). (2)

This is the Jensen formula.2

Let us sketch another proof of it. It is enough to prove the formula with a = 0. First we verify the
formula for functions which have no zeros and no poles in {z : |z| ≤ r}. In this case, Jensen’s formula is
just the average property of harmonic functions. To derive the general case, consider the factors

gc(z) =
r(z − c)

r2 − cz
, |c| < r.

This function has a single simple zero at z = c and satisfies |g(z)| = 1 for |z| = r. Let c1, . . . , cn and
b1, . . . , bm be the zeros and poles of f in {z : |z| < r}, repeated according to their multiplicities. Then

g(z) = f(z)

∏m

k=1
gbk

(z)
∏n

k=1
gck

(z)

is free of zeros and poles. Applying the Jensen formula to g we obtain

1

2π

∫ π

−π

log |f(reiθ)| dθ = log |f(0)| +

n
∑

k=1

log
r

|ck|
−

m
∑

k=1

log
r

|bk|
.

Now we integrate by parts:

∫ r

0

n(t, 0)

t
dt =

∫ r

0

n(t, 0) d log t

= n(r, 0) log r −

∫ r

0

log t dn(t, 0)

=

n
∑

k=1

log
r

|ck|
.

Jensen’s formula is closely related to Green’s formula which we write in
the form

∫ ∫

|z|<r
∆u dm =

∫

|z|=r

∂u

∂n
ds. (3)

Here dm is the area element, ds is the length element, and ∂/∂n = ∂/∂r is
the differentiation in the direction of the outer normal. If u = log |f |, the
Laplacian ∆u has to be interpreted as a distribution:

∆ log |z| = 2πδ,

2If f(0) = a and f(z)− a = czm + . . . , c 6= 0, the term log |f(0)− a| has to be replaced
by log |c|, and the definition of N(r, a) in the footnote on the previous page has to be used.
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where δ is the unit charge at 0. Then (3) coincides with (1). Dividing by r
and integrating (3) we obtain

∫ π

−π
u(reiθ)dθ =

∫ r

0

dt

t

∫ ∫

|z|≤t
∆udm + u(0). (4)

This makes sense when u is a difference of two subharmonic functions and
u(0) 6= 0,∞.

2. First main theorem of Nevanlinna

Using the notation x+ = max{x, 0}, we define

mf(r,∞) =
1

2π

∫ π

−π
log+ |f(reiθ)| dθ, (5)

and

mf(r, a) = m(f−a)−1(r,∞) =
1

2π

∫ π

−π
log+ 1

|f(reiθ) − a|
dθ,

Using the relation

log+(|x ± y|) ≤ log+ |x| + log+ |y| + log 2 (6)

one obtains
mf (r,∞) = mf−a(r,∞) + O(1),

so (2) can be rewritten as

m(r,∞) + N(r,∞) = m(r, a) + N(r, a) + O(1), r → ∞. (7)

This is the first main theorem. It justifies the definition of the Nevanlinna
characteristic:

Tf (r) := mf (r,∞) + Nf (r,∞).

First main theorem says that the sum of two non-negative terms N(r, a) +
m(r, a) is roughly independent of a. The first term counts a-points, and
the second measures the average proximity of f(z) to a on the circle |z| =
r. N(r, a) and m(r, a) are called the counting function and the proximity
function, respectively.

Exercise 1. For every non-constant f , Tf (r) → ∞ as r → ∞. If f is a
rational function of degree d, then

Tf (r) = d log r + O(1). (8)
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If f is transcendental, then

Tf (r)/ log r → ∞.

Exercise 2*. (Goldberg) For f(z) = ez, compute T (r) and N(r, 1), and
estimate m(r, 1) as accurately as you can. What does the First main theorem
give for this case?

Algebraic properties of the characteristic are similar to those of the degree
of a rational function. Using (6) and

log+ |xy| ≤ log+ |x| + log+ |y|,

and counting the poles, we obtain

a) Tfn = nTf ,

b) Tfg ≤ Tf + Tg,

c) Tf+g ≤ Tf + Tg + O(1),

d) T1/f = Tf + O(1).

The last property is Jensen’s formula.

Exercise 3***. Let K be the field of rational functions, and T : K → R+ a
function which satisfies a)-d) without the O(1) terms, and Tconst = 0. Prove
that such T is proportional to the degree.

