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1 Overview, background

Throughout, F will stand for either R or C. Thus F is a complete (normed) field.

[Conway’s book assumes that all topological spaces are Hausdorff. Let’s try to not
impose that unless needed.]

Much of the material and inspiration came from Larry Brown’s lectures on functional
analysis at Purdue University in the 1990s, and some came from my Reed thesis 1987.
Functional analysis is a wonderful blend of analysis and algebra, of finite-dimensional and
infinite-dimensional, so it is interesting, versatile, useful.

I will cover Banach spaces first, Hilbert spaces second, as Banach spaces are more
general.

2 Definition of Banach spaces

Definition 2.1 Let X be a vector space over F. A norm on X is a function | | : X —
[0, 00) such that

(1) (Positive semidefiniteness) For all z € X, |z| = 0 if and only if z = 0.

(2) |rx| = |r||x| for all x € X and all r € F.

(3) (Triangle inequality) For all z,y € X, |z + y| < |z| + |y]-

Is is easy to verify that for all z,y € X, |z —y| < |z| — |y|, and that ||z| — [y[| <
|z £yl
Note that if X is a normed vector space, then X has a metric:

d(z,y) =[x =yl

Definition 2.2 A vector space X with a norm | | is called a normed vector space or
a normed linear space. In a normed linear space, a sequence { f,,} is Cauchy (in the
norm) if for all e > 0 there exists N such that for allm,n > N, | f, — fm| < €. A sequence
{fn} converges (in the norm) to f if for all ¢ > 0 there exists N such that for alln > N,
|fn — fl < e A sequence {f,} in X is convergent (in the norm) if there exists f in X
such that {f,} converges in the norm to f. A Banach space is a normed linear space in
which every Cauchy sequence is convergent.

Silly /important fact of the day: On February 2, 2011, MathSciNet lists 20331 publications with
“Banach” in the title (and only 13539 publications with “Hilbert” in the title).
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3 Examples of Banach spaces

Examples of Banach spaces are given in propositions in this section.

Proposition 3.1 For any p € [1,00), F" is a Banach space under the L”-norm |z[, =
(|z1]P + - + |2n|P)Y/P. Why is this a norm? Hélder’s inequality helps. For now I am
assuming this, and I am not sure that I will get back to this. Presumably you have seen
Hélder’s inequality. And you probably have seen that the open ball topology determined
by this norm is equivalent to the standard Euclidean topology (with p = 2), in which case,
you should be able to prove easily that this is a Banach space. We will actually prove more
general facts later.

Definition 3.2 For any topological space X, let C(X) ={f: X — F, f continuous}.

Note that if X is compact, then the uniform norm, or the sup norm,

[£] = sup{lf(2)]: 2 € X}

is indeed a norm on C(X). If X is not compact, sup{|f(z)| : z € X} may take on the value
00, so we cannot have a norm.

Proposition 3.3 If X is a compact topological space, then C(X) is a Banach space.

Proof. Let {f,} be a Cauchy sequence in C'(X). Then for all € > 0, there exists N such
that for all m,n > N,|fm — fn| < €. In particular, for all z € X,|fn(x) — fu(z)| <
| fr — fnl < €. It follows that {f,(x)} is a Cauchy sequence in F. Since F is complete,
we thus have that for all x € X, there exists f(z) € F such that f,(x) — f(z). So {f.}
converges pointwise to a function f.

We need to verify that f € C(X). It suffices to prove that for every open set W
in IF, its f-preimage V in X is an open subset of X. For that it suffices to prove that for
every x € V there exists an open neighborhood U of z such that U C V. So let z € V.
Since W is open in a metric space, there exists € > 0 such that B(f(x),e) C W. By the
Cauchy sequence assumption there exists N such that for all m,n > N, | fm, — fu| < €/3.
In particular, for all y € X, | (v) — fn (W) < |fm — fnl < €/3, and for any m > N,

[fm(y) = FW)| = [fm(y) = Im fo(y)| = lim |fn(y) = fu(y)] < €/3.

Sincefx is continuous, U = fy'(B(fn(x),€/3)) is an open neighborhood of z in X. For
all y e U,

@) = fW < |f (@) = fn(@)| + [In(z) = N+ [ (y) = f)l <e/3+¢/3+¢/3=¢,
so that f(y) € B(f(z),e) CW. Thus x € U C V, and U is open, as desired.
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Finally, we need to prove convergence in the norm. For all m > N (with N as above),

| frn = [ = sup{|fm(2) — f(z)| : z € X}
= sup{|fm(z) — lim f,,(2)[ : € X}
<e.

And we’re done, without needing to use the Hausdorff condition. ]

Definition 3.4 For any topological space X, define
Cy(X) ={f: X — F continuous and bounded}

with the metric | f| = sup{|f(x)|: x € X}.

Proposition 3.5 For any topological space X, Cy,(X) is a Banach space with the uniform
norm. [If X is compact, then Cy(X) is a subset of the already established Banach space

C(X).]

Proof. It is straightforward to see that C(X) is a normed linear space. If { f,,} is a Cauchy
sequence in Cy(X), then there exists B such that for all n, | f,,| < B. Thus any pointwise
limit of {f,} is also bounded. The rest of this proof is just like for C(X). O

Definition 3.6 Let X be a topological space. A function f : X — T is said to have
compact support if for all € > 0, the set {z : |f(z)| > €} is compact. Define

Co(X) ={f: X — F continuous with compact support}.

Proposition 3.7 For any topological space X, Cy(X) is a closed linear subspace of Cy,(X),
and hence a Banach space (under the uniform norm).

Proof. We first show that Cy(X) C Cp(X). Let f € Cy(x). For all n, define S, {z € X :
|f(z)] > n}. By assumption, S,, is compact, and since f is continuous, .S,, is closed. Since
f is F-valued, NS,, = (). Thus by HW 1.3, there exists n such that S,, = (), which means
that f is bounded.

Clearly Cy(X) is closed under scalar multiplication. Now let f,g € Cy(X). Let € > 0.
Then

{z:[f(x) +9(@)| =€} S{z: [f(x)] = e/2} Uz [g(x)| = €/2},

and since f + ¢ is continuous, this says that {z : |f(z) + g(z)| > €} is a closed subset of
a compact set, whence compact itself by Proposition 1, which proves that Cy(X) is closed
under addition. Since 0 € Cy(X), it follows that Cy(X) is a vector subspace of Cp(X).
We next prove that Cp(X) is a closed subset of Cy(X). If {f,} is a Cauchy sequence
in Cp(X) in the norm, then {f,} is a Cauchy sequence in Cp(X) in the norm. Since C(X)
is Banach, there exists f € Cy(X) such that f, — f in the norm. Let ¢ > 0. Then there
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exists N such that for all n > N, |f, — f| < €/2. If |f(x)| > ¢, then by the triangle
inequality,
e<|f@)] <|f(@) = fn@)|+ fn@)] < |f = Il + [ fn(o)] <e/2+[fn ()]

Thus |fn(z)| > €/2. Thus {x : |f(z)| > €} C{z:|fn(z)] > €¢/2}. Again by continuity of
f, {x : |f(x)| > €} is a closed subset of the compact set {x : |fn(x)| > €/2}, so that by
Proposition 1, {z : |f(z)| > €} is compact. Thus f € Cy(X), and we have convergence in
the norm: | f, — f] — 0 € Co(X).

Finally, by Propositions 3.5 and 2, Cy(X) is complete. O

Proposition 3.8 Here are some special cases of Banach spaces Cy(X),Co(X), all with
the sup norm.
(1) Let X be an arbitrary set with discrete topology. Then any function X — F is
continuous. We write

(> (X) = Cp(X) = {bounded functions X — F},
co(X) = Cy(X) = {functions X — F with compact support},

(2) If X =N, we also write

0> = (*°(N) = C,(N) = the set of all bounded F-valued sequences,
co(N) = Cy(N) = the set of all sequences in F with limit 0.

(3) Let X = {0} U{L : n € N}, with the topology inherited from R. Then

¢ = Cp(X) = C(X) = the set of all convergent F-valued sequences,

co = Co(X) = the set of all convergent sequences in F with limit 0.

Definition 3.9 For a,b € R, define

C*([a,b]) = the set of all functions [a,b] — F with k continuous derivatives.

Proposition 3.10 C*([a,b]) is a Banach space with the norm

bl

Norm (£)= 3" |
1=0

where the norm of the derivatives is the sup norm.

Proof. 1t is straightforward to verify that C*([a,b]) is a vector space and that Norm is a
norm.

Let {f.} be a Cauchy sequence in the norm Norm. Then for each i =0,..., k, {f,(f)}
is a Cauchy sequence in C([a,b]) in the sup norm. Thus by Proposition 3.3, for each
i =0,...,k, there exists g; € C([a,b]) such that {f}li) converges to g; uniformly on [a, b].
By Homework 1.2, go, ¢1,- .., gx—1 are differentiable, and g, = g;+1. This proves that {f,}
converges to go in the norm Norm. This finishes the proof. ]



Remark 3.11 The Banach space above is an example of a Sobolev space. Here is another
example: if € is an open subset of R",

wemQ) ={felP(Q): D*f € LP() for all & € N" with |a| < m}

is a Sobolev space, with the norm

1/p

1y = | D 1D

laf <m

Sobolev spaces arise in the solutions sets of certain in partial differential equations. Perhaps
somebody would want to do a project on Sobolev spaces?

4 1P spaces

Definition 4.1 Let X be a set. A collection Y of subsets of X is called a o-algebra
if ) € ¥ and if ¥ is closed under complements and under countable unions. A function
p: X — [0,00) is a measure if u(()) = 0 and if p is countable additive, i.e., if for
any pairwise disjoint Ay, As,... in B, p(U2,A;) = 372 u(4;). A measure space is
a triple (X,X, ), where pu is a measure on the o-algebra ¥ on a set X. A function
f: X — RU{£o0} is measurable if for all « € R, {z € X : f(z) > a} € . A function
f :— C is measurable if Re f and Imf are both measurable.

It is standard to show that the set of all measurable functions is closed under scalar
multiplication. It is also sometimes (!) closed under addition. One problem to defining
addition is that “infinity minus infinity” is not defined. But if f,g : X — R U {400} are
measurable and f + ¢ is defined, then f + g is measurable as well. This follows from the
following for every real number o:

{w: f(2) +9(2)>a} = | ({z: f(2) > a=r}n{z: gz) > 1)),

reQ

which is a countable union of finite intersections of sets in ¥, so it is in 3. This proves that
f + g is measurable.

It follows that for any measurable functions f, g (to any codomain), as long as f + g
is defined, it is measurable.



Definition 4.2 For any measurable function f : X — R U {+oco}, define f,f- : X —
[0, 0] By

f(2) = max{f(x),0},  f-(z) = max{—f(x),0}.

It is easy to prove that f = f. — f_, |f| = f+ + f-. The sum is well-defined.
Certainly f,|f| are measurable if each f,,f_ is, and we also have the implication that
if f is measurable, then f, f_. |f| are measurable. This follows from the following more
general fact: for any measurable functions f,g: X — R U {oc}, max{f, g} is measurable:

{z :max{f,g}(z) > a} = {z:max{f(z),g9(x)} > a} ={z: f(z) > a} U{z: g(z) > a}.

It is straightforward to prove that if f, : X — R U {+£oo} are measurable, then
sup f,, inf,, f,, are measurable, (recall: (sup f,)(x) = sup{f.(x) : n}) and hence also

n
limsup,, f, = inf,, sup f,, and liminf, f, = supinf,,>, f, are measurable. In particular,
m>n n

if {f,} converges pointwise, lim,, f,, is measurable.

Definition 4.3 Of special significance are simple functions: these are those functions
that take on only finitely many values in F.

Note that if f,g : X — R U {+£oo} are measurable, {z : f(z) > g(z)} € ¥ because
{z: f(z) > g(x)} = Ureg({z : f(x) > r}Nn{z: g(z) <r}), which is a countable union of
sets in 2.

(What would be wrong with the following reasoning: {x : f(x) > g(z)} € X because
{z: f(z) >g(@)} ={a: f(z) —g(x) > 0}.)

Every simple function can be written as Zle cixg, for some ¢; € F and some sets
E; C X. For such a function to be measurable, we can write it so that all the F; are in X
and pairwise disjoint, and that all the ¢; are distinct. We can also impose that UF; = X.

Definition 4.4 Two measurable functions f,g with domain X are p-equivalent if {z €
X : f(x) # g(x)} has p-value 0.

It is straightforward to show that p-equivalence is an equivalence relation. If f is u-
equivalent to g, then for any scalar ¢, cf is p-equivalent to cg, so that scalar multiplication
is well-defined on p-equivalent classes. If f and g take on the values +00 on a set of measure
0, then f + g is defined almost everywhere; and in addition of f is u-equivalent to f’ and
g is p-equivalent to ¢’, then f’ + ¢’ is defined almost everywhere and f + ¢ is pu-equivalent
to f'+4¢.



Definition 4.5 The Lebesgue integral of a simple measurable function f = Zle CiXE;
with all ¢; € [0,00) is

k
/fdu = Z cip(Ey).

The Lebesgue integral of a measurable function f : X — [0, o0] is

/fdu = sup{/god,u | ¢ : X — [0,00) measurable and simple, p < f}.

In a standard illogical terminology, we define the Lebesgue integral for many functions, but
we say that a measurable f : X — [0, 00| is Lebesgue-integrable if the integral is a real
number. With that, a measurable f : X — R U {£oo} is Lebesgue-integrable if f, and
f— are Lebesgue-integrable, and a measurable f : X — C is Lebesgue-integrable if Ref
and I'mf are Lebesgue-integrable.

One needs to verify that if f is measurable and Lebesgue-integrable, then for any
measurable g that is g-equivalent to f, g is Lebesgue-integrable, and [ fdu = [ gdpu.

Definition 4.6 Let (X, X, 1) be a measure space. We will consider either the measurable
functions with codomain R or R U {£o0}, in which case we will set F = R, or we will
consider the measurable functions with codomain C, in which case we will set F = C. For
any real number p > 1, define LP = LP(X) = LP(X,X,0) = LE(X) to be the set of all
p-equivalent classes of measurable functions such that for each/any representative f of the
equivalence class, [ |f|Pdu is finite. It is straightforward to verify that LP is a vector space

over F. We define the norm: "
p
11, = ([ 1rran)

It is standard to write elements of IL? as functions, even though the elements are really
equivalence classes of functions.

We have essentially already verified that IL? is a vector space.

To prove that | [, is a norm, first of all, show that it is independent of the representative
of the equivalence class, positive semi-definiteness is easy, so is the scalar property, but the
triangle inequality requires a few more steps. Here is an outline:

(1) Since p > 1, there exists ¢ > 1 such that % + % =1.

(2) If p,q > 1 satisfy % + % =1, then for any f € L? and any g € L9, fg € L' and

I fgl, < Ifl,lgl,- (This is Holder’s inequality.) Outline of proof: The case
p = 1 is trivial, so we may assume that p > 1. If |f| = 0, then without loss
of generality f = 0, so that both sides are 0. So we may assume that |f], # 0,
and similarly that |g], # 0. Define ¢ : (0,00) — R by ¢(t) = %t — t'/7. Then
P(t) = $(1—t"/P71), /(1) < 0 for all ¢ € (0,1) and ¢'(t) > 0 for ¢ > 1. By
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calculus, @(t) > (1) for all t. In particular, t'/? < 1t —|—1 = lt —|— L for

all t, and so for any non—negatlve a and positive b, (a,/b)l/p < (a/b) —, Wthh
says that a'/ Pyl < a + 1b Note that this latter 1nequahty holds even if b is
zero, i.e., it holds for all non-negative real numbers a and b. With a = |Jf|(ﬁ|)f,
b= |g|’|(gﬁ|)q| , this says that

[f@)] lg(x)| _ 1[f(@)PP | 1lg(z)]

: < »— T 7

£, lal, — 2 Ifl,  a lglg

Now integrate both sides to get I Jl'”f g””gl” = + = =1.

(3) (Minkowski’s inequality.) Let f,g € ]Lp Then If+gl, < Ifl, + lgl,- This
is clearly true of p = 1, so we may assume that p > 1. We may also assume that

| f +gl, is non-zero. Set ¢ = 1_1% = 25 > 1. Note that JUf + glP~1)tdp =

[1f + g|Pdu < oo, so that (f + g)P~* € L9. Furthermore,

1/q 1/q
I+, = (s apyea) = ([1raran) =17+ olg =17 41y
From |f + gP <|f|If+g|P~' +|g]|f + g[P~! and Hélder’s inequality we get that
L+ gl < (U1 + aly) - [ C(F+ 97, = U1+ lglb) - 1F + gl

and after dividing through by | f + 9”5 , we get Minkowski’s inequality.

Proposition 4.7 LP(X, X, o) is a Banach space.

Proof. We need to prove completeness in the norm | |,. Let {f,} be a Cauchy sequence
in . We need to find f € L? such that f,, — f in the norm. By taking a subse-
quence, without loss of generality for all n, |f, — fo+1], < 2_". Note that the sum
fi +Z?:_11(fj+1 — ;) (is defined a.e. and) equals f,. Let G, = > 7~ L fiv1— f;]. Forall n,
each Gy, is measurable, 0 < G,, < Gpq1, and |G, |, < Z;le I fi+1 — fj I, < Z" lo—i < 1.
By the Monotone Convergence Theorem,

/(lim Gn)Pdu = /lim GPdu = lim/G’T’ld,u <1,

so that lim, G, € L”. In particular, Z;’;l |fit1 — fj] < oo almost everywhere. Since
absolute convergence implies convergence, the sequence f, = f1 + > - im1 ' fij+1 — f;) con-
verges almost everywhere, say to a function f. As f is a limit of measurable functions, it
is measurable. Since |f] < |fi1| + lim,, G,,, we have that [ |f[Pdu < [(|f1|+ lim, G,,)Pdu =
(I f1] + limy, Guf )P < ([ f1] + 1)? < oo, so that f € L”. Furthermore, f, converges to
f in the LP norm because |f — f,| < lim,, G,,, and since lim,, G,, is in L”, the Lebesgue
Dominated Converegence Theorem applies:

(Hm [f = ful)? =lm | f = fu]” = /ligl\f — falPdp = /Odu =0. O



5 L spaces

Let (X, X, ) be a measure space. Let f be a measurable function f (from X to C or
R U {£o0}, and B € RU {oo} such that for some set £ € ¥ of measure 0, |f|xx\g < B.
Then clearly for any measurable g that is pu-equivalent to f, there exists F' € ¥ of measure
0, such that |g|xx\r < B. For such f we define

[/l

to be the infimum of all such possible B. We just proved that | f|., = |g|., whenever f is
p-equivalent to g.

Definition 5.1 Let (X, u) be a measure space. Define L = L°(X) = L™ (X, %, 0)
to be the set of all u-equivalent classes of measurable functions for which | f|_ ., < oc.

Theorem 5.2 If (X, X, u) be a measure space, then L.°°(X) is a Banach space with the
norm | ...

Proof. Note that if f € L°°, then f is bounded almost everywhere, and so by the discussion
above Definition 4.5, L°° is closed under addition. The other properties of vector spaces
are straightforward to establish for IL°°.

For the norm we only verify that triangle inequality: Let B,C € R such that f < B
almost everywhere and g < C almost everywhere. Then f+ g < B+ C almost everywhere,
so that |f 4+ g|., < B+ C. Now we take the infimum over all such B and C to get that

If + 9l <1l + 9]
That IL°° is complete I leave for the exercises. ]

6 Some spaces that are almost Banach, but aren’t

Definition 6.1 Let X = C°([a,b]) be the set of all functions [a,b] — R that have deriva-
tives of all orders (one sided derivatives at a and b).

For each k € N, define | f|, = Zle Hf(i)Hoo. (Distinguish | |, from the p-norms in
F" orin L?.)

By calculus, X is a vector space. It is straightforward to verify that | |, is a norm for
each k € N. (Question: why isn’t ((f))r = Hf(k)Hoo a norm?)

The definition of convergence in X ought to be as follows: {f,} — f if and only if
for all i« > 0, { fr(f)} — £ in the sup norm. However, no single norm | |, captures that.
We can only say the quasi-norm thing: {f,} — f if and only if for all k € N, {f,,} — f in
the | |, norm.
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Definition 6.2 Let C(F"™) be the set of all continuous functions F" — F.

