MA 165 LESSONS 17-18: RELATED RATES

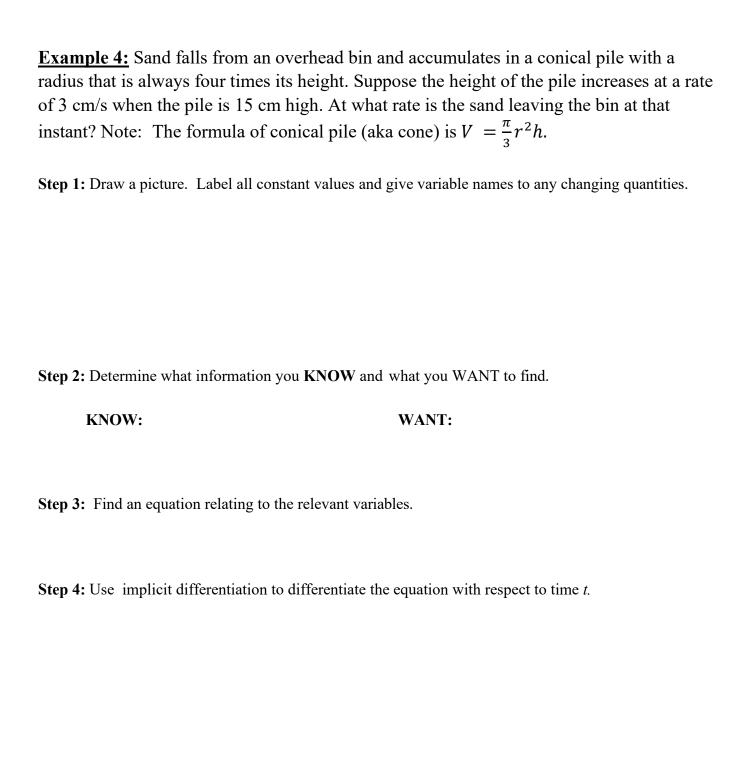
Example 1: If x and y are both functions of t and $x + y^3 = 2$.

(a)	Find $\frac{dy}{dy}$ when	$n\frac{dx}{dt} = -2 \text{ and } y = 1.$
(a)	$\frac{1}{dt}$	$\frac{1}{dt} = 2 \text{ and } y = 1.$

(b)	Find $\frac{dx}{dt}$ when $\frac{dy}{dt} = 3$ and $x = 1$.
-----	---

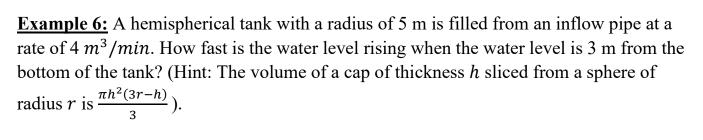
Recipe for Solving a Related Rates Problem

- Step 1: Draw a good picture. Label all constant values and give variable names to any changing quantities.
- Step 2: Determine what information you KNOW and what you WANT to find.
- **Step 3:** Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. **Use your picture!**
- **Step 4:** Use implicit differentiation to differentiate the equation with respect to time t.
- **Step 5:** Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you **WANT**. Do **NOT** substitute before this step!


Some Useful Formulas

Right Triangle	Triangle	Trapezoid
Pythagorean Theorem:	$A = \frac{1}{2}bh$	$A = \frac{1}{2}(a+b)h$
$a^2 + b^2 = c^2$	P = a + b + c	
Rectangular Box	Rectangle	Circle
V = lwh	A = lw	$A = \pi r^2$
S = 2(hl + lw + hw)	P = 2l + 2w	$C=2\pi r$
Right Circular Cylinder $V = \pi r^2 h$	$\frac{\text{Sphere}}{V = \frac{4}{3}\pi r^3}$	Cone 1
$SA = 2\pi rh$	$S = 4\pi r^2$	$V = \frac{1}{3}\pi r^2 h$ $SA = \pi r l + \pi r^2$

Example 2: A spherical balloon is being deflated second. How fast is the radius of the balloon changradius is 12 cm?	1
Step 1: Draw a picture. Label all constant values and give	e variable names to any changing quantities.
Step 2: Determine what information you KNOW and what	at you WANT to find.
KNOW: W	ANT:
Step 3: Find an equation relating to the relevant variables.	
Step 4: Use implicit differentiation to differentiate the equ	uation with respect to time t.
Step 5: Substitute in what you KNOW from Step 2 and are can give you and solve for the quantity you WANT	


Example 3: A cylindrical tank standing upright (with one circular base on the ground) has a radius of 22 cm for the base. How fast does the water level in the tank drop when the water is being drained at 28 cm ³ /sec? Note: The formula right circular cylinder is $V = \pi r^2 h$.
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.
Step 2: Determine what information you KNOW and what you WANT to find.
KNOW: WANT:
Step 3: Find an equation relating to the relevant variables.
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 5: A rope passing through a capstan of water level. The rope is pulled in at a constant above the water. How fast is the boat traveling	rate of 5 ft/s, and the capstan is 4 ft vertically
Step 1: Draw a picture. Label all constant values and g	give variable names to any changing quantities.
Step 2: Determine what information you KNOW and	what you WANT to find.
KNOW:	WANT:
Step 3: Find an equation relating to the relevant variable	oles.
Step 4: Use implicit differentiation to differentiate the	equation with respect to time t.
Step 5: Substitute in what you KNOW from Step 2 and can give you and solve for the quantity you WA	

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW: WANT:

Step 3: Find an equation relating to the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 7: A plane is flying directly away from you at 500 mph at an altitude of 3 miles. (a) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.
Step 2: Determine what information you KNOW and what you WANT to find.
KNOW: WANT:
Step 3: Find an equation relating the relevant variables.
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

n you at 500 mph at an altitude of 3 miles. when it is $\pi/3$? ve variable names to any changing quantities.
hat you WANT to find.
WANT:
quation with respect to time <i>t</i> .
any information that your equation in Step 3 T.

Example 8: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.3 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.
Step 2: Determine what information you KNOW and what you WANT to find.
KNOW: WANT:
Step 3: Find an equation relating the relevant variables.
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 9: A streetlight fastened to the top of a 20-ft high pole. If a 5-ft tall woman walks away from the pole in a straight line over level ground at a rate of 6 ft/s, how fast is the length of her shadow changing when she is 18 ft away from the pole?
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.
Step 2: Determine what information you KNOW and what you WANT to find.
KNOW: WANT:
Step 3: Find an equation relating the relevant variables.
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

Example 10: A lighthouse is 375 m from a straight shoreline. Its light rotates 5 times per minute. How fast is the light spot moving along the shore when it hits a point 175 m away
from the point nearest the lighthouse?
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.
Step 2: Determine what information you KNOW and what you WANT to find.
Step 2. Determine what information you KNOW and what you WANT to find.
KNOW: WANT:
Step 3: Find an equation relating the relevant variables.
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.