Lesson 35. Potential theory, Electrostatic fields

Potential theory is the theory of harmonic functions,
that is, solutions to Laplace's equation V2® = 0. In
applications, electrostatic and gravitational potential,
steady-state heat flow, and velocity potential of incom-
pressible fluid flow, are harmonic.

Analytic functions are useful for two-dimensional (but
not for three-dimensional) potential theory, since the
real part Re f(z) and the imaginary part Im f(z) of an
analytic function f(z) are harmonic.

The level curves of a two-variable harmonic function &
are the equipotential lines.
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Example 1. Parallel plates at constant potential &g,
®,. Assume the plates are = 0 and z = 1. Then,

® does not depend on y or z, so Laplace’'s equation
d2

92 — 0. Then, ® = Az + B. Imposing the
xr

boundary conditions, & = (P71 — dPg)x + Po.

becomes




Example 2. Infinite coaxial cable with constant poten-
tials &7 and &5 at »r = ry and »r = ro. Then, ® does
not depend on 6, so Laplace’'s equation becomes
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Imposing the boundary conditions,
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Example 3. Sector —35 < 6 < 5 with the constant
potentials ®_ and &4 on its sides. As 0 = Argz is
harmonic, we have & = a 4+ bf. Imposing the boundary
conditions, ® = 3(d_+ > )+ L(dy — )0

It is convenient to use the analytic complex potential
F(z) = ®(x,y) +iW(z,y) where z = x + 4y and W is a
harmonic conjugate of ®. For a complex potential, the
level curves & = Re F' = const are equipotential lines,
and the curves W = Im F' = const are the lines of force
(or the stream lines in two-dimensional fluid flow).

Since F'(z) is conformal, the equipotential lines and
the lines of force meet at right angle when F’(z) # 0.
In Example 1, WV = ay so F(z) = az + b.
In Example 2, W = af (multi-valued) so F'(z) = aln z+b.
In Example 3, F(z) =a+ b0 —iblnr =a—ibLnz.
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The sum of harmonic functions is harmonic, SO we can
use superposition.

Example. Opposite charges F27 K at z = £c (real).
Let &1 = KLn|z—cl and &, = —-KLn|z+4 ¢|.
Then, F(2) = K (Ln (2—c¢)—Ln (24¢)) = K Ln (Z — C) |

z+c
Equipotential lines are given by Re F'(z) = const, thus

Reln (z_c):Ln ° % = const = |2 —C| = const.
z4+c z4+c z4+c
Z — C . ] . .

As w = n is LFT, equipotential lines |w| = const
z C

are circles (except |w| = 1 which is the imaginary axis).



If a function ®(u,v) = Re F(w) is harmonic and w =
f(z) is analytic, then ®(f(z)) = Re F(f(z)) is harmonic.

Example. e¥cosv = Ree? is harmonic, w = 22 =

. . 2 2 )
(22 — y2) + i(2zy) is analytic, so e*” ~¥" cos(2zy) is
harmonic.

Using this fact, we can transplant boundary value prob-
lems from one domain to another: If w = f(z) maps
a domain D onto a simpler domain D’, we can solve a
problem for ®(w) in D/, then transport it back to solve
a problem for ®(f(z)) in D.



Example. Find the potential ®(z,y) in the unit disk,
d(x,y) = Pg for y = /1 — 22 and d(x,y) = —Pg for

y=—\/1—:132.

Instead of solving this problem, we solve a problem in
the right half plane Rew > 0, with W(w) = £®g on the
imaginary axis. This is a special case of a sector (with
a = m) from Example 3. Then,

2P
W(w) = TOAI’g w.

Now we transport the solution back to the unit disk by

the LFT w = i‘l‘j mapping the unit disk onto the right

half plane. Solution to the original problem is

(2) = W(w (=) = =2 Arg