The definition of convergence in C(F") ought to be as follows: {f,} — f if and only
if for all compact subsets K C F", {(f.)|x} — f|x in the sup norm in C(K). However,
no single norm captures that. We can only say the quasi-seminorm thing: ((f))x =
sup{|f(x)| : x € K} is a seminorm on C(F"), and {f,} — f if and only if for all compact
subsets K CF", {(fn)} — flx in the seminorm (( ))g.

Remark 6.3 A normed vector space can have more than one norm on it, and it can be
complete in one norm and not complete in another. We’ll see an example in ‘example-
completenotcomplete’.

7 Normed vector spaces are metric spaces

If X is a normed vector space with metric | |, it is a metric space with the metric
d(xz,y) = |z — y|. This satisfies the property of metrics:

(1) d(z,x) = |x — x| = |0| = 0 for all x.

(2) If d(z,y) = 0, then |z — y| = 0, so that z —y = 0, so that = y.

(3) For all z,y,z, d(z,2) = |z —2| = [(@—y)+y—2)| < |lz—yl+ly—=z] =

d(z,y)+d(y, z).

Not every metric produces a norm, however! Namely, the discrete metric on a vector
space (over a field with at least 3 elements) is given by d(z,x) = 0 and d(z,y) = 1 if x # y,
and is a metric. However, the function z +— d(z, x) is not a norm as it does not obey the
scalar rule.

In any case, a normed vector space X has a norm on it, as well as the corresponding
metric topology. Whereas a norm produces precise numbers, open sets are determined
more loosely. This is reflected in Theorem 7.3 below. But first a lemma:

Lemma 7.1 Let X be a vector space. Let p be a norm and q a seminorm on X. Suppose
that for some positive real numbers r,s, {z : p(x) < r} C {z : q(x) < s}. Then for all
r e X,

Proof. If q(xz) = 0, there is nothing to show. So we may assume that g(z) # 0. Then
x # 0. As p is a norm, then p(x) # 0. Let a € (0,1). Then ar& € {y : p(y) <r} S {y:
q(y) < s}, so that q(arﬁr)) < s. In other words, arq(z) < sp(x). Now we take the limit
as « goes to 1 to obtain that rq(z) < sp(x). This proves the lemma. ]
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Lemma 7.2 Let | | and (( ) be two norms on a vector space X. Then the open sets in
the topology determined by (( )) are open in the topology determined by | | if and only if
there exists a positive real number B such that for all x € X,

B(x) < |«

Proof. Suppose that the open sets in the topology determined by (( )) are open in the
topology determined by | |. Then {z : (z)) < 1} is open in the topology determined by
| |, so that there exists » > 0 such that {z : || < r} C {z : (z)) < 1}. But then by
Lemma 7.1 for all z, (z)) < 1 |z[, so we may take B = r.

Now suppose that there exists a positive real number B such that for all x € X,
B((x)) < |x|. We need to prove that the (( ))-open sets are open in the | | topology.
So let U be an (( ))-open set. Let a € U. We need to prove that there exists a | |-
open set containing a that is contained in U. First of all, there exists » > 0 such that
{z: (z—a) <r} CU. Now consider V = {x : |z —a| < Br}. This is open in the | |
topology and it contains a. If x € V, then B((x —a)) < |z — a| < Br, so that (z —a)) <,
which implies that x € U. Thus V is an open set containing a and contained in U. ]

The following theorem is an immediate corollary:

Theorem 7.3 Let | | and (( )) be two norms on a vector space X. Then the topologies

determined by these two norms are the same if and only if there exist positive real numbers
B, C, such that for all x € X,

B((z)) < |z| < C(). O
Topology also enables us to talk about continuous functions:

Theorem 7.4 Let X and Y be normed vector spaces. For a linear transformation T :
X — Y the following are equivalent:

(1) T is uniformly continuous.

(2) T is continuous.

(3) T is continuous at 0.

(4) T is continuous at some point.

(5) There exists ¢ > 0 such that for all z € X, |T(x)| < ¢|x|. (The two norms are

one on X and one onY'.)

Proof. Trivially (1) = (2) = (3) = (4), and (5) = (3).

Assume (4). Thus T' is continuous at some point a. Let ¢ > 0. Then there exists § > 0
such that for all z, | — a| < § implies that |T'(z) — T'(a)| < e. Now let b € X be arbitrary,
and let y € X satisfy |y — 0| < 6. Then |(y — b+ a) — a| < 6, so that by continuity of T
at a, |[T(y — b+ a) —T(a)| < e. In other words, by linearity of T', |T(y) — T'(b)| < e. This
proves (1), so that (1) through (4) have been proved to be equivalent.
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Now assume (3). Then there exists 6 > 0 such that for all x with |z| < §, we have
that |T'(z)| < 1. In other words,

{reX |z|<é}C{re X |T() <1}

Note that z + |T'(z)| is a seminorm. Thus by Lemma 7.1, for all z € X, |T'(z)| < 3 |z].
This proves (5), and finishes the proof of the theorem. O

Remark 7.5 Not all linear functions are continuous. Let X = L°°(N'). Then X con-
tains {%}n and the sequences e,, that are 1 in the nth entry and O elsewhere. The set
{{%}n, e1, ea, ...} is linearly independent, so it can be extended into a vector space bases
B. Define T : X — R as T(x) being the coefficient of {1},, in the writing of z as a linear
combination of elements of B. By uniqueness of such linear combinations, T is linear. Set
Tm ={+tn—e1—3e2— - —mem ={0,0,...,0, 725, 725, 75, - -} Then [z, | = =15
and |T'(z,,)| = 1, so that condition (5) in the theorem fails, and so 7" is not continuous.

8 How to make new spaces out of existent ones (or not)

In this part we will look at various constructions one can do to ((complete) normed)
vector spaces to create other ones (or to fail at it).

Definition 8.1 Let I be an index set, and for each i € I, let B; be a vector space over F.
The direct sum of the B; is

@ B; ={(bi)icr : b; € B; and at most finitely many b; are non-zero}.
il
It is easy to verify that €, ; B; is an F-vector space with componentwise addition

and scalar multiplication.
If each B; is normed with norm | |,, we can make €p,_; B; normed with

[(b:)ill = Z |6i]]; -

iel

Even though I may have huge cardinality, >, , |bs]; is a finite sum by the definition of
elements of direct sums. It is easy to verify that || | is a norm.

If I is finite, and if each B; is a Banach space, then the direct sum is also a Banach
space: any Cauchy sequence is a Cauchy sequence componentwise, so each component has
a limit, and the limits of the components form an element of the direct sum that is the
limit of the original Cauchy sequence.

Similar reasoning shows that if each B; is a Banach space and at most finitely many
are non-zero vector spaces, then their direct sum is a Banach space.
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In general, however, an infinite direct sum of non-trivial Banach spaces is not complete:
Let Iy be an infinite countable subset of I. We may assume that I = N. For each ¢ € N, let
b; € B; have norm 27, Let ¢, be the element of @;c;B; that has b; in the ith component if
i < n, and has other components 0. Then it is easy to see that {c,} is a Cauchy sequence
in @;crB;, but that the limit does not exist (as it would have to have only finitely many
non-zero entries).

COMMENT: If each B; has a vector space basis S;, there is an obvious way of making
elements of S; be thought of as elements of the direct sum. Then show that U;c;S; is a
basis of ©;c1B;.

Definition 8.2 Let I be an index set, and for each i € I, let B; be a vector space over F.
The direct product of the B; is

[1B: = {(b)icr : bi € Bi}.
iel

It is easy to verify that []
scalar multiplication.

se1 Bi 1s an F-vector space with componentwise addition and

If I is finite, or if at most finitely many B; are non-zero vector spaces, then ||
@,c; Bi, so that has been handled above.

COMMENT: If each B; has a vector space basis S;, there is an obvious way of making
elements of S; be thought of as elements of the direct product. Show that if I is infinite and

ZGI

if infinitely many B; are non-trivial vector spaces, then U;c7S; is NOT a basis of [, ; B
Similarly, even if each B; is normed with norm | |,, there is no norm on the dlrect

product that would give convergence if and only if there is convergence in each component!

We thus now have two failed attempts and one successful try at making new ((com-
plete) normed) vector spaces out of old ones.

Here is another partial success: For any I and normed B; as above, and for any p > 1,
consider

X ={(b); € HB Z |b;]7 makes sense}.
icl el

What does “make sense” mean? Well, perhaps we have the following:

(1) I is finite;

(2) or all but finitely many b; are zero;

(3) or all but countably many b; are zero, and the countable sum converges;

(4) or we need to talk about nets and convergence in nets (and we will not do that).

Here is a special case of X: I = N, all B; are F, and “makes sense” means that
> ier |bi]f converges. But then X = (P, with the familiar norm, and X is even complete
in the norm (by Proposition 4.7).

We have seen direct sums, direct products, and special subsets of direct products,
some of which gave us Banach spaces and some of which didn’t. Here is another iffy one
(with a trivial proof):
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Proposition 8.3 A linear subspace of a Banach space is Banach if and only if it is closed.
O

Our experience with finite dimensional vector spaces perhaps makes us wonder whether
non-closed linear subspaces can exist, but they do. Here is an example: Let X = /P, and
let Y =XnN ®i€NF' As in the earlier discussion of direct sums, Y is a vector space, but it
is not complete, and it is not closed in X.

For the especially good results on finite-dimensional vector spaces, see Section 9.

Definition 8.4 Let X and Y be normed vector spaces. Define

B(X,Y) = the set of all continuous linear transformations X — Y.

It is clear that B(X,Y) is a vector space. It is a normed space with the following:
IT| =inf{c > 0: for all x € X, |T(z)| < c|z|}.
Note that with this definition, for all z € X,
1T ()] < |T] || -
Proposition 8.5 The function | | is a norm on B(X,Y).

Proof. Foralln € N, [0(z)] =0 < & |z|, so that inf{c > 0: for all z € X, |[T(z)]| < c|z|} <
inf{% > 0:n € N} =0. Thus the norm of the zero linear transformation is 0.

Suppose that for some T, inf{c > 0: for all z € X, |[T'(x)| < c¢|z|} = 0. Then for all
n € Nand for all z € X, |T(z)| < L |z|. Thus if we fix  and let n go to infinity, we get
that |T'(z)| = 0 for each x, and since this | | is a norm on Y, we have that T'(x) = 0 for
all x € X, so that T is the zero linear transformation.

It is straightforward to prove that for all & € F and all T, |oT'|| = || |T].

Now let 7', S € B(X,Y). Then for all x € X,

|7+ S) ()| = 1T (x) + S(@)| < [T(2)] + [S(@)] < [Tl + 151 1=] = (7] +1S1) ],

whence |[T'+ S| = inf{c > 0: forallz e X, |(T+ S)(z)| <c|z|} < |T| + |S|. This
proves the triangle inequality. ]

It is convenient to have alternate formulations of this norm:
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Proposition 8.6 Let X and Y be normed vector spaces. Let T € B(X,Y). Then the
following numbers are the same:

(1) ny =inf{c¢>0: forallz € X, |T(z)| < c|z|}.

(2) n} =inf{c>0: forallz € X\ {0}, |T(x)| < c|z|}.

(3) ng =inf{c > 0: for allz € X with |z| <1, |T(x)| < c}.

(4) n3 = inf{c > 0: for allz € X with |z| < 1, |T(z)] < c}.

(5) na = sup{|T'(2)| : v € X, | < 1}.

(6) njy = sup{|T'(z)] : x € X \ {0}, [« < 1}.

(7) ns = sup{|T(z)| : x € X, || < 1}.

(8) ng = sup{|T(z)| : x € X\ {0}, =] <1}.

Proof. 1 leave the proof of ny = nf, ny = n}, ns = ni and ny = ns to you.

If z € X has |z| <1 (or < 1), then |T'(z)] < n1|z| < ni, so that ng,ng < ng. If
x € X is non-zero, then |T'(x)| = |z||T(x/ |x|)| < |z|ns2, which proves that n} < ns.
If @ € (0,1), then in addition |T(z)] = L |T(az/ |2])] < ln,, so that in the limit as
a— 1, |T(z)| < |z| ns, which proves that n} < ns.

Let € X satisfy |z| < 1. Then |T(x)| < ng, which proves that ny < ny. Also,

IT(z)| < n4, which proves that no < ny. ]

Theorem 8.7 If X is a normed vector space and Y is a Banach space, then B(X,Y) is a
Banach space.

Proof. We have seen that B(X,Y) is a normed vector space. Now let {T},} be a Cauchy
sequence in B(X,Y). Then for all x € X and all n,m € N,

|70 () = Ton ()| < |T = T 2],

so that {T},(z)} is a Cauchy sequence in Y. Since Y is complete, there exists T(z) € Y
(depending on x) such that {7, (x)} converges to T'(z) in the norm.
The function T': X — Y is linear as for all a,b € F and all z,y € X,

T(ax+by) = lim T, (ax+by) = lim(aT,,(z)+bT,,(y)) = alim T, (x)+blim T,,(y) = aT (z)+bT (y).

T is continuous: Since {71, (z)} is a Cauchy sequence, it is bounded. So there exists ¢ >
0 such that for all n, |T),| < ¢. Then for all x € X, |T'(z)| = |lim,, T, (z)| = lim,, | T (x)|
by the definition of limits in the norm in Y, whence

|T(2)| < lim |7, | o] < lime|z] = ¢z,

so that by Theorem 7.4, T' is continuous.
{T,} converges to T' (in the norm on B(X,Y)): Let € > 0. Since {T},} is a Cauchy
sequence, there exists N such that for all m,n > N, |T,, — T,,| < €/2. Let z € X be
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non-zero. Since {7, (x)} is a Cauchy sequence, there exists N'(z) > N such that for all
n > N'(x), |T,(z) — T(z)| < €|x| /2. Then for all n > N, choose m > N'(x), and then

|Tn(2) = T(@)] < |Tn(2) = Ton(2)]| + [T (2) = T(2)]
<|Tw = Tl 2] + €] /2
<elzl.

Thus for all n > N and all (zero and non-zero) z, |T,(x) —T(x)| < €|z, so that
T, - T| <. 0

Corollary 8.8 If X is a normed vector space, then B(X,F) is a Banach space. O

Definition 8.9 For any normed vector space X over the field F, the dual space of X is
B(X,TF), and it is denoted X*.

We proved that the dual space of a normed vector space is a Banach space.

We now move to another construction of ((complete) normed) vector spaces from
existing ones.

Definition 8.10 Let X be a vector space and M a linear subspace. For any x € X, define
e+ M={z+m:meM}.
It is easy to see the following:
Lemma 8.11 + M =y + M ifand only if t —y € M. ]

Definition 8.12 Let M be a linear subspace of an F-vector space X. The quotient
(space) of X by M is the set

X/M={x+M:xec X}
On this set we define + : (X/M) x (X/M) — (X/M) and - : F x (X/M) — (X/M) as
(z+ M)+ (y + M) = (z+y) + M,
r-(z+ M) = (rz)+ M.

We first need to establish that + and - are well-defined. Namely, we need to establish
that (x +y)+ M = (' +vy') + M and that (rz) + M = (rz’) + M. But the assumptions
mean that x — 2,y —y' € M, so that (z +y) — (' + '), (rz) — (ra’) € M as M is an
F-vector space, whence the conclusions hold, so that + and - are well-defined.

With that, it is straightforward to establish that X/M is a vector space over F. The
zero vector is of course 0 + M = M.
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Definition 8.13 If X is a normed vector space and if M is a closed vector subspace, we
define the norm on X/M by

|x + M| = inf{|z +m|:m e M}
=inf{ly|:y € x+ M}
= inf{|z —m| : m € M}
= distance(x, M).

This is indeed a norm:

(1) It is real-valued, taking on only non-negative values.

(2) [0+ M][ <]0+0]=0,s0 |0+ M]=0.

(3) If |« + M| = 0, then for all n € N, there exists m,, € M such that |x + m,| < 1/n.
Thus 0 is a limit point of x + M, so that —z is a limit point of (—z) +x+ M = M.
Since M is closed, —x € M, whence x € M, and x + M = 0+ M is the zero vector
in X/M.

(4) Certainly |c(x + M)| = |c| |z + M]| for all c € F and all x € X.

(5) Let z1,22 € X. Let € > 0. Choose my, mg € M such that |z +mq| < |z1 + M|+
6/2, ”LEQ + m2|| < ”l‘g + M” + 6/2. Then

[(z+ M)+ (y+ M)| = |(z+y) + M|
< o+ y +ma 4 ma|
< o +ma] + |y + mal
<z + M| + |22 + M| + €.
As we let € go to 0, this shows that that |(z+ M)+ (y+ M)| < |1+ M| +

|2 + M].
Thus we do have a norm on X/M.

Theorem 8.14 Let X be a Banach space and M a closed linear subspace. Then X /M is
a Banach space.

Proof. We use Homework 4, Problem 1. Let {x,, + M} be a sequence in X/M such that
> lzn + M| converges.

Recall: |z + M| = inf{|y| : y €  + M}. Thus for all n, let y,, € x,, + M such that
|lzn + M| < |yn| < |zn+ M| +27". Thus ) |yn| converges in F. By Homework 4,
Problem 1, since X is complete, there exists y € X such that lim, Y ;" y; = y (in the
norm). Then for all n,

n n

D @i+ M) = (y+M)| =Y (v + M) —(y+M)H =[O vi—w+M| <|> wi—y|,
i=1 i=1 i=1 i=1
which goes to 0 as n goes to infinity. ]

We combine finite direct sums and quotients: if X and Y are Banach spaces, then
X @0 is a closed subspace of X @Y, and (X @ Y)/(X @ 0) is naturally isomorphic to Y.
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9 Finite-dimensional vector spaces are special

Theorem 9.1 If X is a finite-dimensional vector space over F, then any two norms define
equivalent topologies.

Proof. Without loss of generality X # 0. Let | | be a norm on X. Let {e1,...,e,} be a
vector space basis of X. Then for all x € X, there are unique x; € IF such that z =), x;e;.
It is easy to prove that |z| _ =, |x;| is a norm on X. It suffices to prove that the norms
| | and | | produce equivalent topologies. Let C' = max{]e;| : i}. By the definition of
norms,

] =

E XTi€;
i

Thus if U is open in the topology determined by | |, by Lemma 7.2 it is open in the
topology determined by | |-

Consider the set B = {z : |z, < 1}. This is a closed and bounded subset of a finite-
dimensional metric space, hence is compact (by Proposition 2). Let S be an open cover
of B in the topology determined by | |. By what we have already proved, 8 is an open
cover of B in the topology determined by | |, so that 8 has a finite subcover of B. This
proves that B is compact in both topologies. Similarly, {z : |z|,, = 1} is compact in both
topologies. As the || |-topology is metric, it is Hausdorff, so that it is closed. which means
that {z : ||, < 1} is open in the | |-topology as a subset of B, which means that there
exists an open set U in the | |-topology such that U N B = {z : |z|,, < 1}. In particular,
there exists 7 > 0 such that {x : |x| < r} C U. This implies that for all z,

<D laillel < CY lail = C ] -
7 7

|z] <r and |z|, <1 implies |z|_ < 1.

Of course, we want the implication |z| < r = |z|,, < 1. Without loss of generality
x #0. Let || <r. If ||, <1, then by the displayed implication, |z]|_ < 1. So we may
assume that |z|_ > 1. Then z/|z|, € B and |z/ |z| | = |z| /|z]| <7/ ]z <7, so
that by the displayed implication, 1 = |x/|z[_ [ < 1, which is a contradiction.

Thus we are done by Theorem 7.3. (]

Corollary 9.2 A finite-dimensional vector subspace of a normed vector space is closed.

Proof. Type ... ]
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Theorem 9.3 Any linear transformation from a finite-dimensional normed vector space
to a normed vector space is continuous.

Proof. Let X,Y be normed vector spaces with X finite-dimensional. Let T : X — Y

be linear. Let {ej,...,e,} be a vector space basis of X. Let C = max{|T(e;)| : ¢ =
1,...,n}+ 1. Then C is a positive real number, and for all z = >, x;e; € X,

IT(x)] =

<D lwlT(e)] < ) |2ilC = Clal, -

Thus by Theorem 7.4, T is continuous. ]

Corollary 9.4 Any linear transformation from a finite-dimensional normed vector space
to I is continuous. O

.. and from linear algebra we then know that (F")* = B(F",[F) = F".