Exercise 4***. (Mokhonko) Let R(w, z) be a rational function of degree
d with respect to w, whose coefficients are meromorphic functions satisfy-
ing T (r) = O(V (r)), for some positive increasing function V . Let f be a
meromorphic function. Set g(z) = R(f(z), z) and prove that

Tg(r) = dTf (r) + O(V (r)).

Mokhonko’s proof is purely algebraic. It uses only a)-d) above, but does
not use the definition of T or any properties of meromorphic functions. It
extends to arbitrary fields with a function T satisfying a)-d).

3. First main theorem in the form of Ahlfors and Shimizu

We explain the version of the First Main Theorem which was found by
Shimizu and Ahlfors independently of each other.
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Let dρ be a probability measure in C. We integrate (2) with respect to
a ∈ C against dρ and obtain

1

2π

∫ π

−π
U(f(reiθ)) dθ = U(f(0)) +

∫ ∫

C

N(r, a) dρ(a) − N(r,∞), (9)

where
U(w) =

∫ ∫

C

log |w − a| dρ(a). (10)

If we choose dρ to be the normalized spherical area element that is

dρ(w) =
1

π(1 + |w|2)2
dudv, w = u + iv,

then changing the order of integration shows

T̊ (r) :=
∫ ∫

C

N(r, a) dρ(a) =
∫ r

0

A(t) dt

t
, (11)

where

A(r) =
1

π

∫

|z|≤r

|f ′|2

(1 + |f |2)2
dm, where dm is the Euclidean area element in C.

The geometric interpretation of A(r) is the area of the disk |z| ≤ r with
respect to the pullback of the spherical metric, or in other words, the average
covering number of the Riemann sphere by the restriction of f to the disk
|z| ≤ r. The function T̊ (r) defined in (11) is called the Ahlfors–Shimizu
characteristic of f . We will see in a moment that

T̊ (r) = T (r) + O(1). (12)

Now the integrals in (10) can be evaluated:

U(w) =
1

π

∫ ∫

C

log |w − a|

(1 + |a|2)2
dm(a)

= log
√

1 + |w|2 = log([w,∞])−1,

where [, ] stands for the chordal distance on the Riemann sphere.3 Thus the
first term in (9) is

m̊(r,∞) :=
1

2π

∫ π

−π
log

1

[f(reiθ),∞]
dθ.

3The first step in this evaluation is
∫ π

−π
log |w−eiθ|dθ = 2π log+ |w|, which follows from

Jensen’s formula. In our normalization, the diameter of the Riemann sphere is 1.
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and in general we can define

m̊(r, a) :=
1

2π

∫ π

−π
log

1

[f(reiθ), a]
dθ, a ∈ C.

This is called the proximity function in the sense of Ahlfors–Shimizu It be-
comes large when f is close to a in the average on the circle |z| = r. It is
important that the proximity function is non-negative. With these notations
(9) can be rewritten as

N(r,∞) + m̊(r,∞) = T̊ (r) + m̊(0,∞).

It is easy to see that m̊(r,∞) = m(r,∞) + O(1), so (12) follows. Now we
notice that T (r) does not change if we replace f by L◦f where L is a rotation
of the sphere, which is a conformal automorphism which preserves spherical
distance. Thus we obtain

N(r, a) + m̊(r, a) = T̊ (r) + m̊(0, a) = T̊ (r) + O(1), r → ∞, a ∈ C. (13)

This is the First Main Theorem (FMT) of Nevanlinna in the form of Ahlfors–
Shimizu. It implies by the way that

N(r, a) ≤ T̊ (r) + O(1), r → ∞, for every a ∈ C, (14)

because the proximity function is non-negative. When compared with (11)
this shows that the points a for which N(r, a) is substantially less then T̊ (r)
should be exceptional.

We have seen that the difference between T (r) and T̊ (r) is insignificant,
and they can be replaced by each other in most statements.

4. Gauss–Bonnet Formula

Here we give a differential-geometric interpretation of Jensen’s formula.
It explains what is going on in the next section, though the next section can
be read independently of this one.

