
Lesson 35. Potential theory, Electrostatic fields

Potential theory is the theory of harmonic functions,

that is, solutions to Laplace’s equation ∇2Φ = 0. In

applications, electrostatic and gravitational potential,

steady-state heat flow, and velocity potential of incom-

pressible fluid flow, are harmonic.

Analytic functions are useful for two-dimensional (but

not for three-dimensional) potential theory, since the

real part Re f(z) and the imaginary part Im f(z) of an

analytic function f(z) are harmonic.

The level curves of a two-variable harmonic function Φ

are the equipotential lines.
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Example 1. Parallel plates at constant potential Φ0,

Φ1. Assume the plates are x = 0 and x = 1. Then,

Φ does not depend on y or z, so Laplace’s equation

becomes
d2Φ

dx2
= 0. Then, Φ = Ax + B. Imposing the

boundary conditions, Φ = (Φ1 −Φ0)x+Φ0.
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Example 2. Infinite coaxial cable with constant poten-

tials Φ1 and Φ2 at r = r1 and r = r2. Then, Φ does

not depend on θ, so Laplace’s equation becomes

r
d2Φ

dr2
+

dΦ

dr
= 0 ⇒

Φ′′

Φ′ = −
1

r
⇒ ln(Φ′)′ = −

1

r
⇒

ln(Φ′) = − ln r + C = ln
a

r
⇒ Φ′ =

a

r
⇒ Φ = a ln r + b.

Imposing the boundary conditions,

Φ =
Φ2 −Φ1

ln r2
r1

ln
r

r1
+Φ1.
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Example 3. Sector −α
2 < θ < α

2 with the constant
potentials Φ− and Φ+ on its sides. As θ = Arg z is
harmonic, we have Φ = a+ bθ. Imposing the boundary
conditions, Φ = 1

2(Φ− +Φ+) + 1
α(Φ+ −Φ−)θ.

It is convenient to use the analytic complex potential
F (z) = Φ(x, y) + iΨ(x, y) where z = x + iy and Ψ is a
harmonic conjugate of Φ. For a complex potential, the
level curves Φ = ReF = const are equipotential lines,
and the curves Ψ = ImF = const are the lines of force
(or the stream lines in two-dimensional fluid flow).

Since F (z) is conformal, the equipotential lines and
the lines of force meet at right angle when F ′(z) ̸= 0.
In Example 1, Ψ = ay so F (z) = az + b.
In Example 2, Ψ = aθ (multi-valued) so F (z) = a ln z+b.
In Example 3, F (z) = a+ bθ − ib ln r = a− ibLn z.
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The sum of harmonic functions is harmonic, so we can

use superposition.

Example. Opposite charges ∓2πK at z = ±c (real).

Let Φ1 = K Ln |z − c| and Φ2 = −K Ln |z + c|.
Then, F (z) = K (Ln (z−c)−Ln (z+c)) = K Ln

(
z − c

z + c

)
.

Equipotential lines are given by ReF (z) = const, thus

ReLn
(
z − c

z + c

)
= Ln

∣∣∣∣z − c

z + c

∣∣∣∣ = const ⇒
∣∣∣∣z − c

z + c

∣∣∣∣ = const.

As w =
z − c

z + c
is LFT, equipotential lines |w| = const

are circles (except |w| = 1 which is the imaginary axis).

5



If a function Φ(u, v) = ReF (w) is harmonic and w =

f(z) is analytic, then Φ(f(z)) = ReF (f(z)) is harmonic.

Example. eu cos v = Re ew is harmonic, w = z2 =

(x2 − y2) + i(2xy) is analytic, so ex
2−y2 cos(2xy) is

harmonic.

Using this fact, we can transplant boundary value prob-

lems from one domain to another: If w = f(z) maps

a domain D onto a simpler domain D′, we can solve a

problem for Φ(w) in D′, then transport it back to solve

a problem for Φ(f(z)) in D.
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Example. Find the potential Φ(x, y) in the unit disk,

Φ(x, y) = Φ0 for y =
√
1− x2 and Φ(x, y) = −Φ0 for

y = −
√
1− x2.

Instead of solving this problem, we solve a problem in
the right half plane Rew > 0, with Ψ(w) = ±Φ0 on the
imaginary axis. This is a special case of a sector (with
α = π) from Example 3. Then,

Ψ(w) =
2Φ0

π
Argw.

Now we transport the solution back to the unit disk by
the LFT w = 1+z

1−z mapping the unit disk onto the right
half plane. Solution to the original problem is

Φ(z) = Ψ(w(z)) =
2Φ0

π
Arg

1+ z

1− z
.
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