Theorem 9.5 Let X be a complete normed vector space, M a closed subspace and N a
finite-dimensional subspace. Then M + N = {m+n:m € M,n € N} is a closed subspace
of X.

Proof. (Part of the proof means deciphering the notation.) The image (N + M)/M of N
in X/M is a finite-dimensional vector subspace of X/M, and since X/M is normed, by the
corollary above we have that (N + M) /M is a closed subspace of X/M.

Now let {n; + m;}; be a sequence in N + M that converges to x € X. We need to
prove that x € M + N. Clearly {n; +m;+ M}, is a sequence in (N + M) /M that converges
tox+ M € X/M. Since (N + M)/M is closed in X/M, necessarily x + M = n + M for
some n € N, or in other words, x = n + m for some m € M. O

Well, why do we need to assume that N is finite-dimensional? Isn’t the sum of two
closed linear subspaces always closed? (The answer is no; see the end of the next section.)

10 Examples of (infinite dimensional) subspaces

This section is a playful intermission: let’s find (infinite-dimensional) spaces with
(infinite-dimensional) subspaces.
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Example 10.1 Consider ¢*°. Elements of £°° can be represented as bounded countable
sequences {a, }nen with a,, € F. Let e, be the sequence with 1 in the nth spot and 0
elsewhere.

(1) {en : n € N} is linearly independent in £°°.

(2) {en : n € N} is not a basis of £°.

(3) For all p > 1, ¢P is a subspace of ¢>° that is not closed (in the ¢*° norm):
{{1,1/2%7 1/3YP .. 1/n'/?,0,0,...} : n € N} is a sequence in ¢? that is Cauchy
in the £>° norm. The limit {1,1/2'/7 1/3/P . . 1/n'/P ..} is not in (P,

(4) ¢, the set of all converging sequences, is a closed subspace of £*°; ¢q, the set of
all converging sequences converging to 0, is a closed subspace of ¢; the set of all
sequences that are eventually 0 is a linear subspace of ¢g that is not closed.

(5) For m € N, {{a,} € £*° : ay,,, =0 for all n € N} is a closed subspace of £>°.

(6) For m € N, {{a,} € £> : a,, = ma,,, for all n € N} is a closed subspace of £>°.

(7) If F = R: For a strictly increasing sequence {m,} in N and a sequence {r,} in
R, {{an} € € : a,, > 7y, for all n € N} is a closed subset of £>° that is not a
subspace.

Alternatively, for arbitrary F: For a strictly increasing sequence {m,} in N and
a sequence {r,} in R, {{a,} € €*° : |ay,,| > r, for all n € N} is not a subspace
of £°°.

(The same conclusions if > is replaced by <.)

(8) Let {m,} be a strictly increasing sequence in N. Under what conditions on the
sequence {r,} in R, is {{a,} € €*° : ay,, = rpa, for all n € N} a (closed) subspace
of 17

(9) Let M consist of all those sequences {a,} for which there exist N € N and a
polynomial p(X) with coefficients in F such that for all n > N, a,, = p(n). Well,
since elements of /°° are bounded, these p must be constant polynomials, so all we
are saying here is that M is the set of all eventually constant sequences. Clearly
M is a linear subspace of £°°. It is not closed.

(10) Let M’ consist of all those sequences {a,} for which there exist N € N and a
polynomial p(X) with coefficients in F such that for alln > N, a,, = p(1/n). Since
p(1/n) +q(1/n) = (p+ ¢)(1/n), M’ is a linear subspace of ¢*°. It is not closed
(because the limit of polynomials need not be a polynomial).

(11) Let {m,} be a strictly increasing sequence in N. What is {{a,} € ¢
{am,, }n is a convergent sequence}?

(12) Let M = {{an} € €>° : az, = 0foralln € N} and N = {{a,} € £ : nay, =
agpn—1 for all n € N}. Then M and N are closed linear subspaces of £>°. Let {x,}
be an eventually zero sequence. Define as,, = 0, a9,_1 = Ton_1 — NTop, bop = Top,
ban—1 = nxa,. Since x, = 0 for large n, it follows that {a,} € M and {b,} € N.
Clearly {a, }+{bn} = {zn}. Thus M+ N contains all sequences that are eventually
0. Hence the closure of M + N contains all converging sequences with limit 0. In
particular, {1/4/n} is in the closure of M + N. Suppose that {1/\/n} € M + N.
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Write {1/v/n} = {an} + {bn} for some {a,} € M and {b,} € N. Necessarily
ban = 1/4/2n, so that by,_1 = \/n/v/2, but then {b,} is not in ¢>°, which gives a
contradiction. It follows that the sum of two closed subspaces need not be closed.

The following is a modification of what we did in class. Take p > 1, and closed
subspaces M = {{a,} € ? : az, = Oforalln € N} and N = {{a,} € # : nay, =
agp—1 for all n € N} of /P, Again all eventually zero sequences are in M + N, so that all
elements in /P are in the closure of M + N. If M + N is closed, then for any r € (1,p),
it follows that {n='/"} = {a,} + {b,} for some {a,} € M and {b,} € N. Necessarily
ban = (2n) 717, so that by,_; = 27/ "pl=1/" = 2=U/rp(=1/" but then {b,} is not in ¢7,
which gives a contradiction. It follows that the sum of the closed subspaces M and N in
(P is not closed.

11 Sublinear functional and the Hahn—Banach Theorem

Definition 11.1 Let X be a vector space over R. A function p : X — R is a sublinear
functional if for all z,y € X and all r € R>q, p(rz) = rp(x) and p(x + y) < p(x) + p(y).

The main example of a sublinear functional is a norm, or a norm composed with a
linear operator.

Definition 11.2 Let X be a vector space over F. A linear functional is a linear trans-
formation X — F. (Explicitly, a function p : X — F is a linear functional if for all
z,y € X and allr € F, p(rz) = rp(z) and p(x +y) = p(x) + p(y).)

Clearly all linear functionals to F = R are sublinear, and some (but not all) sublinear
functionals are linear.

Theorem 11.3 (Hahn-Banach Theorem) Let X be a vector space over R. Letp : X — R
be a sublinear functional. Let M be a subspace of X and fy a linear functional on M such
that for all x € M, fo(x) < p(x). Then there exists a linear functional f on X such that
(1) flas = o
(2) For all z € X, f(x) < p(z).

Proof. If X = M, then f = f, works.

Consider the case where X is spanned by M and a vector x € X \ M. Note that for
all & € R, the function f : X — R defined by f(rx + y) = ra + fo(y) is a well-defined
linear functional on X. We need to find a suitable @ € R such that for all » € R and
all y € M, ra+ fo(y) < p(rxz 4+ y). This holds by definition for » = 0. If » > 0, the
restriction is that o+ fo(Ly) = a+ L fo(y) = L(ra+ fo(y)) < ip(rz +y) = p(z + 1y), so
that a < p(x +y1) — fo(y1) for all y; € M. If r < 0, the restriction is that o — fo(vﬂy) =

a+yfoly) = (rat fo(y)) = pp(re+y) = —p(=z + 7y, so that & > fo(y2) —p(—z +y2)
for all yo € M.
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But for all y1,y2 € M, fo(y1) + fo(y2) = fo(y1+y2) < pyr1+y2) =p(r+y1—2r+y2) <
p(x+y1) +p(—z+y2), so that fo(y2) —p(—x +y2) < p(x+y1) — fo(y1). Thus a exists as
we can choose

a = sup{ fo(y1) + fo(y2) : y2 € M }.

Now consider the general case of X and M. We will use Zorn’s lemma. Let P be
the set of all pairs (M, f1), where M; is a subspace of X containing M and f; is a linear
functional on M; such that fi|yr = fo and for all x € My, fi(z) < p(z). Then P is not
empty as it contains (M, fp). We can impose a partial order < on P: (M, f1) < (Ms, f2)
if My is a subspace of My and fa|p, = fi1. Let L be a totally ordered subset of P (i.e.,
a chain). Write L = {(Ma, fo) : a € I} for some index set I. Let M = U,M,, and
f: M — R be defined by f(v) = fo(v) whenever v € M,. By the order on P, this f
is well-defined, and it is a linear functional on M. Furthermore, by the definition, for
all z € M, f(x) < p(z). Thus (M, f) is an element of P that is an upper bound on L.
Thus Zorn’s lemma applies: there exists a maximal (M’, f’) in P. If M’ # X, there exists
x € X\ M'. By the previous part, we can extend f’ to the strictly larger subspace spanned
by M’ and x, which contradicts the maximality of (M’, f'). Thus necessarily X = M’, and
f' is the desired f. O

Theorem 11.4 (Hahn—Banach Theorem) Let X be a vector space over C. Letp : X — R
be a sublinear functional. Let M be a subspace of X and fy a linear functional on M such
that for all z € M, Re(fo(x)) < p(x). Then there exists a linear functional f on X such
that

(1) flar = fo.

(2) For allx € X, Re(f(z)) < p(z).

Proof. Since X is a vector space over C, it is a vector space over R. Thus by Theorem 11.3,
there exists a linear functional g : X — R such that g|»s = Re(fp) and for all z € X,
g(z) < p(x). Define f: X — C as

f(x) = g(x) —ig(iz).

Clearly g = Re(f), f is R-linear, and since f(ix) = g(iz) —ig(i®z) = g(ix) +ig(x) = if(x),
it folows that f is C-linear as well. If z € M, then f(z) = g(z) — ig(ix) = Re(fo(z)) —
iRe(fo(iz))) = Re(fo(x))—iRe(ifo(x))) = Re(fo(x))+ilm(fo(x))) = fo(x), which finishes
the proof. ]

Remark 11.5 If X is a normed vector space over C, then it is a normed vector space
over R, and the function
¢ : Be(X,C) —» Br(X,R)

given by ¢(f) = Re(f) is an isometric isomorphism. (I leave the proof as an exercise.)
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Corollary 11.6 (Hahn-Banach Theorem) Let X be a vector space over F. Let p : X —
[0,00) € R be a seminorm (or more generally(?), a sublinear functional with p(rz) = |r|p(z)
for allr € F and x € X ). Let M be a subspace of X and fy a linear functional on M such
that for all x € M, |fo(x)| < p(x). Then there exists a linear functional f on X such that
(1) flm = fo
(2) For allxz € X, |f(x)| < p(x).

Proof. If F = R, then for all x € M, fo(x) < |fo(z)| < p(xz). Then by Theorem 11.3
there exists f : X — R that extends fy and such that for all x € X, f(z) < p(x). Hence
—f(z) = f(=z) < p(—=) = p(x), so that |f(z)| < p(z).

Now suppose that F = C. Then for all x € M, Re(fo(x)) < |fo(x)| < p(x), so
that by Theorem 11.4, there exists f : X — C that extends fy and such that for all
r € X, Re(f(z)) < p(x). Now let z € X and 7,6 € [0,00) such that f(x) = re. Hence
[f@)] =r=e""re? =7 f(z) = fe7"z) = Re(f(e"x)) < p(e™"x) = p(2). 0

Corollary 11.7 Let X be a normed vector space with a subspace M. If fo € M*, there
exists f € X* such that f|y = fo and | f]| = | fol-

Proof. Let p(x) = || fo| |x|. This is a sublinear functional, and for all z € M, |fo(z)| <
I foll |z]. Corollary 11.6 says that there exists f : X — F such that f|y = fo and |f| < p.
In other words, for all z € X, |f(z)| < p(x) = | fo| |z|, which says that |f]| < |fo].- The
other inequality is clear. O

Corollary 11.8 If X is a normed linear space and xq is non-zero in X, then there exists
f € X* such that | f| =1 and f(xg) = |xo]-

Proof. Let M be the span of xg. Define fo(rzg) = r|xo| for all » € F. Then fo € M*,
| fol = 1, and by the previous corollary, the f with specified properties exists. O

Corollary 11.9 If X is a normed vector space and xo € X, then f(xg) =0 for all f € X*

implies that xo = 0. (]
Corollary 11.10 If X is a normed linear space and {z1, ..., x,} are linearly independent,
then for arbitrary aq,...,a, € F there exists f € X* such that for all i = 1,...,n,
f(zi) = a.

Proof. Let M be the span of z1,...,z,. Define fo(>_, riz;) =), ria; for all r € F. Then
fo is linear, and since M is finite-dimensional, fj is even continuous, so that fo € M*. By
Corollary 11.9, the f with specified properties exists. O
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Corollary 11.11 Let M be a closed subspace of a normed linear space X, and let xg €
X\ M. Then there exists f € X* such that f|y; =0, |f| =1, and f(xq) = distance(xq, M).

Proof. We apply Corollary 11.8 to the normed vector space X/M and the non-zero element
xg+ M in X/M. We know that distance(zo, M) = |zo+ M|. Thus there exists f; €
(X/M)* such that | fi| = 1 and fi(xo + M) = distance(xg, M). Define f : X — F as the
composition of the canonical map X — X/M and fo : X/M — F. Then for all x € M,
f(@) = fuw+M) = [0+ M) = 0. Forallz € X, |f(z)] = Lfi(x+ M)| < Jo + M] < Jal,
so that |f| < 1. Fix € > 0. Then there exists m € M such that |z + m| < |zo + M| + ¢,
so that

f(zotm) = fi(zo+M) = distance(xo, M) = [xo + M| <[ f]zo +m| < |f] (lxo + M|+e),

so that || f| > distance(zo, M)/(|xg + M| + €), which proves that |f| > 1, and hence that
Il =1. u

Theorem 11.12 If X is a normed vector space and M is a linear subspace, then the
topological closure M of M equals
Nkernel f,

where f varies over elements of X* that have M in the kernel. In particular, the topological
closure is a vector subspace of X.

Proof. By Exercise 4.3, each kernel f is a closed subspace of X. Since it contains M, it
contains M. Thus Nkernel f contains M.

If zo ¢ M, then distance(zo, M) > 0. Certainly distance(xq, M) < distance(xq, M).
For any € > 0, there exists m € M such that d(zg,m) < distance(zg, M) + €/2, and then
there exists m € M such that |m —m| < €/2. Thus |zo —m| < |zo —m| + |[Tm —m| <
distance(zg, M)+e, so that distance(xg, M) < e+distance(zg, M). As this holds for all €, we
get that distance(zg, M) < distance(x, M), whence distance(xg, M) = distance(zg, M).
In particular, xo & M.

By Corollary 11.11 there exists f € X* such that for all x € M, f(z) = 0 and

f(xo) = distance(xg, M) = distance(x, M). In particular, zo & kernel f. O

Corollary 11.13 Let X be a normed vector space and M a linear subspace. Then M is
dense in X if and only if any f € X* that vanishes on M is zero. ]

Example 11.14 Let {e1,e2,...} be a basis of ®,F, and let T : ®,F — F be the linear
functional defined by T'(e;) = i. Then T is not continuous, so T" & (&, F)*. Let M be the
kernel of T'. The claim is that M is not closed and that the closure of M is the whole space
@, F. Namely, let m € M. Define z; = m — @ei. Then T'(x;) =T (m) — @T(ei) =0,
so that #; € M. The norm of T(Zm)ei is |T(Zm)|, which goes to 0 as i goes to oo, so that {x;}
converges to m. This proves the claims.
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Theorem 11.15 There exists T € (£*°)* such that
(1) | = 1.
(2) If x € ¢, then T'(z) = limz.
(3) If x € £°° with x,, € [0,00) for alln € N, then T'(x) € [0, c0).
(4) If z,y € £°° and for alln € N, y,, = xp41, then T'(z) =T (y).

Proof. First define S : £ — (> by S(z1,x2,...) = (x2,23,...). Then S is a linear
function, and |S(x)| < |z, so that S is continuous. Condition (4) says that for all x € £>°,
ToS(x)="T(x).

Let M = {x — S(z):x € £>*°}. Then M is a vector subspace of X.

Let y = {1,1,1,...} € £°°. Since 0 € M, distance(y, M) < 1. Suppose that there exist
x € (> and a € (0,1) such that for all n > 1, |z, — z,—1 — 1| < a (implicitly, zo = 0).
Note that Re(z) € M, and the assumption above says that for all n,

—a < Re(x,) — Re(zp—1) — 1 < a.

In particular, 1 —a < Re(x1) < 1+ a, and for all n > 1, 1 — o + Re(z,—1) < Re(z,) <
14 a. It follows that {Re(x,)} is a bounded strictly increasing sequence of positive real
numbers, so that lim,, Re(z,) exists and is a real number. But then 1 = lim,, |Re(z,) —
Re(x,—1) — 1| < a < 1 gives a contradiction. Thus no such « exists, so that for all z € £,
distance(y, z) = sup |z, — x,—1 — 1| > 1.

By triangle inequality it follows that distance(y, M) = 1. (And the topological closure
M is still a vector subspace.)

Thus by Corollary 11.11, there exists T' € (£*°)* such that T'|5; = 0, |T| = 1, and
T(y) = distance(y, M) = 1.

Note that T satisfies the desired properties (1) and (4).

Let x € @,F, i.e., z is a finite sequence. Then for some n € N, S™(x) is the zero
sequence, and in particular, S™(z) is in the kernel of T. Since for all m, S™(z) —S™(x) €
M C kernel T, it follows that = > _ (S™(x) — S™T1(z)) € kernel T. Thus ¢o(N) €
kernel 7.

Let x € ¢* be a sequence with limit 0. Then z is in the closure of @, F. Since T is
continuous, it follows that = € kernel T'. Thus ¢¢ € kernel T'.

The desired condition (2) follows: for any x € ¢, if r is the limit, then z —ry € ¢o C
kernel T', whence T'(x) =T(x —ry+ry) =T(z —ry) +rT(y) =0+r-1 =7 =limz.

Finally we prove Condition (3). Let x € ¢*° with z,, € [0,00) for all n. If z,, = 0 for
all n, then T'(z) = 0 € [0,00). So we may assume that x # 0. Then |z| > 0, and for all

n, &5 € [0,1). Then |y — | < 1, and 1= T(E)] = T - &l < 1Ty - 5] < 1

It follows that 1 — Re(T(”fc—”)) < |1 - T(||$7||>| < 1, whence Re(T(ﬁ)) > 0, so that
Re(T(z)) > 0.

* Recall: ¢ denotes the set of all convergent sequences, and ¢y denotes the set of all
convergent sequences with limit 0.
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In case F = R, we are done with the proof. Otherwise, F = C, and we can go
back and construct T as above on ¢>*(R) — R. Set 77 : ¢*(C) — C with T'(x) =
T(Re(z)) + ¢T'(Im(x)). This is an additive and R-linear function, and since 7"(ix) =
T(Re(iz)) + iT'(Im(ix)) = T(—Im(z)) + T (Re(x)) = =T (Im(x)) +iT(Re(z)) = iT'(x),
it follows that 7" is C-linear. For all z € ¢, |T"(z)|?> = |T(Re(x)) + iT(Im(z))]? =
(T(Re(x)))? + (T(Im(x))? < [T (Re(x))* + (Im(x))?) = [T |«|* = |=]* so that
IT'| < |T| = 1. However, since T” extends T, |[T"| > |T|, so that |T”| = 1. Thus condition
(1) holds for 7", and trivially the other conditions hold for 7" as well. O

The linear functional from Theorem 11.15 is called a Banach limit.

Banach limits do not behave like limits in the following sense: there exist x,y € £
such that T'(zy) # T'(z)T (y). Namely, let z = (2,17,2,17,2,...) and y = (17,2,17,2,...).
By Condition (4) of Banach limits, T'(z) = T'(y). Then 2T (x) = T(x)+T(y) = T(x+y) =
7(19,19,19,...) = 19 by Condition (2) of Banach limits, so that T'(z) = 9.5. Similarly,
since xy = {34}, T(xy) = 34. Hence T'(zy) # T(x)T(y).

What falls out of the calculation above: if z is a periodic sequence of period n, then

n

T'(x) is the average . Thus T is uniquely determined for periodic or eventually

periodic sequences.

Question 11.16 (This was raised in class. I don’t know an answer.) What is
T({3,1,4,1,5,9,2,6,...})?

Banach limits are not unique, in fact, so the question above probably has multiple
answers. According to Larry Brown, they correspond to probability measures on the corona
of N (corona of a completely regular topological space X is the complement of X in its
Stone-Cech compactification).

12 A section of big theorems

Definition 12.1 A subset E of a metric space X is nowhere dense if the complement
of the closure of E is dense.