A (Riemannian) metric is an assignment of a positive definite quadratic form to each tangent space.
These quadratic forms can be used to measure angles and lengths of curves. Two metrics are called
conformally equivalent if they are proportional. (The positive coefficient of proportionality depends on
the point). We will call a metric simply conformal if it is conformally equivalent to the standard metric
on the plane. Thus a conformal metric is locally described as

p2(z)|dz|2,
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where p is a positive smooth function. It gives the length of a curve γ

∫

γ

p(z) |dz|

and the area of a set E
∫ ∫

E

p2(z) dxdy.

The (Gaussian) curvature of a metric is defined by

κ = −
∆log p

p2
.

This is a function of a point. The integral curvature of a set E is

−

∫

E

∆log p dxdy.

A. D. Alexandrov and his co-authors developed a theory of surfaces with minimal smoothness assumptions
on the metric. In this theory, p can be any non-negative function for which ∆ log p is a (signed) Borel
measure, and which is integrable on every line segment. In other words,

p = eu,

where u is a difference of two subharmonic functions. In this setting, Green’s formula (3) becomes the
Gauss–Bonnet formula for the disc |z| ≤ r. It relates the integral curvature of the disc and the geodesic
curvature of its circumference.

Exercise 5. (Gauss–Bonnet theorem for the sphere). Consider a conformal metric on the sphere C, and
prove that the integral curvature of the whole sphere is 4π.

Exercise 6. Check that the metric
2|dz|

1 + |z|2

has curvature 1, and the metric
2|dz|

1 − |z2|
, |z| < 1

has curvature −1.

We only need a special case of Alexandrov’s surfaces, surfaces with conic singularities. The metric
on such surfaces is smooth and has a constant curvature, except the isolated singularities. Each isolated
singularity has a neighborhood isometric to a neighborhood of the vertex of a cone.

The simplest example is a convex polyhedron in R3 with the intrinsic metric induced from R3. The
metric is of zero curvature everywhere except the vertices. Each vertex contributes an atom to the integral
curvature, of mass 2π − α, where α is a total angle around the vertex.

In our situation, let p(w)|dw| be a smooth metric in a neighborhood of 0, and let w = f(z) be an
analytic function with zero of order n at 0. Then the pull back metric has the form

p(f(z))|f ′(z)||dz|

and the integral curvature −∆log p has an atom at 0 of mass 2π(1 − n), and the total angle around 0 in
the pull-back metric is 2πn.
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Using these considerations, let us prove a weak version of the Second main theorem. Let n1(r) be
the counting function of critical points of a meromorphic function f , and

N1(r) =

∫ r

0

n1(t)

t
dt, (15)

as usual.
We will prove that

N1(r) ≤ (2 + o(1))T (r), (16)

when r → ∞, r /∈ E, where E is an exceptional set of finite length.
Proof. The pull-back of the spherical metric is

p(z)|dz| =
2|f ′||dz|

1 + |f |2

has curvature 1 away from the critical points and each critical point contributes −2πm, where m is the
multiplicity of the critical point. So we have

∫ ∫

|z|<t

∆log p dxdy = −

∫ ∫

|z|<t

p2 dxdy + 2πn1(t),

in the sense of distributions. Dividing by t and integrating from 0 to r, we obtain in the RHS

−4πT (r) + 2πN1(r),

and it remains to show that the LHS is at most o(T (r)). This estimate is crucial for the whole business.
According to the Gauss–Bonnet (Jensen) formula (3), this LHS is a constant times

1

2π

∫ π

−π

log
|f ′|

1 + |f |2
dθ.

First we apply the inequality between arithmetic and geometric averages, and obtain that the last expres-
sion is at most

log
1

2π

∫ π

−π

|f ′|

(1 + |f |2)
dθ =: log

1

2
λ(r).

Now we notice that
λ(r) = (rT ′)′/r,

which follows from (11), and use the following lemma

Lemma. If g is an increasing function on [0,∞), tending to +∞, and ǫ > 0,
then g′(x) ≤ g1+ǫ(x) for all x /∈ E, where E is a set of finite measure.

Proof. Let E be the set where g′(x) ≥ g1+ǫ(x), then

∫

E
dz ≤

∫

E

g′(x)

g1+ǫ
(x)dx =

∫ dy

y1+ǫ
< ∞.

