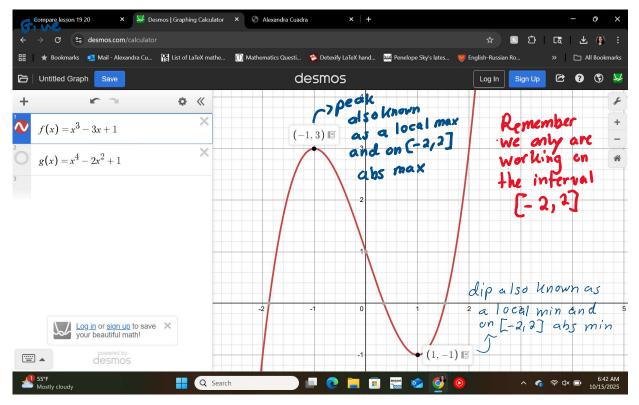
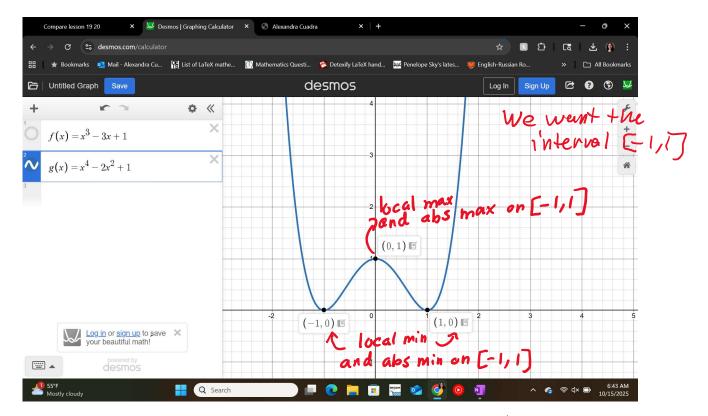
Wednesday, October 15, 2025 6:42 AM

Let's start v/a Desmos Demo Let $f(x) = X^3 - 3x + 1$ What do you notice about the graph on [-2,2]?

Where does the function "peak" or "dip"?



Similarly if we have f(x) = x4-2x2-11 on [-1,1]. Then



So based on both pictures, we can have local/absolute maxima or minima in the interval or at the endpoints,

Definitions: Informal Description Formal Term Local (Relative) Max

f(c) = f(x) for all x Highest nearby value (small hill") near C.

Lowest near by value $f(c) \leq f(x)$ for all x Local (Relative) Min near C.

(small "valley Highest value f(c) = f(x) for all x Absolute Max the entire interval in [a,6]

Lowest value on the Absolute Min f(c) < f(x) for all x entire interval in [a,b]

but not local extrema Note. Endpoints can be absolute extrema

Extrema Value Theorem (EVI)

If f is continuous on a closed interval [a,b], then f has both an absolute max and an absolute min on that interval.

Now that we know these maxima and minima must 1 - Duction in continuous on Cabo, how do we find them? Now that we know these maxima and minima must exist when a function is continuous on [a,b], how do we find them?

Recipe

() Find all points when f(x) = 0 or f(x) DNE

DEvaluate points from 1) and endpoints in f(x).

3) Compare the values to locate absolute max/min.

Ex 1: Find the abs extrema of
$$y = x^4 - 2x^3$$
 on $[-1,1]$

Step 1: Find x when
$$f'(x)=0$$
,
 $f'(x) = 4x^3 - 2(3)x^2$
 $= 4x^3 - 6x^2$

Set equal to 0.
$$4x^3 - 6x^2 = 0$$

$$2x^{2}(2x-3)=0$$

 $2x^{2}=0$ $2x-3=0$

X=0 X b/e not in the interval

X	$f(x) = x^4 - 2x^3$	Conclusion
-1	1-2(-1)=3	ahs may
O	0	
T	1-2=-1	abs min

Table includes values from Step 1 and endpoints

[-1,17

$$E \times 2$$
: Find the abs extrema of $y = xe^x$ on $[-2,0]$

Step 1: Find x where
$$f'(x) = 0$$
.

$$U=X$$
 $V=e^{X}$ $V'=e^{X}$

$$u=x$$
 $u'=1$
 $v'=e^{x}$
 $y'=1\cdot e^{x} + xe^{x} = 0$
 $e^{x}(1+x)=0$

$$e^{\times}=0$$
 $|+\times=0$
 $\times=-1$ Check to see if $[-2,0]$

Step 2+3:

$$x = f(x) = xe^{x}$$
 | Conclusion
 $-2 = -2e^{-2} = -2/e^{2}$
 $-1 = -1/e^{-1} = -1/e^{-1} = -1/e^{-1} = -1/e^{-1}$ | Abs min
O O Ahs max

Ex 3: Find the abs extrema of

$$y = \frac{6x^2}{x+1}$$
 on $[0,5]$

Step 1: Find x when f'(x)=0 and f'(x) DNE

$$u = 6x^{2} \qquad v = x + (1)$$

$$u' = 12x \qquad v' = 1$$

$$y' = \frac{u'v - uv'}{v^{2}} = \frac{(12x)(x+1) - 6x^{2}(1)}{(x+1)^{2}}$$

$$= \frac{12x^{2} + 12x - 6x^{2}}{(x+1)^{2}}$$

$$= 6x^{2} + 12x - 6x^{2}$$

$$= 6x^{2} + 12x - 6x^{2}$$

$$f'(x)=0$$
: $6x^2+12x=0$

$$f'(x) DNE: (x+1)^2 = 0$$

$$f'(x)=0$$
: $6x^2+12x=0$
 $6x(x+2)=0$
 $x=0, x=-2$

$$f'(x) DNE: (x+1)^{2} = 0$$

$$x+1 = 0$$

$$x=-1$$

Check: If x=0,-1,-2 in [0,5]? Only x=0

Step 2+3:
$$\times f(x) = \frac{6x^2}{x+1}$$
 Conclusion
$$\frac{O}{1} = 0$$
 Ahs min
$$\frac{6 \cdot 5^2}{5 \cdot 1} = 25$$
 Ahs max