Start

MA 165 LESSONS 17-18: RELATED RATES

10/8

Example 1: If x and y are both functions of t and $x + y^3 = 2$. (a) Find $\frac{dy}{dt}$ when $\frac{dx}{dt} = -2$ and y = 1

$\frac{d}{d+}(x+y^3) = \frac{d}{d+}(2)$	$-2+3(1)^{2}\frac{dy}{dt}=0$
$ \cdot\frac{dx}{dt} + 3y^2\frac{dy}{dt} = 0$	$3\frac{dy}{dt} = 2$
$\frac{dx}{dt} + 3y^2 \frac{dy}{dt} = 0$	$\frac{dy}{dt} = \frac{2}{3}$

(b) Find
$$\frac{dx}{dt}$$
 when $\frac{dy}{dt} = 3$ and $x = 1$.

Well

$$\frac{dx}{dt} + 3y^2 \frac{dy}{dt} = 0$$

$$\frac{dx}{dx} + 3y^2 \frac{dy}{dt} = 0$$

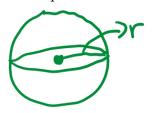
$$\frac{1+y^3=2}{3-1}$$

$$\frac{dx}{dx} = -9x^2 <$$

$$\frac{dx}{dt} = -9(1)^2 = -9$$

Recipe for Solving a Related Rates Problem

- Step 1: Draw a good picture. Label all constant values and give variable names to any changing quantities.
- Step 2: Determine what information you KNOW and what you WANT to find.
- **Step 3:** Find an equation relating the relevant variables. This usually involves a formula from geometry, similar triangles, the Pythagorean Theorem, or a formula from trigonometry. **Use your picture!**
- **Step 4:** Use implicit differentiation to differentiate the equation with respect to time t.
- **Step 5:** Substitute in what you **KNOW** from **Step 2** and any information that your equation in **Step 3** can give you and solve for the quantity you **WANT**. Do **NOT** substitute before this step!



Some Useful Formulas

Right Triangle Pythagorean Theorem:	$\frac{\text{Triangle}}{A = \frac{1}{2}bh}$	$\frac{\text{Trapezoid}}{A = \frac{1}{2}(a+b)h}$
$a^2 + b^2 = c^2$	P = a + b + c	
Rectangular Box	Rectangle	Circle
V = lwh	A = lw	$A = \pi r^2$
S = 2(hl + lw + hw)	P = 2l + 2w	$C=2\pi r$
Right Circular Cylinder $V = \pi r^2 h$	$\frac{\text{Sphere}}{V = \frac{4}{3}\pi r^3}$	$\frac{\text{Cone}}{V = \frac{1}{3}\pi r^2 h} \qquad \bigstar$
$SA = 2\pi rh$	$S = 4\pi r^2$	$SA = \pi r l + \pi r^2$

Example 2: A spherical balloon is being deflated at a constant rate of 20 cubic cm per second. How fast is the radius of the balloon changing at the instant when the balloon's radius is 12 cm?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dV}{dt} = \frac{-20 \text{ cm}^3}{5}$$
 WANT: $\frac{dr}{dt}$ $r=12$

Step 3: Find an equation relating to the relevant variables.

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(V) = \frac{d}{dt}\left(\frac{4}{3} \text{ m r}^{3}\right)$$

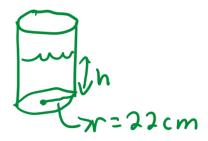
$$\frac{dV}{dt} = \frac{4}{3} \text{ m}(3) \text{ r}^{2} \frac{dr}{dt}$$

$$\frac{dV}{dt} = \frac{4}{3} \text{ m r}^{2} \frac{dr}{dt}$$

$$\frac{dV}{dt} = \frac{4}{3} \text{ m r}^{2} \frac{dr}{dt}$$

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

$$-20 = 4\pi (12)^{2} \frac{dr}{dt}$$


$$\frac{-20}{4\pi (144)} = \frac{dr}{dt}$$

$$\frac{-5}{144\pi} = \frac{cm}{s} = \frac{dr}{dt}$$

Example 3: A cylindrical tank standing upright (with one circular base on the ground) has a radius of 22 cm for the base. How fast does the water level in the tank drop when the water is being drained at 28 cm³/sec? Note: The formula right circular cylinder is

$$V = \pi r^2 h$$
.

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

Step 3: Find an equation relating to the relevant variables.

$$V = Mr^2h \iff V = M(22)^2h$$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(v) = \frac{d}{dt}(\pi(22)^2h)$$

$$\frac{dV}{dt} = (22)^2\pi \frac{dh}{dt}$$

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

$$-28 = (22)^{2} \text{ if } \frac{dh}{dt}$$

$$-4.7 = 2^{2} \cdot 11^{2} \text{ if } \frac{dh}{dt}$$

$$-\frac{7}{121 \text{ if }} \frac{cm}{s} = \frac{dh}{dt}$$

acone

Example 4: Sand falls from an overhead bin and accumulates in a conical pile with a radius that is always four times its height. Suppose the height of the pile increases at a rate of 3 cm/s when the pile is 15 cm high. At what rate is the sand leaving the bin at that instant? Note: The formula of conical pile (aka cone) is $V = \frac{\pi}{3}r^2h$.