Applying this lemma twice we conclude that λ(r) < rT (r)1+ǫ, r /∈ E, which proves (16) with the

error term log rT (r).
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5. The Second Main Theorem of the value distribution theory

To formulate the main result of the value distribution theory we recall
that n1(r) = n1,f (r) denotes the number of critical points of a meromorphic
function f in the disk |z| ≤ r, counting multiplicity. It is easy to check that

n1,f (r) = nf ′(r, 0) + 2nf (r,∞) − nf ′(r,∞). (17)

Now we apply the averaging as above:

N1(r) = N1,f(r) :=
∫ r

0

n1(t) dt

t
.

If 0 is a critical point, the same regularization as before has to be made. The
Second Main Theorem (SMT) says that for every finite set {a1, . . . , aq} ⊂ C

we have
q
∑

j=1

m(r, aj) + N1(r) ≤ 2T (r) + S(r), (18)

where S(r) = Sf (r) is a small error term, Sf (r) = O(log(rT (r))) when
r → ∞, r /∈ E, where E ⊂ [0,∞) is a set of finite measure4. The SMT may
be regarded as a very precise way of saying that the term m(r, a) in the FMT
(13) is relatively small for most a ∈ C. It is instructive to rewrite (18) using
(13) in the following form. Let N(r, a) be the averaged counting function of
distinct solutions of f(z) = a, that is this time we don’t count multiplicity.
Then

∑

j N(r, aj) ≤
∑

j N(r, aj) + N1(r) and we obtain

q
∑

j=1

N(r, aj) ≥ (q − 2)T (r) + S(r). (19)

Now Picard’s theorem is an immediate consequence: if three values a1, a2 and
a3 are omitted by a meromorphic function f , then Nf (r, aj) ≡ 0, 1 ≤ j ≤ 3,
so the left hand side of (19) is zero and we obtain Tf (r) = Sf (r), which
implies that f is constant. Similarly, if the three equations f(z) = aj have
only finitely many solutions, we conclude that f is rational. Here is a more
refined

4In fact S(r) has more precise estimate. Recently there was a substantial activity in
the study of the best possible estimate of this error term. On the other hand Hayman’s
examples (2.8) show that in general the error term may not be o(T (r)) for all r, so an
exceptional set E is really required.
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Corollary from the SMT. Let a1, . . . , a5 be five points on the Riemann
sphere. Then at least one of the equations f(z) = aj has simple solutions.

Indeed, if all five equations have only multiple solutions then N1(r, f) ≥
(1/2)

∑5
j=1 N(r, aj). When we combine this inequality with SMT (18) it im-

plies (5/2)T (r) ≤ 2T (r) + S(r), so f = const.

Exercise 7. a) Suppose that for several values of aj, all solutions of f(z) =
aj have multiplicities at least mj ≥ 2. If some aj is omitted, we can set
mj = ∞. Then

∑

j

(

1 −
1

mj

)

≤ 2.

b) The last inequality has finitely namy solutions. For each of them, there is
a meromorphic function satisfying the stated condition.

For most “reasonable” functions, like Nevanlinna’s functions described
in Theorem (3.1), the SMT tends to be an asymptotic equality rather then
inequality; the most general class of functions for which this is known consists
of meromorphic functions whose critical and singular points lie over a finite
set. This is due to Teichmüller.

Ahlfors’ proof of SMT.

We consider the area element

dρ = p2(w)
dxdy

π(1 + |w|2)2
,

where p is given by

log p(w) :=
q
∑

j=1

log
1

[w, aj ]
− 2 log





q
∑

j=1

log
1

[w, aj ]



+ C, (20)

where [, ] is the chordal distance, and C > 0 is chosen so that

∫ ∫

C

dρ = 1.

(The sole purpose of the second term in the definition of p in (20) is to make
this integral converge, without altering much the behavior near aj which is
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determined by the first term). We pull back this dρ via f and write the
change of the variable formula:

∫ ∫

C

n(r, a)dρ(a) =
∫ r

0

∫ π

−π
p2(w)

|w′|2

(1 + |w|2)2
t dθdt, w = f(teiθ). (21)

Now we consider the derivative of the last double integral with respect to r,
divided by 2πr:

λ(r) :=
1

2π

∫ π

−π

|w′|2

(1 + |w|2)2
p2(w) dθ, w = f(reiθ).