In other words, F is nowhere dense if and only if E has empty interior.
For example, N is nowhere dense in R. Some countable subsets of R, such as Q, are
not nowhere dense in R. The Cantor set is nowhere dense in [0, 1].

Lemma 12.2 Let X be a metric space. For each x € X and r > 0 there exists s > 0 such

that B(x,s) C B(x,r). In fact, any s < r works.

Proof. Let 0 < s <r. Let y € B(x,s). Then for all n € N there exists y,, € B(x, s) such
that d(y,y,) < 27 ™. In particular, for n € N such that r — s > 27",

d(y,») < d(y,yn) +d(z,y,) <27" +s <,

so that B(x,s) C B(x,r). ]
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Theorem 12.3 (Baire Category Theorem) A non-empty complete metric space is not the
union of a countable collection of nowhere dense sets.

Proof. Let Eq, Es, ... be nowhere dense sets in the metric space X such that U, F, = X.
Then O,, = X \ E,, is dense and open in X, and NO,, = ().

We will prove that countable intersections of dense open sets cannot be empty. Since
X is non-empty and O; is dense in X, necessarily O1 # (. Let 1 € O;. Since Oq is open,
there exists 71 > 0 such that B(x1;7r1) C O;. Since Og is dense, Oy N B(x1;7r1) # 0, so
choose x5 € Oy N B(x1;71). Since O2 N B(x1;7r1) is open, there exists ro > 0 such that
B(za;1m2) € O N B(xy;71). By possibly replacing ro even by a smaller number, we may
assume that ro < r1/2 and that B(zg;72) € O2NB(x1;7r1). In general, similarly there exist
xn € X and r,, > 0 such that r, <ry/2" and B(x,;r,) € O, N B(xy_1;7n—1). Thus {z,}
is a Cauchy sequence in X, and since X is complete, there exists x € X such that z,, — x.
Since for all m > n, x,,, € B(x,;ry), it follows that x € B(z,;r,) for all n, whence z € O,
for all n. ]

The complete assumption is necessary: Q is a countable collection of singleton sets,
thus of nowhere dense sets.

Definition 12.4 A function is open if it the image of every open set is open. A linear
function T is almost open if for all » > 0 there exists s > 0 such that the closure of
T(B(0,7)) contains B(0,s).

Clearly an open linear function is almost open and surjective. However, not all almost
open linear functions are open. For example, the inclusion ®,enF — ¢! is almost open, but
is not open. Note that the inclusion @, cnF — £°° is not almost open. Not all surjective
linear functions are almost open: for example, the map T : X = ¢, F — Y = @, F given
by T'(e,) = e,/n is surjective, continuous, and not almost open. Namely, since | | in X
and Y is given by |3, cnenl = 3, leal, [17(5, caen)l = I, ca/nenl = 3, lea/n| <
Yonlenl =122, cnenl, it follows that 7' is continuous and that |T'| < 1. Since T'(e1) = ey,
it follows that |T| = 1. If for some positive s, By (0,s) C T(Bx(0,1)), then for all m,
sen /2 € By (0, s) can be approximated arbitrarily closely by T'(z) for z € B(0,1). Write
x =) cpen. Necessarily c,,,/m has to be arbitrarily close to s/2, but then c,, must be
close to sm/2, but then x = ) c,e, cannot have norm at most 1. Thus 7" is not almost
open.

Remark 12.5 Let M be a closed linear subspace of a normed vector space X. Define
m: X — X/M by n(x) = x4+ M. We know that 7 is linear. Since |7 (x)| = |z + M| < |z,
we have that 7 is continuous and |7| < 1. This map is even open! Namely, suppose that
ly + M| < 1. Then there exists m € M such that |y +m| < 1. But n(y+m) =y + M, so
that B(0,1) C «(B(0,1)). Also, if |x| < 1, then |rz| < 1. This proves that w(B(0,1)) C
B(0,1). It follows that B(0,1) = n(B(0,1)), and by linearity that B(0,r) = n(B(0,r)) for
all » > 0.
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A consequence of the remark is that for U C X/M, U is open if and only if 771 (U) is
open.

And yet another consequence is the Universal Mapping Theorem of quotients: If Y is
a topological space, a function f : X/M — Y is continuous if and only if f o is continuous.

In particular, if T' € B(X,Y), where X and Y are normed vector spaces, and if M is a
closed subpace of X contained in the kernel of T', then there exists a unique 7' : B(X/M,Y)
such that T = T o w. There is a natural one-to-one correspondence between the sets
{T € B(X,Y):T|y =0} and B(X/M,Y).

For any y + M with |y + M| < 1, there exists € y + M such that |z| < 1. Thus
T(y + M) = T(z) < |T||z| < |T], so that by Proposition 8.6, HTH < |T]. Also, [T] =

o] < ] < o] v ] =171

Note that if M # X, non-zero T and T exist by the Hahn—Banach Theorem (Corol-
lary 11.11), so that all this forces || = 1.

Theorem 12.6 (The Banach Open Mapping Theorem) Let X and Y be normed vector
spaces, with X Banach. Then any almost open element of B(X,Y') is open.

Proof. Let T € B(X,Y) be almost open. Without loss of generality Y # 0, and then
necessarily 7' # 0. By assumption there exists s > 0 such that B(0,s) C T'(B(0,1)). Since
T is linear, it follows that for all » > 0, B(0,rs) C T'(B(0,7)).

We will prove that B(0,rs/3) C T(B(0,r)).

Let y € Y \ {0}. Then for every @ > 1, in particular for « = 1+ s/(4|T),
y € B(0,aly|) € T(B(0,a|y|/s), so that there exists x € B(0,«aly|/s), such that
ly =T ()| < lyl/4.  Then z/a € B(0,[yl/s), and |y —T(z/e)] < |y —T(x)] +
IT(@) - T(s/a)l < lyb/4 + 17Ul (1 = 1/a) < lyl/4 + ITlalyl (1 — 1/a)/s =
lyl /4 + 1T |y (« — 1)/s < |y| /2. What this proves is that for every non-zero y € Y,
there exists z1 € B(0, |y| /s) such that |y — T'(z1)| < |y| /2.

Set y1 =y — T'(x1). If y1 = 0, we are done, so we may assume that y; # 0. Now

construct x5 from y; in the same way that x; was constructed from y, etc. Summary for
n > 1if (y,—1 #0):

Yp =y —Taxy —---=Ta,,
lynl =y — Ty — - =T, | < 27" |y,

1 _ 1
foull < 5 lynal <2771yl

Since Y |z, | < oo and X is complete, by Homework 4.1, Y x,, converges. Let z = > x,,.
Since T is continuous, y — T'(z) = lim(y — Txy — --- — Tz,) = limy,, = 0. Also, |z| <
Slznl <1yl >, 27" = 2|y|. This proves that B(0,rs/3) C T(B(0,r)).

Now let U be an open subset of X, and let € U. Since U is open, there exists r > 0
such that B(z,r) C U. In other words, z + B(0,7) C U. Then T'(z) +T(B(0,r)) = T(x +
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B(0,7)) € T(U), and by the claim above, B(T'(x),rs/3)) = T(z) + B(0,7s/3)) C T(U),
which proves that T'(U) is open. O
The complete assumption on X is necessary: the inclusion @,enF — ¢! is almost

open, but not open. The almost open assumption is of course also necessary (say take the
zero map into a non-trivial normed vector space).

Theorem 12.7 (The Open Mapping Theorem) Let X and Y be Banach spaces, and let
T € B(X,Y) be surjective. Then T is an open mapping.

Proof. For each n € N, let A,, = T(B(0,n)). Since X = U,,B(0,n) and T is surjective,
Y = U,A,. By the Baire Category Theorem (Theorem 12.3), since Y is complete, there
exists N € N such that Ay is not nowhere dense. This means that Y \ Ay is not dense, so
there exists yo € Ax such that for some m > 0, B(yo,m) C Ay = T(B(0,N)).

We will prove that B(0,m) C T'(B(0,2N)). Let y € B(0,m) C Y. Then yo,y + yo €
B(yo,m) C T(B(0,N)). Thus there exist sequences x,,, x/, € B(0, N') such that T'(z,,) — yo
and T'(z!,) — y+yo. Thus T'(z}, —x,) — y, and x], —x,, € B(0,2N). Thusy € T(B(0,2N)),
and since y was arbitrary in B(0,m), we get that B(0, m) C T(B(0,2N)).

Since T is linear, it follows that for all » > 0, B(0,rm/(2N)) C T'(B(0,7)). Thus T is
almost open, and so by Theorem 12.6, T" is open. ]

Examples 12.8 There are five assumptions in the theorem above: X complete, Y com-

plete, T linear, T' continuous, 7" surjective. We show next which of these assumptions can
be omitted.

(1) X has to be complete. Otherwise, here is a counterexample. Let e,, be a sequence

in ¢o that has 1 in the nth spot and 0 elsewhere. We may also pick by = {27"}.

Then {bg,e1,e2,...} is a linearly independent subset of ¢y, so by Zorn’s lemma

there exists a basis B of ¢y that contains {bg, e, es,...}. Or we could pick an

arbitrary basis not containing {e;, es, ...}, and then some by € B\ {eq, e, ...}. Let

X' be the span of B\ {bg}. Since ¢ is the completion of Span{ey, es, ...}, X’ is not

complete. Set Y = ¢o/Span(by). Since Span(by) is a finite-dimensional subspace

of ¢p, it is closed in ¢y, so that by Theorem 8.14, Y is a Banach space. Define

T : X" =Y byT'(e,) =ep/nforalln, T(b) = bforallb € B\{bg,e1,e2,...}, and

extend T linearly to all of X’. Then T” is linear, surjective, and even injective! By

Exercise 7.4, it is likely that 7" is not continuous. Let X = {(z,7"(x)) : z € X'}.

Then X is a linear space with norm |(z,T'(x))| = |z'| + |T"(z)| (recall that

the norm in ¢y is the sup norm). Since X’ is not complete, neither is X, but

actually this may be hard to see directly without knowing more about the missing

element by from X’: namely, it may be that for a sequence {z,} in X’ converging

to by € co, {(zn,T'(zy))} is not Cauchy in X and that may be hard to analyze

without knowing more about by. Let’s postpone this issue for a bit. Finally define

T:X —Y by T(z,T(x)) = T'(x). Then clearly T is surjective, injective, linear,

and it is even continuous: |T'(z,T'(x))| = |T"(z)| < |(x,T’(x))|. However, T is
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not open, as we show next. Let s > 0, and let n € N with 1/n < s. Note that
en/n € By (0,s). Let 2 € X’ such that T'(z") = e, /n. Since T" is injective, 2’ =
en, so that (x,7"(z’)) in X has norm at least 1, so that By (0,z) € T(Bx(0,1)).
Thus T is not open. Now that we know that 7' is not open, by Theorem 12.7, we
can conclude definitively that X cannot be complete.

Purely algebraically, X = X/kernelT = ImT =Y as vector spaces, but since
T does NOT preserve the norm, this is NOT an isomorphism of normed vector
spaces, that is how one isomorphic copy of the vector space can be complete and
the other not.

Y needs to be assumed complete. One might be tempted to think that the image
of a Banach space by a continuous linear function would also be complete, but
that is not the case. Let X = ¢! and let ¥ = {{22} : {z,} € ¢'}. Then
Y is a linear subspace of ¢!, but it is not closed. Namely {n—12} € (! is not in
Y, but it is the limit in the ¢*-norm of the sequence {y,} in Y, where y, =
{1,1/22,1/32%,...,1/n2,0,0,...}.

With these same X,Y’, let T': X — Y be defined by T'({z,}) = {Z=}. This T is
linear, surjective, injective, continuous, but it is not open. For all s > 0, pick n
such that 1/n < s. Let e, € £! be 1 in the nth position and 0 elsewhere. Then e, /n
in Y has norm strictly smaller than 1. Then °» € By (0, s), but e, ¢ Bx(0,1).
Again, purely algebraically, X = X/kernelT = ImT =Y as vector spaces, but
since T' does NOT preserve the norm, this is NOT an isomorphism of normed
vector spaces, and that is how one isomorphic copy of the vector space can be
complete and the other not.

T needs to be linear, for otherwise take X = R?, ¥ = R, T(x,y) = 2zy®. Then T
is surjective, continuous, not linear, and not open because T' takes the open box
(0,1) x (—1,1) onto non-open [0, 1).

T needs to be continuous, for otherwise we have the following counterexample. Let
X = /' Let e, € X have 1 in the nth spot and 0 elsewhere. Then {ej,es,...} is a
linearly independent subset of X, each of which has norm 1. By Zorn’s lemma we
may extend this linearly independent set to a basis B of X. By Cauchy-Schwartz
we may assume that each element of B has norm 1. Set Y = X, and define
T:X =Y byT(e,) =nl"Y",, and T(b) = b for all b € B\ {ey, ez, ...}. Extend
T to all of X by linearity. Then 7' is linear and bijective. It is not continuous
because T'(ea,) = 2nes, has norm 2n. If there exists s > 0 such that By (0,s) C
T(Bx(0,1)), then in particular for n > s, Tl_legn_l € By(0,s) C T(Bx(0,1)),
but Tl_legn_l equals the image by T of ey, _1 only, and e, _1 is not in Bx (0, 1).
Since every open map is surjective, necessarily the assumption 7" being surjective
must stay, and it is not implied by the other four assumptions (say take the zero
map and Y non-zero).
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Theorem 12.9 (The Inverse Function Theorem) If X and Y are Banach spaces, T €
B(X,Y), kernel T'= {0} and T is surjective, then the inverse of T' exists and is continuous.

Proof. By assumptions that kernel 7" = {0} and that T is surjective, T" is bijective. By
Theorem 12.7, T is open. Thus for all » > 0 there exists s > 0 such that B(0,s) C
T(B(0,7)) = (T~Y)~Y(B(0,r)), which says that so that 7! is continuous at 0, whence it
is continuous. L

Examples 12.10 There are six assumptions in the theorem above: X complete, ¥ com-
plete, T linear, T' continuous, 7T injective, T surjective. We show next that none of these
assumptions can be omitted. First X and Y need to be complete, and 7" needs to be contin-
uous and surjective, by using the corresponding examples in Examples 12.8. Furthermore,
T needs to be injective for the inverse to exist. In addition, T needs to be linear, for other-
wise we have the following counterexample: Let X =Y =/ over R, and let T: X — Y
be given by T(x,) = (x1, 2o+ (|z1] +1)Y2, 23+ (|21 | + DY3, 24+ (|21 | +1)1/4, .. ). Clearly
T is surjective, injective, and not linear. It is continuous at every ¢ € X: Let ¢ > 0. Let
z € X satisfy |z — ¢ < min{e/(|c|, + 2),1} and in addition if ¢; # 0, then z € X
satisfies |x — ¢|,, < |e1]/2. This guarantees that z; and ¢; have the same sign (or ¢; = 0).
Then for all n > 1,

(ot Goal + ") = (en e +1)'7)

< Jan = enl + (s |+ 1) = (fer] + )"
It suffices to prove that ‘(|x1| + DY = (|| + 1) /"} is less than €/2. Set

= (1| + D7 (Jaa |+ D7 (ea| + DV e (e + DT
This S > 1, and S((|z1| + )™ = (|es| + 1)Y™) = |(Jz1| — |e1])], so that for all n > 1,

(T(z) —T(c))n| <€/2+ (|;1,‘1‘_|_1) —(|ey H—l)l/n §

S<€.

This proves that T is continuous. However, T~! is not continuous. Namely, if ¢
(0,0,0,...), then T7%(c) = (0,0,...), and for all m,n > 1, (T~%(1/m,0,0,...))n
(1/m, —1/(m4+1)Y2 —1/(m+1)13, —1/(m+1)1/4,.. ), “1(1/m,0,0,..)| =
for all m. Thus 7! is not continuous at 0.

=l

Definition 12.11 For any function f : X — Y, the graph of f is

D(f)={(z, f(x):z e X} C X xY.
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Theorem 12.12 (The Closed Graph Theorem) If X and Y are Banach spaces and T :
X — Y is linear, then T is continuous if and only if the graph of T is closed in X &Y
(which norm on the direct product?).

Proof. Suppose that T' is continuous. Let {x,,y,} € I'(T) converge to (z,y) € X &Y.
Then z,, — = and y,, — y, and since T is continuous, y,, = T'(x,) converges to y and T(z),
so that y = T'(z), and (x,y) € I'(T).

Now suppose that I'(T") is closed. Since it is a linear subspace of X @Y, it is a Banach
space. The linear homomorphism 7wy : X @Y — X given by 7x(z,y) = x, is bounded as
for all (z,y), |[7x(z,y)| = |=| < |(z,y)]. Then m = 7x|r(r) is continuous, surjective, and
injective. Thus by Theorem 12.9, 7! is continuous.

Now let 1y : X ®Y — Y be given by 7y (z,y) = y. Also this is linear and continuous.
(It need not be injective even when restricted to I'(T).)

Note that T = my o !, Then T is a composition of continuous linear functions, so
T is continuous. (]

Rephrasing of the closedness of the graph: I'(T') is closed if and only if for all z,, in X
with z,, — z and T'(z,,) — vy, necessarily y = T'(x). Since T is linear, I'(T') is closed if and
only if for all x,, in X with x,, — 0 and T'(z,,) — vy, necessarily y = 0.

Remark 12.13 Consider a measure space (X, X, ). Suppose that for some p,q > 1,
LP(X, 3, u) € LY(X,%,pn). Let T : LP — L? be the inclusion. Then I'(T) is closed:
Suppose that f, — 0 in L? and T'(f,) — ¢ in L% Since f, — 0 in the norm, for every
m > 0 there exists NV, such that for all n > N,,, [f.] < 27. We may assume that
Ny < Ny <---. Form<klet Sy ={re€X:|fn ()] >27"/2}. Then S, € ¥, and

9P / o P > / o [Pdi > p(Soi)2,
S

mk

so that p(Spk) < 2-p(k=m/2) Then S,, = Uk>mSmk has measure at most 2—pm/2+1  Thep
Nim>meOm has measure 0 for all mg, so that .S = Uy, Ny>me Sm has measure 0. Now let
x € X\ S. Since z ¢ S, there exist infinitely many m such that z ¢ S,,. Thus for each
of these m and each k > m, © ¢ S,. In particular, |fy, (z)] < 27™/2 for all k& > m
and for infinitely many m. Thus fy,(x) — 0 pointwise almost everywhere. Then also
T(fn,)(x) — 0 pointwise almost everywhere, so g = 0 a.e., so g = 0 in LY. Thus we can
conclude that 7' is continuous, so there exists ¢ > 0 such that for all f € L”, [f], < c|f],.
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Theorem 12.14 (The Uniform Boundedness Principle) Let X be a Banach space and Y,
a normed linear space as « varies over some index set I. Let T, € B(X,Y,), and assume
that for all z € X, {|To(z)| : a} is bounded. Then {|T,| : a} is bounded.

The proof in the book has all Y,, the same.

Proof. Let A,, = {x € X : |To(x)| < n for all a}. Then A, is a closed set! Also, UA,, = X.
By the Baire Category Theorem (Theorem 12.3), some A,, has interior, i.e., there exist
xo € X and r > 0 such that B(zg,r) C A,,.

If |x| <7, then g, 20 + x € A,,. Then for all «, |T,(zo)|, |Tu(zo + x)| < no. Thus
1T ()| < 2n0, whence [Ty | < 2ng/7. O

Example 12.15 Why does X have to be Banach? Suppose instead we have X = @92 | F,
Y =F. Define T;, : X — Y by T),(e,) = n and T},(e;) = 1 for all i # n. Then all T, are
continuous, for each x € X, {|T},(z)] : n} is bounded, but {|T,| : n} is not bounded.

Corollary 12.16 A subset S of a normed space X is bounded if and only if for each
feX* {|f(s)|:seS} is bounded (in other words, {f(s): s € S} is bounded).

Proof. Suppose that S is bounded. Then there exists r > 0 such that S C B(0,7). Then
for all f € X* |f(s)| <|f|Isl, so that {|f(s)|: s € S} is bounded.

Now assume that {|f(s)|: s € S} is bounded for all f € X*.

