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1. Given 4 generic affine lines in C3 or R3, how

many lines intersect all of them? The answer

over C is 2, over R either 2 or 0.
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H. Schubert, Kalkül der abzählenden Geometrie

1879
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2. Given mp linear p-subspaces in Cm+p, how

many linear m-spaces intersect all of them?

(Previous problem corresponds to m = p = 2.)

Answer (Schubert, 1886):

N(m, p) =
1!2! . . . (p− 1)!(mp)!

m!(m+ 1)! . . . (m+ p− 1)!
.

= the number of standard Young tableaux (SYT)

of size p×m.

Duality: N(m, p) = N(p,m)

N(m,2) = 1
m+1

(

2m
m

)

is the m-th Catalan num-

ber.
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3. Let F (z) = (1 : z : . . . : zd), d = m+ p− 1,

be the rational normal curve in Cm+p. Sup-

pose that the given subspaces are osculating

F at some points zj. This means that the j-

th subspace is spanned by the (row)-vectors

F (zj), F
′(zj), . . . , F

(p−1)(zj).

MTV Theorem. (Mukhin, Tarasov, Varchenko;

former B. & M. Shapiro conjecture). Given mp

p-subspaces osculating F (z) at mp distinct real

points, allm-subspaces intersecting these given

ones are real.

Proof is based on Bethe Ansatz for the Gaudin

quantum integrable model. The m-subspaces

are associated with common eigenvectors of

commuting symmetric operators (Gaudin Hamil-

tonians), hence they are all real.

When p = 2 or m = 2 a proof based on dif-

ferent ideas was earlier given by Eremenko and

Gabrielov.
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Connection with differential equations. Let

U be a vector space of polynomials, {f1, . . . , fp}

a basis in U . Consider the differential equation

with respect to w:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w f1 . . . fp
w′ f ′1 . . . f ′p
. . . . . . . . . . . .

w(p) f
(p)
1 . . . f

(p)
p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The space of solutions coincides with U . This

equation is of the form

apw
(p) + . . .+ a0w = 0, (1)

where aj are polynomials, ap = W (f1, . . . , fp),

the Wronski determinant. U has a real basis

iff all aj are real, up to a common constant

factor. So Theorem MTV is equivalent to:

If in a differential equation (1), all coefficients

are polynomials, and ap is real with all zeros

real, and all solutions of this equation are poly-

nomials, then all aj are real.
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4. Let E(z) be the p × (m + p) matrix with

the rows F (k)(z), k = 0, . . . , p − 1. Let L be a

constant m× (m+ p) matrix whose rows span

the unknown m-subspaces. Then our Schubert

problem is equivalent to the following:

Find L from the conditions

det

(

E(zj)
L

)

= 0, 1 ≤ j ≤ mp. (2)

L is defined up to a change of the basis in

the subspace. We can normalize to make the

rightmost m×m submatrix of L the unit matrix,

so that L = (K, I). Then the determinant in

(2) is the Wronskian determinant W (f1, . . . , fp)

of the polynomials

f1(z) = zm+p−1 − k1,1z
m−1 − . . .− km,1,

f2(z) = zm+p−2 − k1,2z
m−1 − . . .− km,2,

. . . = . . .

fp(z) = zm − k1,pz
m−1 − . . .− km,p.

where K = (ki,j).

5



The Wronski map

The set of p-subspaces in the space of all poly-

nomials of degree m+ p−1 is parametrized by

the Grassmannian G(p,m+ p) and the map

W : G(p,m+ p) → P
mp

is defined by taking the Wronskian determinant

of p polynomials.

Change of a basis in the p-space results in mul-

tiplying their Wronskian by a constant. The

Wronskians, (polynomials of degree mp) con-

sidered up to a constant factor form the pro-

jective space Pmp which is the target of W .

MTV Theorem can be now restated as follows:

A space of polynomials whose Wronskian has

all real roots has a real basis. PreimageW−1(H)

of the set H ⊂ Pmp of the polynomials whose

all roots are real belongs to the real Grassman-

nian GR(p,m+ p).
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5. It follows from MTV that the image of the

real Wronski map

WR : GR(p,m+ p) → RP
mp

contains all real polynomials whose all roots

are real. Does it contain all real polynomials?