Using the integral form of the arithmetic-geometric means inequality5 we
obtain

log λ(r) ≥
1

π

∫ π

−π
log p(w) dθ−

1

π

∫ π

−π
log(1+|w|2)dθ+

1

π

∫ π

−π
log |w′| dθ. (22)

The first integral in the right-hand side of (22) is approximately evaluated us-
ing (20); the second summand in (20) becomes irrelevant because of another
log:

1

π

∫ π

−π
log p(f(reiθ))dθ = 2

q
∑

j=1

m̊(r, aj) + O(log T (r)).

the second integral equals 4m(r,∞) and the third one is evaluated using
Jensen’s formula (2). This gives

2
q
∑

j=1

m(r, aj)+2 {N(r, 0, f ′) − N(r,∞, f ′) − 2m(r,∞)} ≤ log λ(r)+O log T (r).

The expression inside the brackets is equal to N1(r) − 2T (r) (by definition
of N1 and the FMT (13) applied with a = ∞), so

q
∑

j=1

m(r, aj) + N1(r) − 2T (r) ≤
1

2
log λ(r). (23)

To estimate λ we return to the left side of (21). Using (9) we integrate and
obtain
∫ r

0

dt

t

∫ t

0
λ(s)sds =

∫

C

N(r, a) dρ(a) ≤ N(r,∞) +
1

2π

∫ π

−π
U(f(reiθ))dθ.

5 1

b−a

∫ b

a
log g(x) dx ≤ log

{

1

b−a

∫ b

a
g(x) dx

}
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But U(w) is a potential of a probability measure dρ, so U(w) ≤ log+ |w| +
O(1) and we obtain

∫ r

0

dt

t

∫ t

0
λ(s)sds ≤ T (t) + O(1).

Now the argument is concluded with the application of the Lemma 1 of the
previous section. Applying this lemma twice we conclude that log λ(r) =
S(r) which proves the theorem.

5. Functions in the unit disc

For meromorphic functions in the unit disc, we only need to modify
Lemma 1.

Lemma 2. Let g be an increasing function on [0, 1), tending to +∞, and
ǫ > 0. Then g′(r) ≤ g1+ǫ(r)/(1 − r) for all r /∈ E, where E ⊂ [0, 1) is a set
such that

∫

E

dr

1 − r
< ∞.

Proof. Let E be the set where the opposite inequality holds: g′(r) >
g1+ǫ(r)/(1 − r). Then

∫

E

dr

1 − r
≤
∫

E

g′(r)

g1+ǫ
(r)dr =

∫ dy

y1+ǫ
< ∞.

Thus we get the Second main theorem of the unit disc with the error term

S(r) = O
(

log T (r) + log
1

1 − r

)

, r /∈ E.

As a corollary, we obtain that a holomorphic function f in the unit disc
that omits 0 and 1 must satisfy

Tf (r) =
1

2π

∫ π

−π
log+ |f(reiθ)|dθ = O(log(1 − r)−1).

It is instructive to compare this with Schottky’s theorem which gives the best
possible uniform bound

log |f(reiθ)| = O((1 − r)−1).

Thus by averaging log |f(reiθ)| with respect to θ we gain a log in the upper
estimate.
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An example which shows that Schottky’s bound is best possible is f(z) =

exp
1 + z

1 − z
. For this function, Tf is bounded. The simplest example of a

function omitting 0 and 1 and with T (r) ∼ log(1 − r)−1 is the modular
function.

6. Lemma on the logarithmic derivative

In this section we outline Nevanlinna’s original proof of the Second main
theorem which is based on the Lemma on the logarithmic derivative. This
lemma seems to be a more versatile tool than the Ahlfors technique in the
previous section.

Theorem. (Lemma on the logarithmic derivative).

mf ′/f(r) = Sf(r).

We deduce the Second main theorem from this. We have

Tf ′(r) = Nf ′(r,∞) + mf ′(r,∞)

≤ 2Nf (r,∞) + mf ′f/f(r,∞)

≤ 2Nf (r,∞) + mf(r,∞) + mf ′/f (r,∞) + O(1)

≤ 2Tf (r) + S(r),

so we obtained the result (16) at the end of section 4.
In proving the Second Main theorem, we may assume without loss of

generality that all poles of f are simple. This is achieved by a fractional-
linear transformation. Fix a1, . . . , aq in C, and consider the auxiliary function

g :=
q
∑

j=1

1

f − aj

.