New trick: Not every vector space X has a natural linear map X — X*, but they
ALL have the natural map

p: X = X = (X")" (“double dual”)

given by ¢(x)(f) = f(x) (for f € X*). Is this even a function, i.e., is p(z) € (X*)* for all
x? Certainly o(x)(f +rg) = (f+rg)(x) = f(x) +rg(x) = @(z)(f) +re(r)(g), so that o(z)
is at least a linear functional on X*. From |p(x)| = sup{|e(x)(f)|: f € X* |f]| =1} =
sup{|f(x)|: f € X*,|f| =1} < |z| we deduce that p(x) is continuous with norm at most
|z|. By a consequence of the Hahn—Banach Theorem, more specifically, by Corollary 11.11,
for any non-zero x in X (and setting M = 0 for the corollary), there exists f € X* with
|/l = 1 and f(z) = |x|, so that we get that [z] < sup{|f(z)] : f € X*,[f] = 1}
= sup{lp(z)(f): f € X" |f] =1} < [e(2)], so that [e(x)] = ] Thus ¢ is a function
from X to X**. Tt is also a linear function: ¢(z + cy)(f) = f(z + cy) = f(x) + cf(y) =
(@) (f) + co(y)(f) = (e(z) + cp(y))(f), and it is injective, for if p(x) = 0, then for all
f e X*, f(z) =0, so that by a consequence of the Hahn-Banach Theorem (Corollary 11.9),
z=0.

The assumption on {|f(s)| : s € S} now says that {|o(s)(f)| : s € S} is bounded.
Since X* is complete, the Uniform Boundedness Principle (Theorem 12.14) applies to give
that {|o(s)| : s € S} is bounded, whence by the previous paragraph, {|s| : s € S} is
bounded. So S is bounded. O
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The last corollary has an immediate corollary: Let X be a normed vector space. A
subset S of X* is bounded if and only if for each f € X** {|f(s)| : s € S} is bounded.
However, there is a stronger companion corollary, and it goes as follows:

Corollary 12.17 Let X be a Banach space. Then a subset S of X* is bounded if and
only if for each x € X, {|f(x)|: f € S} is bounded.

The reason that this companion corollary is stronger is that in general X is a proper
subspace of X**, However, we need to assume that X is not just normed, but also complete.

You provide the companion proof, and think why completeness is necessary (see Homework
8).

Corollary 12.18 Let X be a Banach space and Y a normed linear space. A subset
S C B(X,Y) is bounded if and only if for all x € X and all g € Y*, {goT(z): T € S} is
bounded in F.

Proof. Suppose that S is bounded. Then for all z € X and all g € Y*, |[go T(z)| <
lgl ||| || is bounded as T' varies over S.

Now suppose that for all z € X and all g € Y*, {goT(x) : T € S} is bounded in F.
Then for any x € X, {T'(z) : T € S} is asubset of Y, and for all g € Y*, {g(T'(x)): T € S}
is bounded, whence by Corollary 12.16, {T'(z) : T € S} is bounded in Y. But then since
X is complete, by Theorem 12.14 (the Uniform Boundedness Principle), S = {T': T € S}
is bounded. 0

Corollary 12.19 (The Banach—Steinhaus Theorem) Let X be a Banach space and Y a
normed vector space, and let {T,} be a sequence in B(X,Y') such that for every x € X there
exists y € Y such that T, (x) converges to y in the norm. Then there exists T' € B(X,Y)
such that T,,x — Tz for all x € X, and {T,, : n} is bounded.

Proof. For all x € X, define a function T" : X — Y such that T(z) = lim, T, ().
This is clearly a linear function. By the Uniform Boundedness Principle (Theorem 12.14),
{IT%.] : n} is bounded, say by B. Thus for all x € X, |T(z)| < |T(x) — Tn(z)| + |T0(x)],
and for n sufficiently large (depending on z), this is at most (1 + B) |z|, so that T is
continuous. U
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13 Hilbert spaces

Definition of inner product on a vector space (over R, C).
Every inner product defines a norm.
Cauchy-Bunyakowsky-Schwarz inequality:

[ @y | <]yl

A consequence is the parallelogram law: for all f, ¢ in an inner product space,

2 2 2 2
2|/17 + 219l = 1f + 9l +1f —9l”-

Definition 13.1 Elements f and g in an inner product space are orthogonal or per-
pendicular if (f,g) = 0. Two subsets A and B are orthogonal or perpendicular if
for all f € A and all g € B, (f,g) = 0. For any subset A, we define the orthogonal
complement of A, or A “perp”, to be the set all elements of H that are perpendicular
to A. This set will be denoted A*+. A subset C is orthonormal if for all ¢ € C, |c| = 1
and if for all distinct ¢,d € C, (¢, d) = 0.

Definition 13.2 A vector space is a Hilbert space if it is an inner product space that it
complete in the norm induced by the inner product.

We know that F" is a Hilbert space with the inner product (z,y) = Y .| z;7;.

More generally, the most representative example of a Hilbert space is probably
L*(X,%, 1), where (X,%,p) is a measure space. The inner product is defined as
(f.9) = [y fgdp. First of all, if g € L2, so is g, and by Holder’s inequality (see page 8)
or by the Cauchy-Bunyakowsky-Schwarz inequality (three paragraphs above), fg € L,
whence [ + Jgdu is well-defined. Other properties of inner products are easily verified for
this ( , ). We already know that I.? is complete in the norm.

A special and important case of L? is 2 = L? (N, 2%, counting measure). Just like all
P spaces, the set {e; : i € N}, where each e; has 1 in the ith spot and 0 elsewhere, is a
linearly independent subset, with the property that for every = € /P and every € > 0, there
exists e € Span{ey, ea, ...} such that |z —e| < e. But when p = 2, the set {e; : i € N} is
even orthonormal, i.e., (e;, €;) = d;;.

Under what conditions is H = LP(X, 3, 1) also a Hilbert space? We need that all
f,g € H to satisfy the parallelogram law. So for any disjoint A, B € X, if f = xa,
g = xB, the parallelogram law states that 2(1(A))? + 2(u(B))? = 2(u(A U B))?, i.e., that
(u(A))? + (u(B))? = (u(A) + u(B))?, which certainly holds if u(A) = 0 or u(A) = oo (and
same options for B), but not otherwise. Thus, IL” is almost never a Hilbert space.

Let’s do another almost L? example: Let X be an open subset of C, let ¥ be the
set of all Lebesgue subsets of X, and let m be the Lebesgue measure. Then (X, %, m) is
a measure space, and so ILQ(X , 2, m) is a Hilbert space. The Bergman space Li(X ) is
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the subspace of all analytic functions on X. We will prove that .?(X) is a closed subset
of L?(X, ¥, m), and hence a Hilbert space. So let {f,} be a sequence in the L2(X) that
converges to f € L>(X) in the norm. Let a € X. Since X is open, there exists r > 0 such
that the closure of B(a,r) is a subset of X. Then for all n, m,

2

(= @I = |5 [ (= Fud(a)sds

L/_O /ei_ﬂ(fn o) (a+ se)dbsds

mr2

(by the Mean Value Property for analytic functions,

not covered in this course)

# //B(a,r)(fn = fm)m
1

(fn — fm, 1) | (inner product on B(a,r))

7T7°2|
1
V= o 1,

(by the Cauchy-Bunyakowsky-Schwartz inequality;

IN

norm on B(a,r))

IN

U= finl V7 (n0rm on X)
1o~ fol

= ey Hn = Il

Let K be a compact subset of X. Then the distance from K to C\ X is positive, so that
for all a € K, we may take r to be half of that distance. Thus on K, {f,} is Cauchy in the
norm on X and hence on K, the display above says that {f,} is uniformly Cauchy (also
not just up to a set of measure zero). By Complex Analysis (not covered in this course), f,
converges to an analytic function gx uniformly on K. By uniqueness of analytic functions,
these gx on the various K patch up to one analytic function g on X. As in the proof
of Proposition 4.7, there exists a subsequence {f,, }» that converges pointwise a.e. to f.
Hence f = g a.c., whence f € L2(X). O

14 Perpendicularity

Definition 14.1 For any vector space X over R, a subset K of X is convex if for all
t€[0,1] and all a,b € K, ta+ (1 —t)b € K.

Note that vector subspaces and their translates are convex.
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Theorem 14.2 Let H be a Hilbert space and let M be a non-empty closed convex subset.
Then for any h € H there exists a unique xg € M such that

|h — xo| = dist(h, M) = inf{|h — x| : x € M }.

Proof. Set d = dist(h, M). By definition there exists a sequence {x,} in M such that
|h — x| — d. Fix e > 0 and choose N such that for all n > N, | |h — z,,| — d| < €. By the
parallelogram law,

[0 = B) = (@m = W)I* = 2|0 = h* + 2|@m — A" = |(@0 = h) + (@m = B)|*.

Since M is convex, (x, + #,)/2 € M, so that |(z, — h) + (@, — h)| = 2|2t — p)| >
2d, whence
|(zn — h) — (m + h)|? < 4(e + d)? — 4d? = de(e + 2d).

As we may take € arbitrarily small, this says that {z, — h} is Cauchy in norm. Since H is
complete, there exists a limit xg of {x, } in H (or x¢ — h is the limit of of {z,, — h}). Since
M is closed, necessarily zg € M. Then

d < |wo = hl| = |zo = n + 20 = h| < 2o = 2al + |20 = bl <20 — 20| + d,

and in the limit as n — oo, |zo — h|| = d, as desired.
Now suppose that yo € M with |yo — h| = d. Again by convexity, (yo + x0)/2 € M,
so that

xo—h
2

Yo + Xo

2 2

d<
<| .

|-

SOOI

yo—hH

=<

so that d = H yO’LTmO - hH But then the parallelogram law says that
lyo — zol* = I(yo — B) = (w0 = B)* = 2| (yo — B)[* + 2 | (w0 — M)|* = 2|0 + w0 — 2h]* =0,
so that xg = yo is unique. O

Theorem 14.3 Let M be a closed linear subspace of a Hilbert space H. By the previous
theorem, for all h € H there exists a unique xog € M such that |h — zo| = dist(h, M).
Then h — xq is perpendicular to M.

Conversely, if xg € M has the property that h — xy is perpendicular to M, then
|h — xo| = dist(h, M).

Proof. First suppose that zqg € H is for h as in the previous theorem. Let m € M.
Then for all t € R, xg — tm € M, so that |h —x¢9 —tm| > |h — z¢|. In other words,
|h — z0|® = 2tRe (h — o, m) + t2|m|* = |h — 2o — tm|* > |h — 20|>. By the previous
theorem the left side is minimized at t = 0. By calculus or even high school algebra, such a
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quadratic function in ¢ is minimized at ¢ = 0 if Re (h — xg,m) = 0. If F = R, we are done,
otherwise similarly Re (h — xqg,im) = 0, whence (h — xg,m) = 0.
Now suppose that h — zg is perpendicular to M. Then for all y € M,

2 2
ly = hl" =y — z0 + 20 — A
= |y — 900H2 +2Re (y — xo,x0 — h) + |xo — hH2
= |y — zo|* + |wo — h|* (since y — o € M)

which shows that zg is the unique element of M that is closest to h. Thus by uniqueness
from the previous theorem, this theorem is proved. ]

Theorem 14.4 Let M be a closed linear subspace of a Hilbert space H. Define P : H —
H by P(h) is the unique point in M closest to h (this is well-defined by Theorem 14.2).
Then

(1) P is a linear transformation.

(2) For allh € H, |Ph| < |h|.

(3) P € B(H, H).

(4) P? = P.

(5) ker P = M=, and the range of P is M.

Proof. Let x,y € H,r € F, and z € M. Then by the previous theorem,
(x+ry—P(x)—rP(y),z) = (z— P(z),2) +r{y — P(y),2) =0,

so that by Theorem 14.3, P(:): +ry) = P(x) + rP(y). This proves that P is linear.

For all h € H, |Ph|* = (Ph—h+h,Ph) = (Ph— h, Ph) + (h, Ph) = (h, Ph) =
| (h, Ph) | < |h||Ph|, so that if Ph # 0, we get that |Ph| < |h|. But |Ph| < |h| holds
even if Ph = 0, so that (2) holds.

(1) and (2) immediately imply (3).

Note that for all h € M, Ph = h, so that for all h € M, P2(h) = P(Ph) = Ph as
Ph € M. Thus P2 = P.

The fact that for all h € M, Ph = h, implies that the range of P is M.

Let h € ker P, and let m € M. Then (h,m) = (h—0,m) = (h — P(h),m) = 0 by
Theorem 14.3. Thus ker P C M~+. Now let h € ML. Then [P(h)]* = (P(h), P(h)) =
(P(h) — h+h,P(h)) = (P(h) — h, P(h)) 4+ (h, P(h)) = 0 by the previous theorem and the
assumption, so that P(h) = 0. Thus M+ C ker P. ]

The function P in the theorem above is called the orthogonal projection of H onto
M. Whenever M is a closed linear subspace of a Hilbert space H, we denote by P,; the
corresponding orthogonal projection.
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Theorem 14.5 If M is a closed linear subspace of a Hilbert space H, then I — Py, is an
orthogonal projection onto M.

Proof. For all h € H,
h— (I —Py)(h) = Py (h) € M

is perpendicular to M=*, so that by the last two theorems, I — Pj, is the orthogonal
projection onto M. (]

Corollary 14.6 If M is a closed linear subspace of a Hilbert space H, then (M=1)+ = M.

Proof. Since I — Py is the orthogonal projection onto M, by Theorem 14.4 (4), ker(I —
Py) = (M), But 0 = (I — Py)(h) = h — Py(h) if and only if h = Pys(h), i.e., if and
only if h € M, so that M = (M+)L. ]

Corollary 14.7 Let A be any subset of a Hilbert space H. Then the closure of the linear
span of A equals (A+)+.

Proof. Homework 8. (]

Theorem 14.8 For any closed linear subspace M of a Hilbert space H, H = M & M>*.
(The inner products are the same.)

Proof. If h € M 0 M~ then |h|* = (h,h) = 0, so that h = 0. For any h € H, Py;(h) € M
and (I — Py)(h) € M+, and h = Py (h) + (I — Py)(h). If h € M and b/ € M=, then
|h+ 1| = |h|> + 2Re (h, b') + |W|* = |h|* + |1/|?, which finishes the proof. O

A consequence is that it is relatively easy to find orthogonal/direct-sum complements
of closed linear subspaces in a Hilbert space. (It is not that easy to find direct-sum com-
plements of closed linear subspaces in a Banach space.)

Proposition 14.9 Let X and Y be inner product spaces, and let U € B(X,Y). The
following are equivalent:

(1) U is an isomorphism (of inner product spaces).

(2) U is surjective, and for all z,y € X, (U(z),U(y)) = (x,y).

(3) U is surjective, and for all x € X, |U(z)| = |z|.

Proof. Clearly (1) implies (2).
(2) implies (3):

2Re (U(z),U(y)) = |U(x) + U)I* = 1U@)]* = |Uy)[?
= Uz + ) = 1U@)]* = U]
= [ +y|* — |=* — JyI®
= 2Re (z,y),
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and similarly if F = C,

2Im (U(x),U(y)) = —2Re(i (U(x),U(y)))
= —2Re((U(iz),U(y)))
= —2Re (iz,y)
=2Im (z,y).

(3) implies (1): Clearly U is injective, by assumption it is surjective, and it preserves
the norm. The inverse exists and is linear, and for all y € Y, U~1(y) has norm the same
as y, so that U~! is continuous. ]

15 The Riesz Representation Theorem

Theorem 15.1 (The Riesz Representation Theorem) Let H be a Hilbert space. Then
for any T € H* there exists a unique hg € H such that for all x € H,

T(z) = (x, hg) .

Proof. Let M = kerT'. Since T is continuous, M is a closed linear subspace of H. If
M = H, then hg = 0 is the unique element that fits the conclusion. Thus we may assume
that M # H. Thus M+ # 0. Let h be non-zero in M+. Then T'(h) # 0, and we set
W = h/T(h) and hy = K/ |W'|*. By linearity, T'(ho) = 1/ |W'|*. Now let z € H. Then
T(x — |0 > T(x)ho) = T(x) — |W|> T(x)T(ho) = 0, so that = — |W/|* T(x)ho € M. Since
ho € MJ‘,

0= (2 — IWI* T(w)ho, ho) = (w, ho) = 1| T(x) (ho, ho) = (@, ho) = T(x). D

Theorem 15.2 (The Riesz—Fischer Theorem) Let H be a Hilbert space. Then H is
conjugate-linear isomorphic to H*, or explicitly, the function

o:H— H”
given by ¢(x)(y) = (y,x) is a conjugate-linear bijective isometry.

Proof. Clearly p(x) € H*. For any x,2’ € H and r € F, p(x + r2’)(y) = (y,x + ra’) =
(y, ) + T (y, ') = p(z)(y) + To(z") (y) = (e(x) + Tp(z'))(y), so that ¢ is conjugate-linear.
Even though ¢ is not linear, we can still talk about continuity=boundedness of conjugate
linear functions! Since |p(z)(y)| = | (y,x)| < |y| |=|, it follows that |p(z)| < |z]. Also,
p(x)(w)| = ||* implies that |@(z)] > |z]. Thus |p(x)] = || for all z, whence [¢] = 1.

In particular, it follows that ¢ is injective.

Now let f € H*. By Theorem 15.1, there exists hg € H such that f = ( , hg) = @(hg)-
Thus ¢ is surjective. ]
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16 Orthonormal bases

Definition 16.1 Let H be a Hilbert space. A basis for H is a maximal orthonormal
subset of H.

Certainly the standard vector space basis of F" is a basis of this Hilbert space.

We will show that {e; : i € N} is a basis of £2, but is NOT a vector space basis of £2.
(Silly: What is the definition of a “regular basis”?)

Orthonormal sets (of arbitrary cardinality) are linearly independent sets. Thus a
straightforward application of Zorn’s lemma gives the following:

Proposition 16.2 Any orthonormal subset (of arbitrary cardinality) of an inner product
space H is a subset of a vector space basis of H. (]

It is not clear (yet) however that every orthonormal subset of a Hilbert space H is a
subset of a basis of H.

By the standard Gram-Schmidt orthogonalization process, every countable linearly
independent set can be modified into an orthonormal set that spans the same subspace.

Proposition 16.3 If {ey,...,e,} is an orthonormal set in H and M is the (closed) linear
span of this set, then the orthogonal projection Py, equals

n

Pa(h) =) (hyen) en. O

n=1

Proof. You fill it in. O

Theorem 16.4 (Bessel’s Inequality) If {e,, : n € N} is an orthonormal subset of H, then
for all h € H,

> lhen) P < I0)*.
n=1

Proof. Let h,, = h — >, (h,e;) e;. Then h, is perpendicular to e; for all i < n, so that

2
2
IRl =

P, + i (h,ei) e
i=1

2

n

Z <h, 61) (4

=1

= [hal® + > I i) e
i=1

= [hal® +

= [hal® + D1 (hes) P
=1
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> hyen .
i=1

Since this holds for all n, the theorem follows. O

Corollary 16.5 Let B be an orthonormal subset of H. Then for any h € H, (h,b) is
non-zero for at most countably many b € B.

Proof. For each n € N, let B,, ={b € B:|(bh)| > 1/n}. By Bessel’s Inequality, the set
B,, is finite. But then U, B,, is countable, which proves the corollary. O

Corollary 16.6 For any orthonormal subset B of a Hilbert space H, and any h € H,

> 1 hb) P < |07,

beB
and all except countably many summands are 0. L

Is this an uncountable sum? Well, only countably many elements are non-zero, and
the sum for those countably many elements converges.
But we next make this precise via nets.

Definition 16.7 A set M is a directed set or a directed system if there exists a
reflexive and transitive partial order < on M such that for all a,b € M there exists ¢ € M
such that a < c and b < c.

Examples 16.8

(1) N is a directed set under the usual <.

(2) R is a directed set under the usual <.

(3) C is a directed set under the following order: if a,b,c,d are real numbers, then
at+bi<cH+diifa<candb<d.

(4) For any set S, let M be the set of all subsets of S. Then M is a directed system
if < stands for set inclusion.

(5) For any set S, let M be the set of all finite subsets of S. Then M is a directed
system if < stands for set inclusion.

(6) (Special case of above.) Let a,b be real numbers with a < b. Let M be the set
of all partitions of [a,b] (recall calculus!). We order partitions P < @Q if @ is a
refinement of P. Then M is a directed system.

Definition 16.9 A net is a function from a directed system to a topological space.