The answer depends on m and p.

Theorem (EG). If m + p is odd, then WR is

surjective. Moreover, it has a non-zero topo-

logical degree I(m, p), equal to the number of

shifted standard Young tableaux (SSYT) with

(m+p−1)/2 cells in the top row, (m−p+1)/2

cells in the bottom row, and of height p, where

we assume wlog m ≥ p.
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An explicit expression for I(m, p) (Thrall, 1952):

1!2! · · · (p− 1)!(pm/2)!

(m− p+ 2)!(m− p+ 4)! · · · (m+ p− 2)!

×
(m− 1)!(m− 2)! · · · (m− p+ 1)!
(

m−p+1
2

)

!
(

m−p+3
2

)

! · · ·
(

m+p−1
2

)

!
,

This expression gives a lower estimate for the

number of real preimages of a real polynomial

under the Wronski map.

Theorem (EG). If both m and p are even, then

WR is not surjective.

The case when both m and p are odd remains

open.
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6. To prove the result for odd m+ p, we con-

sider the special case when the real zeros of

the Wronskian satisfy

z1 ≫ z2 ≫ . . .≫ zmp > 0.

This configuration was used by Sottile in 1999

to prove that many Schubert problems, includ-

ing the one in the B. & M. Shapiro conjecture

can have all solutions real.

For such special configurations we compute

the topological degree of WR as the number of

SYT with the rectangular shape m×p, counted

with the signs depending on the number of in-

versions. The result is identified with the num-

ber of SSYT using a purely combinatorial re-

sult of D. White. This gives an explicit formula

for the degree.

Both the domain and the target are non-orientable

but the degree can be properly defined by pass-

ing to orientable coverings.
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To prove the non-surjectivity for both m and

p even, we use certain very special, degener-

ate configurations of zeros of the Wronskian,

for which we can compute the preimage of

the Wronski map explicitly. The zeros of the

Wronskian are located on a circle orthogonal

to the real line, symmetrically with respect to

the real line.
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7. Control of a linear system by static output

feedback.

u ∈ Rm y ∈ Rp

x ∈ Rn

K

A
CB

ẋ = Ax+Bu,

y = Cx,

u = Ky.

Elimination gives

ẋ = (A+BKC)x.

Pole placement Problem: given real A,B,C

and a real polynomial q of degree n, find real

K, so that

det (λI −A−BKC) = q(λ).

11



Using:

a) A coprime factorization

C(zI −A)−1B = D(z)−1N(z),

detD(z) = det (zI − A),

b) The identity

det (I + PQ) = det (I +QP ),

we rewrite the pole placement map as

ψK(z) = det (zI − A−BKC)

= det (zI −A)det (I − (zI −A)−1BKC)

= det (zI −A)det (I − C(zI −A)−1BK)

= detD(z)det (I −D(z)−1N(z)K)

= det (D(z) −N(z)K)

=

∣

∣

∣

∣

∣

D(z) N(z)
K I

∣

∣

∣

∣

∣

,

linear wrt Plücker coordinates. So the pole

placement map is a projection of a Grassmann

variety.
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The Wronski system is defined by [D(z), N(z)] =

E(z), the matrix with the rows F (k)(z).

Then ψK(z) is the Wronski determinant of

f1(z) = zm+p−1 − k1,1z
m−1 − . . .− km,1,

f2(z) = zm+p−2 − k1,2z
m−1 − . . .− km,2,

. . . = . . .

fp(z) = zm − k1,pz
m−1 − . . .− km,p.

where K = (ki,j).

Theorem. (EG) If m+ p is odd, and n = mp,

the real pole placement map is surjective for

systems with m inputs, p outputs and state of

dimension n in a neighborhood of the Wronski

system.