If δ = min |ai−aj | then the inequality |f(z)−aj | ≤ δ/2 cannot hold for more
than one j, so we conclude

q
∑

j=1

mf (r, aj) ≤ mg(r,∞) + O(1) = mf ′g/f ′(r,∞) + O(1)

≤ mf ′g(r,∞) + m1/f ′(r,∞) + O(1)

≤ Tf ′(r) − Nf ′(r, 0) + S(r) ≤ 2Tf (r) − N1(r) + S(r).
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This completes the derivation of the SMT from the Lemma on the logarithmic
derivative.

Corollary. T (r, f ′) ≤ 2T (r, f) + S(r, f).

7. H. Cartan’s generalization to holomorphic curves

Cartan generalized the two main theorems of Nevanlinna theory to holo-
morphic maps f : C → Pn (holomorphic curves). Such maps can be repre-
sented in homogeneous coordinates as f = (f0, . . . , fn) where fj are entire
functions without common zeros. These functions are defined up to a com-
mon factor which is an entire function without zeros. Cartan’s theory deals
with preimages of hyperplanes. A hyperplane A in Pn is described by a linear
homogeneous equation

a0w0 + . . . + anwn = 0. (24)

So f -preimages of this hyperplane are zeros of the linear combination gA =
(f,A) = a0f0 + . . . + anfn.

Let ‖f‖ =
√

|f0|2 + . . . + |fn|2 be the Euclidean norm and consider the

subharmonic function u = log ‖f‖. We have by straightforward computation

∆u = 2‖f‖−4
∑

i<j

|f ′
ifj − fif

′
j |

2 =: 2‖f ′‖2.

The last expression can be called the “Fubini–Study derivative”.
Cartan defines the characteristic by the formula

Tf (r) =
1

2π

∫ π

−π
u(reiθ)dθ − u(0) =

∫ r

0

A(t)

t
dt, (25)

where

A(t) =
1

2π

∫ ∫

|z|≤t
∆u dm =

1

π

∫ ∫

|z|≤t
‖f ′‖2dm.

Equality in (25) holds by Jensen’s formula (4).

Exercise 8. Verify that ‖f ′‖ and T (r) are independent of the homogeneous
representation and depend only on f .

Exercise 9. For n = 1, check that ‖f ′‖ = |f ′|/(1 + |f |2), where f = f0/f1

and f0 and f1 are holomorphic functions without common zeros. So (25)
gives a new characterization of T̊ (r) for n = 1:

T̊ (r) =
1

2π

∫ π

−π
log

√

|f0|2 + |f1|2(re
iθ)dθ.
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For a hyperplane A described by the equation (24) and such that f(C) /∈
A, we introduce the counting function

N(r, A) = N(f,A)(r, 0), (f,A) = a0f0 + . . . + anfn

and the proximity function

m(r, A) =
1

2π

∫ π

−π
(u+log ‖A‖−log |(f,A)|)(reiθ)dθ =

1

2π

∫ π

−π
log

‖f‖‖A‖

|(f,A)|
(reiθ)dθ,

where ‖A‖ = |a0|
2 + . . . + |an|

2. The expression under the logarithm in the
last integral is reciprocal to

|(f,A)|

‖f‖‖A‖
,

which is the sine of the angle between the vector f and the hyperplane A.
This is a distance6 in Pn, so the proximity function has the same interpreta-
tion as in dimension 1: integral of the logarithm of the reciprocal distance.

The First main theorem of Cartan,

m(r, A) + N(r, A) = T (r) + O(1),

is now a direct consequence of the Jensen formula

N(r, A) = N(f,A)(r, 0) =
1

2π

∫ π

−π
log |(f,A)(reiθ)|dθ + O(1).

To state the Second main theorem of Cartan, we define n1(r) as the
number of zeros, counting multiplicity, of the Wronski determinant

W = W (f0, . . . , fn) =

∣

∣

∣

∣

∣

∣

∣

f0 . . . fn

f ′
0 . . . f ′

n

f
(n)
0 . . . f (n)

n

∣

∣

∣

∣

∣

∣

∣

.

Then N1 is defined as in (15).
We say that hyperplanes A1, . . . , Aq are admissible if q > n, and the

intersection of any (n + 1) of these hyperplanes is empty.
Now we can state the Second main theorem:

6Verify that it equals the chordal distance when n = 1.
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Let f be a holomorphic curve in Pn whose image does not belong to any
hyperplane. Let A1, . . . , Aq be an admissible collection of hyperplanes. Then

q
∑

j=1

m(r, Aj) + N1(r) ≤ (n + 1)T (r) + S(r).