Notation: Rather than writing g(m) for each m in the directed system, we often write
gm- In particular, if the directed system is N, then a net is just a sequence.
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Definition 16.10 We say that a net g : (M,<) — X converges to x € X if for all
neighborhoods U of x there exists mg € M such that for all m > mg, g(m) € U.

Examples 16.11

(1) If M =N, a net g converges to z if and only if the sequence g converges to x.

(2) Let M be the set of all partitions on [a,b]. Let f : [a,b] — R be a bounded
function. Define U(f) : M — R be defined as the upper sum over partitions, let
L(f) : M — R be defined as the lower sum over partitions. and let g : M — R
satisfy that for all P € M, L(f)(P) < g(P) < U(f)(P). By calculus, the nets
U(f) and L(f) converge; and if U(f) and L(f) converge to the same limit, then
the net converges to the same limit.

Now we are ready to go back to Corollary 16.6. What do we mean by ZbeB ap?

Definition 16.12 Let B be a set, and let M be the collection of all finite subsets of B.
Then M is a directed set. Let A: B — X be a function to a normed vector space X. For
all FF € M, define Ap =), Ap. Thus, A is a net from M to a normed vector space X.
Then by ", 5 Ay we mean the limit of the net A (and this limit exists).

Warning: Saying that the net ), A, (with the directed system being the set of all
finite subsets of N) converges is not the same as saying that the series Y )~ A, con-
verges. It is straightforward to show that the convergence of the net implies the con-
vergence of the series. The converse fails! Let A, = (—1)"/n. By the Alternating
Series Test, >, Ay converges. However, for any finite subset mg, we can take sets
m = mgy U {many, but finitely many, odd terms}, and as we vary over such m, the sums
A, diverge to —oo. If instead we take m = mg U {many, but finitely many, even terms},
then the sums A,, diverge to co. And we can take other choices of finite m with yet another
limit. Thus the net ),y A does not converge.

Notation 16.13 Let’s agree that ),  Aj stands for summing over the usual net with
directed system being the natural order on N, namely, >, .y Ay = Do Ap, but if we want
to sum when the net is taken over the directed subset of finite subsets of N, we will have
to say so explicitly (as we did in the previous paragraph).

We repeat Corollary 16.6 with the net formulation:

Corollary 16.14 For any orthonormal subset B of a Hilbert space H, and any h € H,
the net Y, | (h,b)|? over the directed set of all finite subsets of B converges to a real
number that is at most |h|>.

Proof. By Corollary 16.5 there exists a countable subset B’ of B such that for all b €
B\ B’, (h,b) = 0. Let B" = {ey,ea,...} be an enumeration of B’. By Bessel’s inequality,
Soo2 | (h,e;) |* converges to a real number that is at most |A|®. Thus the countable sum
o2 [ (hye;) |* of non-negative real numbers converges to some real number. For every
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€ > 0 there exists N such that for all n > N, >27° . | (h,e;) [* < e. Now let mg =
{e1,...,en}. Then for any finite subset m of B that contains my,

Z\(h,bHQ—ZHh,eiW <| > o= > [P

bem bem\ B’ beB'\m

== X 1P

beB’\m

oo

< 3 thedP

i=N+1
< €. [l

Lemma 16.15 Let B be an orthonormal basis of a Hilbert space H. Then for all h € H,

> (h,b)b

beB
converges in H (as a net with the directed set being the collection of finite subsets of B).

Proof. This is a continuation of the previous proof — see set-up there.
For every finite subset m of B, define A,, =%, ., (h,b)b. In particular, for the given
e > 0, if m, m' contain mg, then

oo

tAmm]) < X e el
1=N+1

|Am - Am’|2 - ‘Am\m’ - Am’\m‘Q < (}Am\m’

which is less than e by the previous corollary (or its proof). Thus by definition (which
I never wrote out explicitly), >, (h,b) b is Cauchy in the net. Similarly, the sequence
{37, (h,e;) e}y is a Cauchy sequence in H, and as H is complete, this latter sequence
converges in H, and clearly it converges to Y ., (h,e;) e;. Now back to the Cauchy net
> pep (R, b)b. It converges to > 7, (h,e;) e; because for all finite subsets m of B that
contain my,

2 2

A =Y (hede| <| Y (he)el = Y [(he)<e O
=1 some i=N+1 some i=N+1
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Theorem 16.16 Let B be an orthonormal subset of a Hilbert space H. Then the following

are equivalent:

(1) B is a (Hilbert space) basis of H.

(2) If h € H is perpendicular to B, then h = 0.

(3) The closed linear span of B is H.
(4) Forallh € H, h =Y, (h,b)b.

(5) For all g and h in H, (g,h) =3, 5(g,b) (b, h).
(6) (Parseval’s Identity) For all h € H, |h|* = Spep | (B D)2
(All sums are countable in this theorem, but the proofs below are based more generally

on nets.)

Proof. (1) = (2): If h # 0, then B U {h/ |h|} is an orthonormal set properly containing

B, which is a contradiction.

(2) & (3): By Theorem 14.8, the closed linear span of B is H if and only if the
orthogonal complement of the closed linear span of B is 0.
(2), (3) = (4): By Lemma 16.15, f = h — 3,5 (h,b) b € H, and one can show (with
nets) that f is perpendicular to all elements of B. (Similar proof in (4) = (5).) Thus

f =0, which proves (4).

(4) = (5): This is sort of obvious, except possibly for why this converges in the net.
So again assume the set-up of the proof of Corollary 16.14. Let m be a finite subset of B

containing mg. Then

(g:h) =Y (9,0) (b, )

which can be made arbitrarily small.
(5) = (6): immediate.
(6) = (1): Let h € H be such that B U {h} is orthonormal.

IN

> pep | (h,b)[* =0, which is a contradiction.

CURDY (9., 1)

{9:h) = <ng2 (h,b) b>|

<g,h— > <h,b>b>|
bem

Il h—b; (h,b) b,
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17 Section 1.5 in the book

I am skipping it because I did much of this in Math 321 in the fall. Namely, the
section proves that any two separable Hilbert spaces are isomorphic to #2, and it proves
that {e/(2m)'/2 : n € Z} is a Hilbert basis of L2 ([0, 27]). It covers Fourier coefficients
and Fourier series. It’s a great section to know.

18 Adjoints of linear transformations

Theorem 18.1 Let X be a Hilbert space, Y an inner product space, and T € B(X,Y).
Then there exists a unique T* € B(Y, X) such that for all x € X and ally € Y,

(T'(x),y) = (=, T"(y)) -

Proof. Note that for all y € Y, x — (T'(x),y) is an element of X*. Thus by the Riesz
Representation Theorem (Theorem 15.1), there exists a unique h, € X such that for all
reX,

(T'(x),y) = (x, hy) .

Note that for all y,9y’ € Y, r € F, and all x € X,

(T(x),y +ry") = (T(x),y) +7(T(x),y)
= <x7 hy> +7 <x7 hy’>
= (x, hy +rhy),

so that by uniqueness, hy, +rh, = hyq,, . It follows that y — h, is a linear function from
Y to X. Since

Ihyl* = (hy, hy) = (T(hy)y) = (T (hy),9) | < AT R)HyI < 1T IRyl ]

we have that || hy| < |T||y|. It follows that y — h,, isin B(Y, X). We label this function 7.
U

The proof actually gives more: for each y there exists a unique 7*(y) that works, and
T* is linear and continuous. (Not just that there are many functions of the desired form,
and only one of them is linear.)
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Definition 18.2 Let X and Y be inner product spaces, and let T : X —Y andT* : Y —
X be linear functions such that for all z € X and ally € Y, (T'(z),y) = (z,T*(y)), Then
T* is called the adjoint of T

We just proved that adjoints of continuous linear functions from one Hilbert space to
an inner product space exist.

Here is another look at adjoints, via the Riesz Representation Theorem (Theorem 15.1
and via the Riesz—Fischer Theorem (Theorem 15.2), if X and Y are both Hilbert spaces:

Y — X
y—= ()l b= (,x)

This diagram commutes.

Proposition 18.3 Let X,Y, Z be Hilbert spaces.

(1) ForT,S € B(X,Y) and r € F, (T +rS)* =T* +7S*.

(2) For T € B(X,Y) and S € B(Y, Z), (SoT)* =T* o S*.

(3) For T € B(X,Y), (T*)* =T.

(4) For an invertible T € B(X,Y), T* is also invertible, and (T*)~1 = (T—1)*.
Proof. (1) Forallz € X andy €Y,

(T +7rS)(x),y) = (T(x),y) + 7 (5(x),y)
(,T"(y)) + 7 (z,5(y))
= (2, T"(y)) + (=,75%(y))
= (2, T"(y) +T5%(y))
= (2, (T" +757)(v)) ,
so that by uniqueness, (T + rS)* = T* +75*.
(2) Forallz € X,y€Y,and z € Z,

(SoT)(x),2) = (S(T(x)),2) = (T(2), 57(2)) = (2, T7(57(2))) = (&, (T" 0 57)(2)),

and again uniqueness proves (2).
(3) also follows from uniqueness and the fact that for all z € X, y € Y,

(T(@),y) = (2, T"(y)) = (T*(y), x)) = (y, (T*)*(x)) = (T7)"(x), ) -

Thus for all y € Y, (T'(z) — T**(x),y) = 0, so that T'(x) — T**(z) = 0.

(4) By the Inverse Function Theorem (Theorem 12.9), T~! is also continuous, so its
adjoint exists as well. Then I = I[* = (T toT)* =T*o (T Y)*, and I = (T~1)* o T*, s0
that T* is the inverse of (T—1)*. ]

= x,
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Examples 18.4
(1) The adjoint of the identity is the identity.
(2) IfT : £ — (2 is given by the unilateral shift T'(z1, z2, z3,...) = (0,21, 22, 3, .. .),
then T € B(¢?,(?). Since (with e, the standard element of ¢?)

. B B 1, ifn4+1=m
(en, T"(em)) = (T'(en), em) = (€nt1,em) = {O, otherwise.

by uniqueness necessarily T*(e,,) = €;,—1, i.e., T* is the backward shift (and it
is a continuous linear function).

(3) If T : 2 — (2 is given by T(xy,x9,73,...) = (72,74, s,...), then T € B({? (?).
Since

<(LU2, Ty, Tg,y - - ')7 (917927 Y3, - - )) - <T(£L'1,LU2, x3, .. ')7 (y17 Y2,Y3, .. ))
= <(.’E1,{L‘2,IIJ3, o ')7T*(y17 Y2,Ys3, .. )> )

by uniqueness necessarily T*(y1, y2, s, - . .) = (0,41,0,y2,0,ys, . . .).
(4) Let T € (£*)* be given by T(z1, 2, 73,...) = x1. From

<£L'1, y> - <T(£L'1, T2,X3, .. )7y> = <(£L'1, T2,X3, .- ')7 T*(y>>
we deduce that T*(y) = (y,0,0,0,...).

19 Self-adjoint operators

The goal is to build to a spectral decomposition of (some) operators.

Definition 19.1 Let X be an inner product space. An element T' € B(X) is self-adjoint
if T* =T, and it is skew-adjoint if T* = —T.

If X is a Hilbert space, and T' € B(X), T'— T™* is skew-adjoint, and the following are
self-adjoint: T o T, T* o T, T + T™*.

Proposition 19.2 If X is a Hilbert space, every T € B(X) can be written uniquely as
T =T, + Ts, where Ty, T, € B(X) and T} is self-adjoint and T is skew-adjoint. If F = C,
then T can be written uniquely as T' = S1 4 1S2, where both S and Sy are self-adjoint.

Proof. Let Ty = 5(T 4+ T*) and T, = (T — T*). This proves the existence of the
decomposition T' = T + T5. Suppose that T' = T} + T for some self-adjoint 7] and skew-
adjoint T3 in B(X). Then T; — T7 is self-adjoint and equals T4 — T5, so that T4 — Ty =
(T3 —T3)* = (Ty)* —T5 = —=T4+Ts, whence Th — T = T, —T> = 0. This proves uniqueness.

IfF =C,set Sq =Ty and Sy = —iT5. Certanly S is self-adjoint, and S5 = (—iT)* =
—iTy = i(=Ty) = —iTy = S, so that Sy is self-adjoint as well. You verify uniqueness. [
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4(a,

Proposition 19.3 An orthogonal projection onto a closed subspace of a Hilbert space is
self-adjoint.

Proof. Let X be a Hilbert space and M a closed subspace. Let x,y € X. Then

(Pum(z),y) = (Pu(z), (y — PM( )+ Pu(y))
= (Pum(2),y — Pu(y)) + (Pu(), Pr(y))
= (Pum(z), Pr(y))
= (Prm(z), Pr(y )) ( = Pu(z), Pr(y))
(Pr(2) + @ — Py(2), Pr(y))
= (v, Pu(y)),
so that Py, = Puy. OJ

Theorem 19.4 Let X be a Hilbert space and T € B(X). Then T is an orthogonal
projection (onto some closed subspace) if and only if T = T* = T?.

Proof. One direction has been proved. So we assume that T'= T* = T?. Let M be the
range of T. If z € M, then there exists a sequence {z,}, in M that converges to = in the
norm. Then by continuity of T and since 7% = T, z,, = T(z,,) converges to x = T(z), so
that M is closed. For z € H and any y € M,

<.’L‘ - T(IL‘),y> = <IL‘,y>—<T(IL‘),y> = (x,y>—<x,T*(y)> = (x,y>—<x,T(y)> = <x,y>—<x,y> = 07
so that © — T'(x) is perpendicular to M, so that by Theorem 14.3, T' = Py;. O

Proposition 19.5 Let H be a complex Hilbert space. An element T € B(H) is self-
adjoint if and only if for all x € H, (Tx,x) is real.

Proof. If T = T*, then for all z € H, (T'(z),x) = (z,T*(z)) = (x,T(x)) = (T'(z),x), so
that (T'(z), x) is real.
For all z,y € H,

4(T(z),y) = (T(x+y),r+y) — (T(x—y)z—y) +i{T(r+iy),z+iy) — i (T(x —iy),z —iy),

T(y)=(+y.T(@+y) — (@ —y.T(x—-y) +i{z+iy,T(x+iy)) —ilz—iy, T(x—iy)).
If all the inner products on the right sides are real, then the two right sides are identical,

proving that (T'(z),y) = (z,T(y)), so that by uniqueness of adjoints, T" = T™, so T is
self-adjoint. ]
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Definition 19.6 Let T, S be a self-adjoint continuous operators on a Hilbert space H. We
say that T < S if for all x € H, (T'(z),z) < (S(x), z).

Clearly, T < |T| I. Thus there exists a least real number C' € R such that T' < C1.
This C is called the least upper bound for 7. Similarly, since — |T'| I < T, there exists a
greatest real number ¢ € R such that ¢/ <T'. This C' is called the greatest lower bound
for T'.

The least upper bound for T' can be strictly smaller than |7'|. Namely, if T = —1I,
then |T'| = 1 and the least upper bound is —1.

Proposition 19.7 Let T € B(X), where X is a Hilbert space. Then sup{|(T(x),z)| :
|| =1} = [T].

Proof. Certainly the least upper bound M is at most |T'|. Let x,y be in the space with
norm 1. Then

A[Re(T(x),y)| = [(T(x+y),z+y) — (T(x—y),z—y)]
K

<[ {T(@+y),z+y) |+ [{T(z—y),z—y)]
<M([{@z+y,z+y)|+[{z—y,z—y)|)
= 2M (|=]* + yI*)

= 4M.

Thus if (T'(z),y) = €| (T'(z),y) |, we have that
[(T(2),y)| = Re(T(z),ey) < M,

and this holds for all z,y of norm 1. If T'(x) # 0, we get that

(7@ s ) < M.

i.e., that |T'(z)| < M. But the last inequality holds even if T'(x) = 0. Since x varies over
all elements of norm 1, this proves that | 7| < M. O

Let X be a Hilbert space and T' € B(X). Let z, € X such that |z,| = 1 and
| (T(zy,),x,) | = |T| (such a sequence exists by the previous proposition). Since the set
{a € F:|a| =|T|} is compact, by taking subsequence we may assume that {(T'(z,), zn) }n
converges to ¢ |T'| for some real 6. But all (T'(x,,),z,) are real, so that | (T'(z,,), z,) | —
+ |T|. Then

2 2 2 2 2 2
0 < [T(zn) F T 2nl” = 1T (@) |"F2|TIT (z0), 2)) TN |20l < N1TIF2 TN (T (20), 20) T,

and this converges to |T|* — 2|T|* 4+ |T|* = 0, which proves that |T| € 0ap(T) (definition
in the next section) but |7’ need not be an eigenvalue of T'. See next section.
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20 Spectrum

Let X be a non-zero complex vector space, and let T' € B(X). If p is a polynomial in
one variable, with p(z) = ag + a1z + - -+ + a, 2", define

p(T) =apl + a1 T+ -+ a,T".

Obviously, p1(T)p2(T) = (p1p2)(T).

Definition 20.1 For T € B(X),

o(T) = spectrum of T'= {\ € C: A\ — T is not invertible},
o,(T') = point-spectrum of T'= {\ € C: A\ — T is not one-to-one},
p(T) = resolvent set of T'=C\ o(T).

Also, the resolvent function is R(A\,T) = (A —T)~! (for A € p(T)). Elements of the
point-spectrum are called the eigenvalues of T. A complex number X is an eigenvalue of
T if and only if there exists a non-zero x € X such that T'(z) = A\x. Any such x is called
an eigenvector of T' corresponding to the eigenvalue .

An approximate eigenvector of T' corresponding to \ is a sequence {x,} in X such
that |x,| = 1 for all n and such that T(z,,) — Az,, — 0 in the norm. Define

04p(T) = an approximate spectrum of 7'

= {A € C: there exists an approximate eigenvector corresponding to A\}.
Certainly o, C 04, and o, C 0. If X is finite-dimensional, 0,,(T") = 04,(T) = o(T).

Proposition 20.2 Let X be a Hilbert space, and let T' € B(X). Then o(T*) ={Z:z €
o(T)}.

Proof. Write it out. O

Theorem 20.3 Let X be a Banach space, T € B(X), and A\ € C. The following are
equivalent:

(1) X & 00 (T).

(2) There exists ¢ > 0 such that for all x € X, (M —T)(x)| > ¢|x]|.

(3) M — T is one-to-one with closed range.

Proof. (1) = (2): Suppose that for all n € N there exists z,, € X such that
[(AL = T)(@n)l < 5 l@al- Then @, # 0 and [(A —T)(yn)| = [(M = T)(za/ lza)] < 5.
so that A € 04,(T") (with approximate eigenvector {x,/ |z, |}).

(2) = (3): Let z € Ker(\] —T). Then 0 = |(M —T)(z)] > c|z| implies that
x = 0. Thus A — T is one-to-one. Let x be in the closure of the range of A\l — T'. Let
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Yn = (AT —T)(y,,) be such that |y, — x| < 1/n. Then {y,} is a Cauchy sequence, so by
assumption (2), {y,,} is a Cauchy sequence in X . Since X is Banach, there exists y € X such
that y/, — y. By continuity of \[ =T, (A —T)(y) = lim,, oo (AT =T)(y},) = limy, 00 Y, = .
Thus the range of A\I — T is closed.

(3) = (1): Let Y be the range of \I—T'. Then A\ -7 : X — Y is a bijective continuous
linear mapping of Banach spaces, so that by the Inverse Mapping Theorem, there exists
U € B(Y,X) such that Uo (Al =T) =1 and (Al —T)oU = I. Then for all x € X with
|z] =1, 1 = [(Ue (M =T))(x)] < |UJI(AM =T)(x)|, so that [(A\ —T)(x)| = 1/|U],
whence X\ & o4,(T). ]

Example 20.4 Let T : (* — (% be the unilateral shift. Then o,(T) = 0 (work through
it). For which X is AI — T surjective? Try to solve for x in (A —T')(z) = y:

()\901,)\902 — X1, A\T3 — T2, .. ) = (y17y2,y3, .- )

If A = 0, this does not have a solution for all y, so that 0 € o(T'). It is an exercise (Exercise
10.1) to determine o(7"). Observe in any case that here ¢,(T") is a proper subset of o(T).
Suppose that |[A| # 1. Then for all z,

[AL =T)(@)| = [|Ae] = T (@)[ | = [IA] = 1] ],

so by Theorem 20.3, A\ ¢ 04,(T). Now let A have absolute value 1. Set z,, =
(1,1/X\,1/X2,...,1/A"710,0,...). Then z, € ¢* with |z,| = /n, and (A — T)(x,) =
(A,0,...,0,—1/A"71,0,0,...) has norm (|A]? + 1/|A"12)V/2 = 21/2 5o that {z,,/ |z, |} is
an approximate eigenvector for . Thus 0,,(T) = {A € C: || = 1}.