Theorem. (EG) If both m and p are even, q =

z(z2+1)mp/2−1 is not covered by the real pole

placement map for an open set of systems with

m inputs, p outputs and state of dimension mp.
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8. Instead of subspaces osculating the ratio-

nal normal curve F one can consider subspaces

spanned by the points of F as the Schubert

data. This leads to the following

Secant Conjecture. Consider sets

Aj = {zj,1, . . . , zj,p}, 1 ≤ j ≤ mp,

on the real projective line RP1, and suppose

that these sets are separated, that is belong

to some disjoint intervals Ij ⊂ RP1. Let Xj
be the linear p-subspace in Rm+p spanned by

F (zj,k), 1 ≤ k ≤ p. Then each m-space inter-

secting all p-spaces Xj is real.

This is known for p = 2 (EGSV: Eremenko,

Gabrielov, M. Shapiro, Vainshtein).

Mukhin, Tarasov and Varchenko have a partial

result for every m and p, with strong additional

assumptions on the points zj,k.
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9. The method in EGSV is based on the earlier

approach of Eremenko and Gabrielov to the

original Shapiro conjecture.

Consider the Wronski map for p = 2, (f1, f2) 7→

W (f1, f2). Zeros of the Wronskian are critical

points of the rational function f = f1/f2. Thus

finding a 2-space of polynomials with the given

Wronskian is equivalent to finding a rational

function with prescribed critical points.

To each real rational function f whose all crit-

ical points are real we assign a topological ob-

ject which we call a net. The net of f is essen-

tially f−1(RP1), with one distinguished critical

point, modulo orientation-preserving homeo-

morphisms of CP1 preserving RP1 and leaving

the distinguished point fixed. The number of

different nets equals the complex degree of the

Wronski map for p = 2.
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All nets for d = 4

When the zeros of the Wronskian satisfy

z1 ≫ z2 ≫ . . .≫ z2m > 0,

the full preimage of the Wronski map can be

studied by asymptotic analysis, and all possible

nets occur in this preimage. As the (distinct)

critical points move continuously from this po-

sition, the preimages of the Wronski map can-

not collide since they all have different nets!

So they must remain real.
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10. To prove the Secant conjecture for p =

2 we restate it as a problem about rational

functions, using the same Wronski map. The

equivalent statement is:

EGSV Theorem. Consider pairs

Aj = {zj,1, zj,2}, 1 ≤ j ≤ 2d− 2

on the real projective line RP1, and suppose

that these pairs are separated. Then any ra-

tional function of degree d which satisfies

f(zj,1) = f(zj,2) j = 1, . . . ,2d− 2

is equivalent to a real rational function by post-

composition with a fractional-linear transfor-

mation.

This is a special case of the theorem in EGSV,

which allows |Aj| = aj + 1,1 ≤ j ≤ k where

1 ≤ aj ≤ d− 1 and
∑

k

aj = 2d− 2.

.
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To prove EGSV Theorem, we choose disjoint

closed intervals Ij ⊃ {zj,1, zj,2} place a point tj
on each interval Ij and consider the real ratio-

nal function f degree d with critical points tj. If

we leave all critical points except one, tk fixed,

and let tk run over Ik, we easily see that there is

a position of tk which gives f(zk,1) = f(zk,2).

This is because at the extreme positions of

tk, f |Ik is monotone in the opposite directions.

Then the proof is concluded with a well-known

topological lemma.
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11. If the groups of points in the Secant

Conjecture are not separated, some solution

subspaces can be non-real, as computations

of Sottile’s team show. Nevertheless, it was

discovered in these computations that for cer-

tain topological restrictions on the groups of

points, there are lower bounds on the numbers

of real solutions.

In some special cases for p = 2 existence of

such lower bounds was proved by Azar and

Gabrielov. The nets of rational functions are

used in the proof.
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Suppose that 2d− 3 real critical points tj of a

rational function f of degree d are prescribed,

and in addition it is required that f(z1) = f(z2)

at some real points z1, z2. Let M be the num-

ber of points tk on an arc between z1 and z2.

Lower bounds for the number of real solutions

in terms of d and M are obtained.

To do this, a family of real rational functions

with 2d − 3 prescribed real critical points and

one movable real critical point is considered.

As the movable critical point rotates around

RP1 several times, until the function returns to

the original one, there are several positions of

this movable critical point where the equality

f(z1) = f(z2) must be attained, due to the

inequalities on the increment of the argument

of f on the arc between (z1 and z2).
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