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

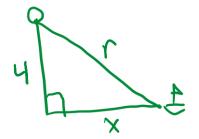
Step 3: Find an equation relating to the relevant variables.

$$V = \frac{\pi}{3}r^2h$$
 Plugin $V = \frac{\pi}{3}(4h)^2h = \frac{16}{3}\pi h^3$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

$$\frac{d}{dt}(V) = \frac{d}{dt}\left(\frac{16}{3}\text{Th}^3\right)$$

$$\frac{dV}{dt} = \frac{16}{3}\text{Tm}(3)\text{ h}^2\frac{dh}{dt}$$


$$\frac{dV}{dt} = \frac{16}{3}\text{Tm}(3)\text{ h}^2\frac{dh}{dt}$$

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

$$\frac{dV}{dt} = 16\pi (15)^2 \cdot 3$$
= 10300 $\frac{cm^3}{5}$

Example 5: A rope passing through a capstan on a dock is attached to a boat offshore at water level. The rope is pulled in at a constant rate of 5 ft/s, and the capstan is 4 ft vertically above the water. How fast is the boat traveling when it is 10 ft from the dock?

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

x - distance from capstare to boat

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dr}{dt} = 5 \frac{ft}{s}$$

WANT:
$$\frac{dx}{dt}\Big|_{x=10ft}$$

Step 3: Find an equation relating to the relevant variables.

$$\chi^{2} + \Upsilon^{2} = r^{3}$$

$$\chi^{2} + \Upsilon^{2} = r^{2} \iff \chi^{2} + 16 = r^{2}$$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

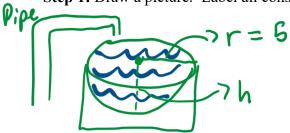
$$\frac{d}{dt}(x^2+16) = \frac{d}{dt}(r^2)$$

$$2x \frac{dx}{dt} = 2r \frac{dr}{dt}$$

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3

can give you and solve for the quantity you WANT.

$$2(10) \frac{dx}{dt} = 2r(5)$$


$$\frac{dx}{dt} = \frac{10r}{20} = \frac{r}{2}$$

$$\frac{dx}{dt} = \frac{116}{2} = \frac{ft}{5}$$

To find r use x=10 and plug into eqn, $\chi^2 + 16 = r^2$ $10^2 + 16 = r^2$ 1116 = r

Example 6: A hemispherical tank with a radius of 5 m is filled from an inflow pipe at a rate of 4 m^3/min . How fast is the water level rising when the water level is 3 m from the bottom of the tank? (Hint: The volume of a cap of thickness h sliced from a sphere of radius r is $\frac{\pi h^2(3r-h)}{3}$).

Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.

Step 2: Determine what information you KNOW and what you WANT to find.

KNOW:
$$\frac{dV}{dt} = 4 \frac{m^3}{min}$$
 WANT: $\frac{dh}{dt}\Big|_{h=3 m}$

Step 3: Find an equation relating to the relevant variables.

$$V = II \frac{h^2(3r-h)}{3}$$
 Plug $V = II \frac{h^2}{3}(3(5)-h) = II \frac{h^2}{3}(15-h)$

Step 4: Use implicit differentiation to differentiate the equation with respect to time t.

Rewrite
$$V = \frac{11}{3} \left[15h^2 - h^3 \right]$$

$$\frac{dV}{dt} = \frac{11}{3} \left(30h - 3h^2 \right) \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{11}{3} \left(30h - 3h^2 \right) \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{11}{3} \left(10h - h^2 \right) \frac{dh}{dt}$$

Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.

$$\begin{aligned}
 & 4 = \text{if} (10(3) - 3^2) \frac{dh}{dt} \\
 & 4 = \text{if} (30 - 9) \frac{dh}{dt} \\
 & 4 = 2 \text{if} \frac{m}{min} \\
 & 4 = 2 \text{if} \frac{dh}{dt}
 \end{aligned}$$

Example 7: A plane is flying directly away from you at 500 mph at an altitude of 3 miles. (a) How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you?			
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.			
Step 2: Determine what information you KNOW and what you WANT to find.			
KNOW: WANT:			
Step 3: Find an equation relating the relevant variables.			
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .			
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.			

n you at 500 mph at an altitude of 3 miles. when it is $\pi/3$? ve variable names to any changing quantities.
hat you WANT to find.
WANT:
quation with respect to time <i>t</i> .
any information that your equation in Step 3 T.

Example 8: A ladder 5 meters long rests on horizontal ground and leans against a vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.3 m/sec. How fast is the top sliding down the wall when the foot of the ladder is 3 m from the wall?		
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.		
Step 2: Determine what information you KNOW and what you WANT to find.		
KNOW: WANT:		
Step 3: Find an equation relating the relevant variables.		
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .		
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.		

Example 9: A streetlight fastened to the top of a 20-ft high pole. If a 5-ft tall woman walk away from the pole in a straight line over level ground at a rate of 6 ft/s, how fast is the length of her shadow changing when she is 18 ft away from the pole?	S
Step 1: Draw a picture. Label all constant values and give variable names to any changing quantities.	
Step 2: Determine what information you KNOW and what you WANT to find.	
KNOW: WANT:	
Step 3: Find an equation relating the relevant variables.	
Step 4: Use implicit differentiation to differentiate the equation with respect to time <i>t</i> .	
Step 5: Substitute in what you KNOW from Step 2 and any information that your equation in Step 3 can give you and solve for the quantity you WANT.	