In contrast, o,(T*) = o(T*) = B(0,1). Namely, (A] — T%)(z1,22,...) = (Ax; —
To, ATy — X3, \w3 — x4,...). If |A] < 1, then (1,\,\%,...) is in the kernel of \I — T*, so
that B(0,1) C 0,(T7). If A € C and = € ker(A — T%), then z,41 = Az, = -+ = A2y,
so that if x; # 0, necessarily (1,\,\2,...) € 2, so that A € B(0,1). This proves that
op,(T*) = B(0,1). We already know that o,(T*) C o(T*) = o(T), so see Exercise 10.1 to
determine o (7).

We know that 0,(1T*) C 04,(T*). We claim that o,,(T*) = {A € C : |A\| < 1}. First
suppose that |A| > 1. Then for all z € £2,

A —T*(2)] = |he| = |T*(2)] = IA| |zl = (2] = |21*)"/? = |A] 2| = 2] = (Al = 1) |l ,

which proves that A\ & o,,(T) if [A\| > 1. Now let A € C have absolute value 1. Set
r, = (1, A% ..., A" 0,0,...). Then

n—1 1/2
e (Z |A|2i) —

=0

and |[(AI —T*)(z,)| = [(0,0,...,0,A™,0,0,...)] = |\|™ = 1, so that {x,/\/n} is an ap-

proximate eigenvector for A.
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Lemma 20.5 LetT € B(X) with |T| < 1. If X is a Banach space, then I —T is invertible
and (I —T)"! =%, 1"

Proof. Since |T"| < |T|", the series Y .- T™ converges absolutely. By a homework
problem, since B(X) is complete, the series then converges in B(X). Furthermore, the
composition of this series with I — 7" in either order gives the identity, which proves the
lemma. U]

Theorem 20.6 Let X be a Banach space. Then the set of invertible elements of B(X)
is an open subset of B(X), and the map T +— T~! is continuous.

Proof. There is nothing to prove if X = 0, so we assume that X is non-zero. Suppose that
T is invertible. Then ||| > 0. Let S € B(X) such that |T — S| <1/ |T~*|. Then

S=T—(T-S)=T(I-T"Y(T-8)),

and since HT (T —S) H HT‘lH |T — S| < 1, by the lemma, I —T~1(T — S) is invertible,

so that S is a composition of two invertible operators, hence invertible. Thus the set of
(e @]

invertible operators is open. Furthermore, S~ =" (T~1(T — S))"T~!, and so

Z —1
Z " T - 5|

[s7h-17 =

|7 |17 - 9] Z(HT—lu IT - S|)"
n=0
_ TP =S|
1— T[T =S|

O

As S — T, this quantity gets smaller and smaller, which proves the continuity.
Corollary 20.7 p(T) is open, o(T) is closed. ]
Lemma 20.8 If |\| > |T|, then \ € p(T).

Proof. X =T = AI —T/\), and as |T/\| is strictly smaller than 1, then I —T/\ is
invertible, so AI — T is invertible. (]

Corollary 20.9 o(7) C B(0,|T)). O
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Theorem 20.10 The boundary of o(T') is a subset of 04, (T").

Proof. Let A be in the boundary of o(7T). Then there exists a sequence {\,} in p(T)
that converges to \. Set S = X[ —T, S, = A\,I —T. Then all S,, are invertible, but
S is not as o(7T) is closed. Thus by the proof of Theorem 20.6, |S —S,| > 1/]S,*|.
But S, — S| = [(A = A,)I], so that {1/ ]S, !||} converges to 0. In other words, {|[S,*|}
diverges to co. Set B, = S;'/ S, *|. So |B.| =1, and

converges to 0. Since |B,| = 1, there exists y,, € X such that |y,| = 1 and |B,,(y»)| >
1 —1/n. Let z,, = By(yn)/ |Bn(yn)|. As SB,, converges to 0 in the norm, we have that
S(x,) converges to 0 in the norm. O

Definition 20.11 The spectral radius of T is
re(T) =sup{|A| : A € o(T)}.
(For now we assume that o(T) # (. We’ll show later that this is always true.)

We just proved that 7, (T) < |T'|, and below we will prove that r,(T) < inf{|7™|"" :
n € N}.

Theorem 20.12 (Polynomial Spectral Mapping Theorem) If X is a Banach space, T €
B(X), and p is a polynomial in one variable of positive degree, then o(p(T)) = p(o(T)).

Proof. Let A € C. Write p(z) — A = a(z —r1)(z — r2)--- (2 — 1) for some a,7; € C.
(Necessarily n = degp.) Then

p(T) =M =a(T —rI)(T —rol)--- (T —r,I),

and the factors commute. Thus A € p(p(T)) if and only if A\I — p(T') is invertible, which
in turn holds if and only if 7,/ — T is invertible for all i, i.e., if and only if r; & o(T') for
all i. But rq,...,r, are precisely those complex numbers z for which p(z) = \. Thus if
A € o(p(T)), then some r; € o(T), so that A = p(r;) € p(a(T)). For the other inclusion,
if A € p(o(T)), write A = p(s) for some s € o(T'). Necessarily s = r; for some i, so that
r; € o(T), whence by above A € o(p(T")). This proves the theorem. O

Corollary 20.13 If A € o(T'), then \™ € o(T™). O]
Theorem 20.14 If A\ € o(T'), then for all n, || < ||T”||1/n.

Proof. Use the previous corollary and Corollary 20.9. (]

Can we extend this to other functions? What do we mean by f(7') if f is not necessarily
polynomial? See next section.
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21 Holomorphic Banach space-valued functions

If Y is a Banach space, U an open subset of C, and 2y € U, a function f : U — Y has
complex derivative at zg if

li —

Jim ——(f(2) = f(20))

exists (using the norm topology in Y'). If the limit exists, we denoted it by f’(zg). We say
that f is (complex) analytic or holomorphic on U if f/(z) exists for all z € U.

Facts 21.1 Some of the facts below are straightforward, and some are only listed as a
background, with many details to be checked.

(1) (Easy.) If f is analytic, then f is continuous.

(2) (Weak integrals of Banach-space valued functions) Let p be a real- or
complex-valued measure on a set S and let f : S — Y. We say that [ fdu =1y
weakly if for all ' € Y*, Fof is integrable in the standard sense and [(Fof)d p =
F(y).

(3) (Easy.) If y as above exists, it is unique.

(4) Proposition: If K is a compact metric space, p is a (finite) complex measure on
K, and f: K — Y is a norm-continuous function, then the weak integral [ fd p
exists. (The idea of the proof is for each € > 0 to cover K with with balls of radius
d (6 such that all  within ¢ of each other map via f to within € of each other),
and to partition K into pairwise disjoint measurable sets with diameters at most
0. Approximate the integral via the partitions, and show that you do have an
approximation.)

(5) (Straightforward.) If the weak integral exists and if | f( )| : K — R is measurable,

then
H/ fdﬂ“ < [1)duts)

(6) (Goursat’slemma) If f is analytic in a region containing a closed rectangular region
R, then [,, f=0.

(7) (Cauchy Integral Theorem) If f is analytic in an open set U and C'is a cycle in U
(= ”sum” of finitely many oriented pairwise non-intersecting closed curves) such
that the winding number W (C, z) = 0 for all z ¢ U, then [ f = 0.

(8) (Cauchy Integral Formula) If f is analytic in an open set U, 2y € U, and C is a
cycle in U such that the winding number W(C, zp) = 1 and W(C, z) = 0 for all
z ¢ U, then

f(z0) = = (2) dz.

2w oz — 2
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(9) (Cauchy’s inequalities) If f is analytic in {z : |z — 20| < r} and |f(2)| < M for all
z in this set, then

M
< =

n —rn

H F™ (20)
!

(10) If f is analytic in {z : |z — zg| < r}, then

o~ " (20) "
ey =2 T
in this region.
(11) (Liouville’s Theorem) If f is analytic on C and {|f(2)| : z € C} is bounded, then
f is constant.
(12) (Follows immediately from the proof of Theorem 20.6.) (Resolvent identity) If

z,w € p(T), then
(2I-T) ' —(wI-T)"" = (w—2)(2I-T) " H(wI-T)"" = (w—2)(wI-T) " (zI-T)"".
(13) The resolvent function R(A,T) = (M — T)~! is an analytic function on p(T).

Corollary 21.2 o(T) # 0.

Proof. If o(T) = (), then the resolvent function of T'is analytic on all of C. But (\[-T)~! =
Soo i AT for [A] > |T|. But then limy_oo (A —T)~! = 0. By Liouville’s Theorem,
(M —T)~!is a constant function, so necessarily the zero function, which is a contradiction.

0

Now we go back to the end of the previous section, and in particular to the Polynomial
Spectral Theorem. We take an analytic function f : U — C, where U is a neighborhood of
o(T), and we choose a cycle C' in U \ o(T) such that the winding number of C' around z

equals
1, ifzeo(T);
W(C,2) = {0, if 2 ¢ U.

Then define .
1) = 5 | 1T =T)

Existence of such a cycle: note that o(7T') is a closed and bounded subset of C; learn complex
analysis or even topology. If C’ is another cycle, then C'— C” is another cycle in U \ o(T),
with winding numbers zero around z € o(T) and around z ¢ U. Since f(z)(zI — T)™!
is analytic on U \ o(T'), by Cauchy’s integral formula (study complex analysis), the
integral over C' — C’ is 0, which verifies that f(7T) is well-defined.
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Facts 21.3

(1) (f +9)(T) = £(T) + g(T).

(2) AN(T) = Af(T).

(3) (This requires some integral work, Cauchy Integral Formula, etc.!) (fg)(T) =
f(T)g(T).

(4) H(T)g(T) = g(T) {(T).

(5) If f(z) = 2™, then f(T) =T". By above it suffices to prove this for n =0, n = 1.
(This also requires some work!)

(6) If f(2) = e, we get f(T) =eT. If T and S commute, then ef'e” = T+5,

Lemma 21.4 Let X be a Banach space and T € B(X). If f is analytic on a neighborhood
of o(T) and if f(z) # 0 for all z € o(T), then f(T) is invertible and (f(T))~' = (1/f)(T).

Proof. (1/f)(T)o f(T)=((1/f)- (f))(T) = I by the case n = 0 in the last fact above. [

Theorem 21.5 (Spectral Mapping Theorem) Let X be a Banach space, T € B(X), and
f analytic on a neighborhood of o(T'). Then o(f(T)) = f(o(T)).

Proof. Suppose that A € f(o(T)). Then A # f(z) for all z € o(T'). Then by Lemma 21.4,
(A= f)(T) =X — f(T) is invertible. Thus A\ & o(f(T)).
Now suppose that A € f(o(T")). So there exists zy € o(7T") such that f(z9) = A. Let
g(z) = (f(2) — N)/(z — 20), analytic in the same domain as f. Hence
M = f(T) = A= )T) = (20l =T)g(T) = g(T') (20 = T).

Since zoI — T is not invertible, so that AI — f(T') is not invertible, so that A\ € o(f(T)).O
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Appendix A. Some topology facts
Proposition 1 A closed subset of a compact set is compact.

Proposition 2 A subset of a complete set is complete if and only if it is closed.
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Appendix B. Homework and exam sets

Definition 1 A topological space X is locally compact if for all x € X there exists a
compact set that contains a neighborhood of x.

Proposition 2 A subset of F" is closed and bounded if and only if it is compact.



Homework 1 MATH 411 « Spring 2011
Due on Friday, 4 February:

1. Let X be a normed linear space. Prove that the functions + : X x X — X and
-1 F x X — X are continuous. (Use the product or the product metric topology on
the product of (metric) spaces.)

2. Let X C R, and let f, : X — F be differentiable functions such that f,, — ¢ uniformly
and f] — h uniformly. Prove that g is a differentiable function and that ¢" = h. (Hint:
Apply the Mean Value Theorem to f, — fy,.)

3. Let X be a topological space, and let S; O S2 O --- be a nested sequence of closed
compact subsets. Prove that N,,S, = () if and only if some S,, is empty.

4. Let a,b € R and let f : [a,b] — R be a bounded measurable function. Prove that

Jim [[fllp < inf{sup{|f(t)| : t € E} : ECla,b],m*([a,b]\ E) = 0}.

The quantity on the right in the display is called the L°°-norm.

Correction

Problem 3 above was originally phrased as follows: Let X be a topological space, and
let S D Sy D --- be a nested sequence of compact subsets. Prove that N, S, = 0 if and
only if some 5,, is empty.

Here is a counterexample: Let X = R. The open sets are R, [0,7), r € R. This forms

a topology. The sets S, = (0, %] are compact and non-empty, yet N.S,, = (.



Homework 2 MATH 411 « Spring 2011
Due on Friday, 11 February:

1. Let ¥ be a o-algebra on a set X. A function p : ¥ — R U {£o0} is called a signed
measure if x(0) = 0 and if p is countable additive, i.e., if for any pairwise disjoint
Ap, Ag, o in 3, p(U24 Ay) = Y0, w(Ai). Prove that the range of 1 contains at most
one value of {—o00, c0}.

2. Let X be a o-algebra on a set X. A function i : ¥ — C is called a complex measure
if u(0) = 0 and if p is countable additive, i.e., if for any pairwise disjoint Ay, Ag, ... in
3, w(Use A;) = >0 u(A;). Prove that Im p, Re p are signed measures.

3. Let p be a signed measure on a o-algebra Y on a set X. This exercise will prove
the Hahn-Jordan decomposition theorem: there exist P and N in X such that
X =PUN,PNN =0, and for all E € ¥, y(ENP) >0 and u(ENN) < 0. If
wp, iy X — [0, 00] are defined as up(F) = w(ENP) and pun(E) = —pu(ENN), then
wp, N are measures, and g = pup — Un-.

(i) Let PP (resp. N) be the set of all sets A € ¥ such that for all E € ¥, y(ENA) >0
(resp. u(ENA) <0). Prove that P and N are not empty, and that they are closed
under countable unions.

(ii) By Exercise 2.1, p never takes on either the value co or —oo. We will assume in
the sequel that u does not have oo in its range. Let B = sup{u(4) : A € P}.
Prove that there exist Ay C Ay C -+ in P such that B = lim,_, o 1(A4,). Prove
that P = U, A,, € P and that B < oo.

(iii) Set N = X \ P. Prove that N € N. (Suppose not. Then there exists £ C N such
that £ € ¥ and pu(F) > 0. Necessarily (why?) E ¢ P. Thus there exists F' C E
such that F' € ¥ and p(F) < 0. Choose the smallest possible positive integer
ny such that for some such F, call it Fy, u(Fy) < —1/n;. Necessarily (why?)
E\ Fy ¢ P. In general, let n; be the smallest positive integer such that for some
F. C E\(Fl U "'UFk_l), F, € ¥ and M(Fk) < —1/nk. Set F' = Ui F}. Prove
that u(F) < —> . 1/ng € (—00,0), so that lim, ny = co. Use the “greediness”
of the ny to show that for all G € ¥ with G C E'\ F, u(G) > 0. Conclude that
E\ F €P. Prove that u(E \ F) =0 and that u(E\ F) > 0.)

(iv) Prove that up, un as defined in the introduction are measures.

(v) Prove that p = pup — un-.



Homework 3 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Friday, 18 February:

1. Let (X, X, 1) be a measure space. Prove that IL° is complete.

2. Let X be a non-empty set with a o-algebra ¥ on it. Let M = M (X, X) be the set of
all F-valued measures p on X for which sup{|u(4)|: A € ¥} < 0.

(i) Prove that M is a vector space over [F under the obvious operations.
(ii) Define | | on M by || = sup{|u(A)|: A € ¥}. Prove that | | is a norm on M.

(iii) Prove that M is complete in the norm, so that M is a Banach space. (Hint:
Before you read the rest of my hint, be aware that my solution may not be the
slickest one. Let {u,} be a Cauchy sequence. Find p that is a pointwise limit.
If Ay, As,... are pairwise disjoint in ¥, prove that {> ., pu(A4;)}, is a Cauchy
sequence in F.)

3. Let V be a non-trivial vector space over F. The goal of this exercise is to prove that
V has a basis, i.e., V' has a subset B such that every element of V' can be written
uniquely as a finite linear combination of the elements of B. We can only prove this if
we allow the axiom of choice, or one of its equivalent formulations. We will take the
following equivalent formulation of the axiom of choice: Zorn’s lemma: Let S be a
non-empty set with partial order on its elements. Suppose that for any totally ordered
subset C' of S there exists B € S such that for all ¢ € C, ¢ < B. (This is phrased as:
every chain in S has an upper bound.) Then there exists M € S such that for
all s € S, either s and M are incomparable or s < M. (This is phrased as: S has a
maximal element.)

With that, prove that V has a basis as follows. Let S be the collection of all
linearly independent™® subsets of V. Prove that S is not empty, impose the natural
partial order on S, prove that every chain in S has an upper bound, invoke Zorn’s
lemma, and then prove that the maximal element in S is a basis.

* Definition of linear independence: a (possibly infinite) set L is linearly independent
if any finite linear combination of its elements being zero implies that all the coefficients
are zero.



Homework 4 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Friday, 25 February:

1. Let X be a normed vector space with norm | |. The series >~ x,, converges if the
sequence {Y ", #;}, converges in X (in the norm, of course). The series Y -, z,
converges absolutely if > | |x,| converges. Prove that X is complete if and only
if every absolutely convergent series in X converges.

2. Let p € (0,1), let a,b € R with a < b, and let m denote the Lebesgue measure. Let X
be the set of all m-equivalence classes of Lebesgue-measurable functions f : [a,b] — F.

Define 1
b p
() = ( / |f|pdm> .

Let Y be the subset of X consisting of those f for which ((f)), < co. Prove that (( )),
is not a norm.

3. Let X and Y be vector spaces, and let T : X — Y be linear. Define
N(T) = nullspace of T' = kernel of T = {x € X : T(x) = 0}.

For the rest of this exercise, assume that X and Y are both normed.
(i) Give an example of X,Y and T such that N(T") is not closed.

(ii) Now assume that 7' € B(X,Y). Prove that N(T) is a closed subspace of X. Give
an example of XY, T such that the range of T' is not a closed subset of Y.

4. Let X be a normed vector space and M a closed subspace. In class we defined the
obvious norm on X/M under the condition that X is also complete. Is this complete
assumption necessary? (The book seems to say on page 71 that it is not necessary.)

Addition

It is indeed not necessary. The corrected class notes now reflect that.



Homework 5 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Friday, 4 March:

1. Let X = F". Prove that X* is isomorphic as a ((complete) normed) vector space to X.
2. Let X be a normed vector space.

(i) Let S C X. Prove that
Se={feX": f(s)=0for all s € S}

is a closed linear subspace of X*.

(ii) Let T'C X*. Prove that
‘T={rxeX:f(z)=0forall feT}

is a closed linear subspace of X.
(iii) Let M be a closed linear subspace of X. Prove that °(M°) = M.

3. Let V be a normed vector space over C. Prove that the function
P B(C(V7 C) - BR(Vv R)

given by ¢(f) = Re(f) is an isometric isomorphism.

4. Let V be a vector space over C. Let B be a basis of V. Prove that B U¢B is a basis
of V as a vector space over R.



Homework 6 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Friday, 18 March:

1. Let X be the set of all bounded functions R — F.
(i) Prove that X is an F-vector space.
(ii) Define | | : X — R by |f| = sup{|f(z)|: = € R}. Prove that | | is a norm.
(iii) Prove that X is complete under the norm.
2. With X as in the previous problem, prove that there exists 7' € X* such that
(i) 171 = 1.
(ii) If f € X is real-valued, then inf{f(z):x € R} <T(f) < sup{f(z):x € R}.
(iii) If f € X is in non-negative real-valued, then T'(f) € [0, c0).
(iv) If f,g € X such that for some r € R, f(z + 1) = g(z) for all z € R, then
T(f)=T(9)
3. Suppose that = € ¢>° and that { W} converges. Is the Banach limit of such =
uniquely determined? Prove or find a counterexample. (I don’t know an answer.)

