Lesson 35. Potential theory, Electrostatic fields

Potential theory is the theory of **harmonic functions**, that is, solutions to Laplace's equation $\nabla^2 \Phi = 0$. In applications, electrostatic and gravitational potential, steady-state heat flow, and velocity potential of incompressible fluid flow, are harmonic.

Analytic functions are useful for two-dimensional (but not for three-dimensional) potential theory, since the real part $\text{Re}\,f(z)$ and the imaginary part $\text{Im}\,f(z)$ of an analytic function f(z) are harmonic.

The level curves of a two-variable harmonic function Φ are the **equipotential lines**.

In two dimensions,
$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} =$$

$$\frac{1}{r} \left(\frac{\partial}{\partial r} r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2}.$$

Example 1. Parallel plates at constant potential Φ_0 , Φ_1 . Assume the plates are x=0 and x=1. Then, Φ does not depend on y or z, so Laplace's equation becomes $\frac{\mathrm{d}^2\Phi}{\mathrm{d}x^2}=0$. Then, $\Phi=Ax+B$. Imposing the boundary conditions, $\Phi=(\Phi_1-\Phi_0)x+\Phi_0$.

Example 2. Infinite coaxial cable with constant potentials Φ_1 and Φ_2 at $r=r_1$ and $r=r_2$. Then, Φ does not depend on θ , so Laplace's equation becomes

$$r\frac{d^2\Phi}{dr^2} + \frac{d\Phi}{dr} = 0 \Rightarrow \frac{\Phi''}{\Phi'} = -\frac{1}{r} \Rightarrow \ln(\Phi')' = -\frac{1}{r} \Rightarrow$$

$$\ln(\Phi') = -\ln r + C = \ln \frac{a}{r} \Rightarrow \Phi' = \frac{a}{r} \Rightarrow \Phi = a \ln r + b.$$

Imposing the boundary conditions,

$$\Phi = \frac{\Phi_2 - \Phi_1}{\ln \frac{r_2}{r_1}} \ln \frac{r}{r_1} + \Phi_1.$$

Example 3. Sector $-\frac{\alpha}{2} < \theta < \frac{\alpha}{2}$ with the constant potentials Φ_- and Φ_+ on its sides. As $\theta = \operatorname{Arg} z$ is harmonic, we have $\Phi = a + b\theta$. Imposing the boundary conditions, $\Phi = \frac{1}{2}(\Phi_- + \Phi_+) + \frac{1}{\alpha}(\Phi_+ - \Phi_-)\theta$.

It is convenient to use the analytic **complex potential** $F(z) = \Phi(x,y) + i\Psi(x,y)$ where z = x + iy and Ψ is a harmonic conjugate of Φ . For a complex potential, the level curves $\Phi = \operatorname{Re} F = \operatorname{const}$ are equipotential lines, and the curves $\Psi = \operatorname{Im} F = \operatorname{const}$ are the **lines of force** (or the **stream lines** in two-dimensional fluid flow).

Since F(z) is **conformal**, the equipotential lines and the lines of force meet at right angle when $F'(z) \neq 0$. In Example 1, $\Psi = ay$ so F(z) = az + b. In Example 2, $\Psi = a\theta$ (multi-valued) so $F(z) = a \ln z + b$. In Example 3, $F(z) = a + b\theta - ib \ln r = a - ib \ln z$.

The sum of harmonic functions is harmonic, so we can use **superposition**.

Example. Opposite charges $\mp 2\pi K$ at $z=\pm c$ (real). Let $\Phi_1=K\ln|z-c|$ and $\Phi_2=-K\ln|z+c|$. Then, $F(z)=K\left(\ln(z-c)-\ln(z+c)\right)=K\ln\left(\frac{z-c}{z+c}\right)$. Equipotential lines are given by $\operatorname{Re} F(z)=\operatorname{const}$, thus $\operatorname{Re} \ln\left(\frac{z-c}{z+c}\right)=\ln\left|\frac{z-c}{z+c}\right|=\operatorname{const}$ $\Rightarrow \left|\frac{z-c}{z+c}\right|=\operatorname{const}$.

As $w=\frac{z-c}{z+c}$ is LFT, equipotential lines |w|= const are circles (except |w|=1 which is the imaginary axis).

If a function $\Phi(u,v) = \operatorname{Re} F(w)$ is harmonic and w = f(z) is analytic, then $\Phi(f(z)) = \operatorname{Re} F(f(z))$ is harmonic.

Example. $e^u \cos v = \operatorname{Re} e^w$ is harmonic, $w = z^2 = (x^2 - y^2) + i(2xy)$ is analytic, so $e^{x^2 - y^2} \cos(2xy)$ is harmonic.

Using this fact, we can transplant boundary value problems from one domain to another: If w = f(z) maps a domain D onto a simpler domain D', we can solve a problem for $\Phi(w)$ in D', then transport it back to solve a problem for $\Phi(f(z))$ in D.

Example. Find the potential $\Phi(x,y)$ in the unit disk, $\Phi(x,y) = \Phi_0$ for $y = \sqrt{1-x^2}$ and $\Phi(x,y) = -\Phi_0$ for $y = -\sqrt{1-x^2}$.

Instead of solving this problem, we solve a problem in the right half plane $\text{Re}\,w>0$, with $\Psi(w)=\pm\Phi_0$ on the imaginary axis. This is a special case of a sector (with $\alpha=\pi$) from Example 3. Then,

$$\Psi(w) = \frac{2\Phi_0}{\pi} \operatorname{Arg} w.$$

Now we transport the solution back to the unit disk by the LFT $w=\frac{1+z}{1-z}$ mapping the unit disk onto the right half plane. Solution to the original problem is

$$\Phi(z) = \Psi(w(z)) = \frac{2\Phi_0}{\pi} \operatorname{Arg} \frac{1+z}{1-z}.$$