When n = 1 this is exactly the same as the SMT of Nevanlinna.

We will use the following properties of the Wronski determinants.

a) W (f0, . . . , fn) 6≡ 0 iff f0 . . . , fn are linearly independent.

b) If (g0, . . . , gn) = (f0, . . . , fn)B, where B is a constant (n + 1) × (n + 1)
matrix, then W (g0, . . . , gn) = det BW (f0, . . . , fn), and

c) W (gf0, . . . , gfn) = gn+1W (f0, . . . , fn), for every function g.

d) L(f0, . . . , fn) := W (f0, . . . , fn)/(f0 . . . , fn)

=

∣

∣

∣

∣

∣

∣

∣

1 . . . 1
f ′

0/f0 . . . f ′
n/fn

f
(n)
0 /f0 . . . f (n)

n /fn

∣

∣

∣

∣

∣

∣

∣

.

e) L(gf0, . . . , gfn) = L(f0, . . . , fn). This follows from c).

Lemma. For a linearly non-degenerate curve f = (f0, . . . , fn), we have

m(r, L(f0, . . . , fn)) = Sf (r).

Proof. Without loss of generality, f0 6≡ 0. By property e), we have
L(f0, . . . , fn) = L(1, f1/f0, . . . , fn/f0), which is by property d) a polynomial
in higher logarithmic derivatives of fj/f0. Applying the Lemma on the log-
arithmic derivative we estimate m(r, L) as O(

∑

j log(rTfj/f0
). But we also

have Tfi/fj
(r) ≤ T (r, f) in view of (25), and the statement of the lemma

follows.

Now we can complete the proof of the Second main theorem.

Denote uj = log |(f,Aj)|. Let I ⊂ {1, . . . , q}, |I| = n + 1. Then

max
j∈I

uj = u + O(1). (26)
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Let WI be the Wronskian of the functions (f,Aj), j ∈ I, and wI = log |WI |.
Then by the property b) of the Wronskians we have wI = w + O(1), where
w = log |W (f0, . . . , fn)|. Now we have

n
∑

j=1

uj = (q − n − 1)u + min
I

∑

j∈I

uj + O(1)

= (q − n − 1)u + min
I

(
∑

j∈I

uj − wI) + w + O(1)

≥ (q − n − 1)u + w − max
I

(wI −
∑

j∈I

uj)
+ + O(1)

≥ (q − n − 1)u + w −
∑

I⊂{1,...,q}

(wI −
∑

j∈I

uj)
+ + O(1).

Now we integrate this from −π to π with respect to θ, use Jensen’s formula
and the Lemma:

q
∑

j=1

N(r, Aj) ≥ (q − n − 1)T (r) + N1(r) − S(r),

which completes the proof.
Cartan’s SMT implies the following generalization of Picard’s theorem:

If a holomorphic curve f → Pn omits n+2 admissible hyperplanes, then the
image of this curve is contained in a hyperplane.

One can deduce from this that a holomorphic curve omitting 2n + 1
admissible hyperplanes must be constant.

Another useful corollary is

Borel’s Theorem. Let g1, . . . , gp be entire functions, and

eg1 + eg2 + . . . + egp = 0.

Then the {gj} can be partitioned into disjoint groups such that for gi and gj

in one group, the difference gj − gi is constant, and the sum of eg
j over each

group is 0.

Remarks on the bibliography. Hayman’s book remains the best introduction to one-dimensional

theory. Cartan’s theory is available in English in Lang’s book. Goldberg and Ostrovski is a very compre-

hensive treatment; the English translation is equipped with a survey of results obtained in one-dimensional

theory up to 2010. The contents of Nevanlinna’s book of 1929 is not completely covered by his later book,

in particular it contains an interesting discussion of (pre-Cartan) theory of holomorphic curves, as well
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as many other applications of the theory. The contents of section 5 of this survey is not contained in

any English book that I know, so I refer to the original article of Ahlfors (1932). Ahlfors’s method of

proving the SMT can be also extended to holomorphic curves (Ahlfors, 1939); this proof is much more

complicated than the proof of Cartan but it gives somewhat more general result. Cartan’s thesis (1928)

is about holomorphic curves in the unit disc. The last chapter of Lang’s book has a detailed exposition of

this work in English.
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