4. Let X,Y be normed vector spaces T € B(X,Y) and M = kernelT. Prove that
T is an open map if and only if the induced map T € B(X/M,Y) is a topological
homeomorphism. (For T', see Remark 12.5.)

5. Let X and Y be Banach spaces, and let T' € B(X,Y). Prove that the following are
equivalent:

(i) The range of T is closed.
(ii) There exists ¢ such that for all x € X, d(z, kernelT') < c¢|T'(z)|.

(iii) There exists ¢ such that for any y in the range of T', there exists x € X such that
T(z) =y and |z]| < y].



Homework 7 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Friday, 1 April:

1. Let e, € £ be the sequence with 1 in the nth spot and 0 elsewhere. Clearly ey, e, ...
are linearly independent.

(i) Prove that for each m there exists a vector space basis B of ¢! that contains
e1, ea, ... and for which Span{ey,...,e,} N Span(B\ {e1,ea,...}) =0.

(ii) Find a vector space basis B of ¢! that contains ej,es,... and for which e; €
Span(B\ {e1,ea,...}).
* (iii) Prove that for every vector space basis B of /! that contains e1, e, . . ., there exists

n such that Span{ei,...,e,} N Span(B\ {e1,ea,...}) # 0.

2. Let Y = {zx € £ : {nz,} € £>°}. Then Y is a vector space. Define the norm on Y
as |z| = |z|, + [{nen}|, . Prove that | | is a norm and that Y is complete in this
norm.

3. Let M = {{a,} € £~ : ag, = Oforalln € N}, N = {{b,} € £~ : nby, =
bap—1 for allm € N}, and set X = M + N. By Example 10.1 (12), X is a non-
closed subset of £*°, so that X is not complete. Let Y be as in the previous exercise.
Define T: X — Y by T(z) = {x/n+ 22, }n. Then T is well-defined and it is certainly
linear. Prove that T' is surjective but not continuous.

4. Let B be a vector space basis of ¢y that contains the canonical elements eq,eo,.. ..
Define T : ¢g — co by T(en) = en/n, T(b) = b for all b € B\ {ej,es,...}, and
extend T linearly to all of X. Prove that for some B, T is not continuous. (Hint:
Define b, = (0,0,...,0,1,1/n,1/n2 1/n3,...) (the first n — 1 entries are 0). Prove
that the set containing all the e,, and all the b,, is linearly independent. (I can do this
with a Vandermonde matrix.) Prove that for n > 1, —e,, + b,, has {*°-norm 1/n and
—en/n + by, has £*°-norm (n —1)/n.)



Homework 8 MATH 411 « Spring 2011

Make sure you are in class each day on April 11, 13, 15, from 2:10pm until
3:00pm.

Solve two problems of your choice. Due on Friday, 8 April:

1. Let X be a Banach space. Prove that a subset S of X* is bounded if and only if for
each z € X, {|f(x)|: f € S} is bounded. (Hint: this is easy.)

2. Does the conclusion of the previous exercise hold if X is not complete in its norm?
Give a proof or a counterexample.

3. Let A be any subset of a Hilbert space H. Prove that the closure of the linear span of
A equals (A1)+.



Homework 9 MATH 411 « Spring 2011
Solve two problems of your choice. Due on Friday, 22 April:

1. Let V be a vector space. Prove that any two vector space bases of V' have the same
cardinality. If V' is a Hilbert space, prove that any two (Hilbert space) bases of V' have
the same cardinality.

2. Let H be a Hilbert space. Prove that H has a countable (Hilbert space) basis if and
only if H has a countable dense subset.

3. Prove that two Hilbert spaces are isomorphic if and only if they have (Hilbert space)
bases of the same cardinality. (Recall: An isomorphism of Hilbert spaces is a vector
space isomorphism that preserves inner products.)

4. Let X and Y be Hilbert spaces and T' € B(X,Y). Prove that |T| = |T*| =
|T* o T|"/.

5. Let X be a Banach space in which the Parallelogram Law holds. Prove that X is a
Hilbert space.



Homework 10 MATH 411 « Spring 2011

Solve two problems of your choice. Due on Wednesday of the thesis week at
noon.

1. Determine the spectrum of the unilateral shift T : ¢2 — (2. (See Example 20.4,
Corollary 20.7, Corollary 20.9.)

2. Let X be a Banach space and let T € B(X). Prove that lim, HT”Hl/n =
inf,, ||T”||1/n. (Hint/trick: For any k € N, write n = g,k + 7, with 0 <r, < k.)

3. Give an example of a Banach space X and an invertible 7' € B(X) such that
|77 # 1.

4. Let X be a Banach space, and let S,T € B(X). (They need not commute.) Prove
that 0(SoT)\ {0} =o(ToS)\{0}. (Hint: if SoT — AI has an inverse U, fashion an
inverse of T'o S — AI out of U, S, T, A\, I in a clever way.)



Exam 1 MATH 411 « Spring 2011

You may take three hours for this exam, with at most one 10-minute break in between.
You are not allowed to use any notes, books, people. If you have questions for me, you
may call me in my office 503 517 7399 or at home 503 788 6084 (after 6:45am and before
10pm). If your time is up, but you still have ideas, you may keep going, but mark how
much was done after the allowed time and how much extra time you took. Do not go back
to the exam after a break after your allotted time was up.

Below you will find five theorems and five proofs. Match the theorems with
their proofs. If a theorem does not have a proof, write the missing proof; and
if a proof does not have a statement, write the missing theorem. Correct and
complete any given theorems and proofs as necessary.

Do not allow a domino effect of errors.

A. Theorem: Let X be a normed vector space, and let eq, ..., e, be elements of norm 1.
Let T € X*. Then |T| > max{|T(e1)],...,|T(en)|}. If X is spanned by ey, ...,e,, and
if X has norm determined by ,

)

then |T|| = max{|T(e1)|,...,|T(en)|}

B. Theorem: Let X,Y be a normed vector spaces, and let T € B(X,Y"). Define U : Y* —
X*byU(f)=foT. Then U € B(Y*, X*) and |U| < |T.

C. Theorem: Let X,Y, Z be normed vector spaces, T' € B(X,Y) and U € B(Y, Z). Then
UoT e B(X,Z)and |[UoT| < |U||T].

D. Theorem: Let X,Y be normed vector spaces, and T' € B(X,Y). Let U : Y* — X* be
defined as in Theorem B. Then (range T')° = kernel U and kernel T = °(range U).

E. Theorem: Let Z be a subset of a normed vector space X, and let Y be the closed
linear span of Z. Then Z° =Y°, and °(Z°) =Y.

Recall that for S C X, S° = {f € X*: f(s) =0 for all s € S}, and that for ' C X*,
°T={zeX: f(x)=0forall feT}.



(i)

(iii)

Proof: For all non-zero x € X, o] = |T7'T(z)| < |77 |T] =], so that
1 < |T7H|T|, whence |T7*| > 1/|T|. An inequality is possible: [Fill in the

rest.|

Proof: If f € Y*, then f € kernelU if and only if U(f) = 0, which holds if and

only if foT = 0, which holds if and only if for all z € X, foT(x) = 0, which holds

if and only if f € (range T)°. This proves that

[Fill in the rest.]

Proof: Let f,g € Y*, r € F. Then for all x € X, U(f + rg)(z) = (f +rg) o

T(x) = foT(x) +rgoT(x) = U(f)(x) +rU(g)(x) = (U(f) + rU(g))(x), so

that . Furthermore, by

we have that

Proof: If f € X*, then f € Z° if and only if Z C kernel f. Since the ker-
nel of f is a closed subspace, Z C kernel f if and only if Y C kernel f. Thus

This implies that °(Z°) = °(Y°),

and by Homework 5.2.(iii), since Y is closed, °(Z°) =Y.

Proof: Since kernel U = (range T')°, it follows that °(kernel U) = °((range T')°) =

range T by




Exam 2 MATH 411 « Spring 2011

The 17 students formed 6 groups, and each group came up with 2 problems. The

following is the list of all exam questions.

1.

Let H be a Hilbert space and let A be a continuous linear operator from H to itself.
Using the Riesz Representation Theorem one is able to prove that there exists a unique
linear operator A* such that for any a,b € H, (Aa,b) = (a, A*b). This operator is
known as the adjoint of A.

Given the above, prove three of the following five statements.
(i) A = A.

(ii) If A invertible then A* is invertible, and (A*)~! = (A1),

(iii) (A+ B)* = A* + B*.

(iv) (AMA)* = XA*, where X denotes the complex conjugate of .
(v) (AB)* = B*A*.

Then prove that Ker(A*) = Im(A)+. From this it follows immediately (with a result
you proved in homework) that Ker(A*)* = Im(A).

(i) State the Uniform Boundedness Principle.

(ii) Let X be a Banach space and Y be a normed vector space. Prove that a set S C
B(X,Y) is bounded if and only if for all x € X and all g € Y*, {goT(x) : T € S}
is bounded in F.

(iii) Show that in the above proposition, the assumption that X is Banach is necessary.
(Hint: In constructing a counter-example, you may start with X = @22 |F.)

(i) State the Uniform Boundedness Principle.

(ii) Are all the assumptions necessary? If not, prove it without each unnecessary
assumption. If yes, give counterexamples to show that the principle fails when
one relaxes the following assumptions:

T he domain is Banach.
T he functions are continuous.
T he functions are linear.

. What is wrong with the following version of the Open Mapping Theorem. Explain

why this version fails:

Theorem. Let X and Y be normed vector spaces and let T € B(X,Y) be surjective.
Then T is an open mapping.

Let H be a Hilbert space and T € H*. Let M = KerT. Prove that either M is a
vector space of dimension 1 of M = H.

Let X and Y be topological spaces. A function f : X — Y is continuous if for every



openset VinY, f~1(V)={x € X : f(xz) € V} is open in X.

If f: X — Y is continuous, then for any x € X and any sequence in X
converging to x, the composition of f with this sequence converges to f(x).

(i) Prove: The converse of the bolded statement holds if one uses nets (instead of
sequences). (Hints: Try the contrapositive. Definition: A function f : X — Y
is continuous at a point € X if given an open neighborhood V of f(x), there
exists an open set U C X such that U C f~1(V). Define the set A = {W :
W is an open neighborhood of z}, and then order it by reverse inclusion (so w; <
(1] if w1 2 wg).>

(ii) Find a directed set (A, <) with the following properties:
(a) A is not finite
(b) There exists exactly one element ag of A such that, for every (Hausdorff)

topological space X, all convergent nets S : A — X must necessarily converge
to Sq, € X.

7. Let X be a normed linear space, and let ¢ : X — X** be given by

We say that X is reflexive if X** = {¢(z) : x € X}, i.e., if ¢ is an isomorphism.
Prove that X* is reflexive if X is reflexive.

8. Let X be a normed linear space, and let ¢ : X — X** be given by

We say that X is reflexive if X** = {¢(z) : x € X}, i.e., if ¢ is an isomorphism.
Suppose that X is complete and that X™* is reflexive. Prove that X is reflexive.

9. Given any partially ordered set (A, <), a subset B of A is a cofinal subset if for every
a € A there exists b € B such that a < b. Given a function f: X — A, we say that f
is a cofinal function if f(X) is a cofinal subset of A. Let A and B be directed sets.
Given two nets (z,) and (yg) from A to B, respectively, define (yz) to be a subnet
of (z4) if there exists a monotone cofinal function h : B — A such that yg = x1s).

(i) Let X be a compact topological space. Assume that the collection {C; : i € I} of
closed subsets of X has the finite intersection property, i.e., N;c;C; # 0 for
all finite subsets J of I. Prove that N;c;C; # 0.

(ii) Let A be a directed set and (x,) a net in (compact) X. For every a € A define
E, ={xp: > a}. Prove that E = NycaFq # 0.

(iii) Let x € E. Then each neighborhood U of x has a non-empty intersection with all
E,. Use the fact above to construct a subnet (yz) of (x,) that converges to x.



10. Define the Chebyshev polynomials of the first kind via the recurrence:

TO( 17
T (x) ==z,
2

8
N~—
I

Tn—l (IL‘) - Tn_Q(IL‘).

(i) Prove that for all integers n > 0, T;,(cos(f)) = cos(n@).

(ii) Prove that {7}, ocos : n > 0} is an orthogonal set in .?([—1, 1]) (with the Lebesgue
measure).

11. Give an example of a linear mapping between two normed vector spaces that is almost
open but not open.

12. Let {a,} be a sequence in F. Prove that >~ a,, converges absolutely if and only if
Y nen n converges in the net.



Final exam MATH 411 « Spring 2011

Solve three of the five problems, in three contiguous hours. When solving
a problem, you may use the results of preceding problems in this exam. You
may refer to your class notes and to my notes on the web, but you may use no
other sources. Due on Thursday at noon.

Recall that an operator T': X — X is compact if the image of T'(B(0, 1)) is contained
in a compact subset of X.

1. Let X be a Hilbert space, and let T' € B(X). Prove that T is compact if and only
if there exists a sequence {T},} of compact operators such that their ranges are finite-
dimensional and such that |T"— T,,| — 0.

2. Let X be a Hilbert space, and let T be a compact operator on X. Prove that the
closure of the range of T is a separable Hilbert space, i.e., that it has a countable
Hilbert space basis.

3. Let a < b be real numbers. Consider L?([a,b]) (of complex-valued functions) as a
Hilbert space. Let k : [a,b] x [a,b] — C be measurable, such that |k|? has a finite
integral. Define K : L*([a, b]) — L?([a, b]) by

b
(K f)(x) = / k(. )£ (y)dy.

(i) Prove that K is a continuous linear transformation of vector spaces.

(ii) Let S be a Hilbert space basis of L*([a,b]). Let g,h € S, and suppose that
k(z,y) = g(x)h(y). Prove that K is compact. (You may assume Fubini’s Theo-
rem. )

(iii) Assume that k can be approximated arbitrarily closely in the L*([a,b] % [a, b])-
norm by a function of the form >7_ g;(2)h;(y), with g;, h; € L*([a,d]). (This is
indeed always true.) Prove that K is compact.

4. Find the norm and at least two eigenvalues of the operator K € By(IL?[0, 3]), given by

3
(K[)(z) = / V0.2 (@)X (1.310) F (9)dy,

where yg denotes the characteristic function of S. Prove everything.

5. Let X be an infinite-dimensional Hilbert space. Let T' € B(X) be compact. Prove
that 0 € o(T).



Solutions for the final exam

Solution of 1: (=) Let T be compact. If T = 0, we may take all T}, to be 0. So
we assume that T # 0. For each n, let U, = {B(y,1/n) : |y| < |T|}. Then for all
x € B(0,1), T(z) has norm at most |T'|, and so U, is a cover of T'(B(0,1/n)). Since
T is compact, there exists a finite subcover U' = {B(yn1,1/n),..., B(Ynk,,1/n)}. Let
M,, = Span{yn1,...,Ynk, }, and define T,, = Py; o T. Then the range of T, is finite-
dimensional, and therefore T;, is compact. Let = € B(0,1). Choose large n and y,; such
that T'(x) € B(yni, 1/n). Then

[(T = T0) ()] < T () = ynill + [yni — Tn(2)]
< 1/n+|Par, (yni — T(2))]
< 1/n+ [P, [ |(yni — T(2))]
< 2/n,

which proves that 7,, — T in the norm.

(<=) By possibly taking a subsequence of the T, we may assume that for all n,
IT —T,| < 1/n. Let {x,,}m be a sequence in B(0,1). Since each T,, is compact, there
exists a subsequence {z! },, of {%,,}.m such that {Ti(x!)},, converges, and then there
exists a subsequence {72 },, of {zl )}, such that {T5(z2)},, converges, and then there
exists a subsequence {x2 },, of {22 )},, such that {T3(x3)},, converges, there exists a
subsequence {x!l },, of {z;}m such that {Ty(z} )}, converges, etc. Let vy, = x7. These
yn yield a subsequence of {z,,}. Let ¢ > 0. Choose k such that 1/k < €/3. Then there
exists IV such that for all m,n > N, |Tk(ym) — Tk (yn)| < €/3. Then

1T (ym) = T(yn) | < NT(Ym) = T ()| + 1Tk (Ym) = Ti(yn )| + 1Tk (yn) — T(yn)]
< 2|T = Toe| + | T (ym) — T(yn)| <e.

Thus {T'(z,)}, has a Cauchy and thus a convergent subsequence. It follows that every
sequence in T'(B(0,1)) has a convergent subsequence. We could stop here, but perhaps
you want to see a proof that every open cover of T'(B(0,1)) has a finite subcover. So, let
U be an open cover. By possibly adding more and smaller subsets to U, we may assume
that each element of U is of the form B(z,r). Let y3 = 0 = T(0). Then there exists
B(z1,7m1) € U such that y; € B(x1,71). Among all such z1,7r; choose one for which we
can find the smallest positive integer N1 with 1/Ny < ry. If T(B(0,1)) C B(x1,71), we
have found a finite subcover. Otherwise let yo € T(B(0,1)) \ B(z1,71). There exists
B(xa,72) € U that contains y2. Again, choose xy,ry such that with smallest possible
positive integer Ny with 1/Ny < ro. If T(B(0,1)) C B(x1,7r1) U B(x2,7r2), we have found
a finite subcover. Otherwise let y3 € T(B(0,1)) \ U2, B(x;,7;), etc. In this way we get
a sequence {y,} in T'(B(0,1)) By what we have already proved, there exists a convergent



subsequence {yn, }x. Let y be the limit. Then y € T'(B(0, 1)), so there exists B(z,r) € U
that contains y. Let M be such that for all k > M, y,, € B(z,r). Let N be the smallest
positive integer such that 1/N < r. By the choice of the sequence, N,,, < N. But then
r < 1/N,, for all k. It follows that r < r,, for all k, whence the sequence {y,, }x is not
Cauchy. This is a contradiction. So the construction of the y,, must stop in finitely many
steps, so that every open cover has a finite subcover.

Solution of 2: By Problem 1, there exists a sequence {T},} of compact operators with
finite-dimensional ranges such that 7,, — T in the norm. Without loss of generality for
all n, |T,, — T| < 1/n. For each n let U,, be a basis of the range of T},. Let U = U, U,,.
Then U is a countable set. Let x € X. Then for all n, T(z) = T'(z) — T,(z) + Tn(z).
Since |T'(xz) — T, (x)| < |x| /n, it follows that T'(x) is within |z| /n of the span of U. Thus
x € Span U. It follows that the range of T" and hence the closure of the range of T" are both
in SpanU. Clearly Span U has a countable dense subset, and so the closure of the range of
T has a countable dense subset, and since this closure is a closed subset of a Hilbert space,
it is a Hilbert space with a countable dense subset, i.e., it is separable.

Solution of 3: (i) is easy. For (ii), note that the range of 7' is in the span of g, so that
the range if finite-dimensional. Thus clealy T' is compact. For (iii), use Problem #1.

Solution of 41 For any f € L%*([0,3]), K fo Xn,3 (W) fy)dy =
fl y)dy, so that

3 3
IK(f)] = / xoa(@ [ fw)dy
2 3
- / fy)dy
0

=12

By Holder’s inequality, as f(y) = 1 - f(y), this is at most v2v2|f],. Thus |K| < 2.
Furthermore, if f(y) = xp1.3), then | f] = v2, K(f)(z) = 2x(0,21(2), and [K(f)] = 2v2, so
that |K| = 2. Also, by inspection, x[o,1] is an eigenvector with eigenvalue 0, and x[o o is
an eigenvector with eigenvalue 1.

Solution of 5: Let T}, be as in Problem 1. Suppose that T is invertible. By a theorem
from class (Theorem 20.6), the set of invertible operators on X is open, so that since



|T — T,| — 0, for all large n, T;, is invertible as well. But 7,, is not injective as its range
is finite-dimensional. Thus 7" cannot be invertible.

Solution of 5 (most frequent solution): Suppose that T is invertible. Then by the
Inverse Function Theorem, T~! is continuous. Thus I = T o T~! takes B(0,1) to a
compact subset of X. In particular, any infinite orthonormal subset of X is taken by I to a
subset of a compact set, thus since orthonormal sets are discrete, any infinite orthonormal
subset is taken by I to a compact set. But then the unit balls around the elements of this
orthornormal set is an open cover without a finite subcover, which gives a contradiction.
Thus T is not invertible, so that 0 € o(T).



