Some notes on Futaki invariant

Chi Li

1 Analytic Definition of Futaki Invariant

Let X be an n dimensional normal variety. Assume it's Fano, i.e. its anticanonical line bundle K_{X}^{-1} is ample. If X is smooth, then for any Kähler form ω in $\left[c_{1}(x)\right]$, by $\partial \bar{\partial}$-lemma, we have a smooth function h_{ω}, such that

$$
\operatorname{Ric}(\omega)-\omega=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} h_{\omega}
$$

We call $h_{\omega}:=-\log \frac{\omega_{h}^{n}}{\eta_{h}}$ the Ricci potential of ω. Let v be a holomorphic vector field on X, i.e. v is of type $(1,0)$ and $\bar{\partial} v=0$. Then the Futaki invariant is defined to be

$$
\begin{equation*}
F_{c_{1}(X)}(v)=\int_{X} v\left(h_{\omega}\right) \omega^{n} \tag{1}
\end{equation*}
$$

It's a holomorphic invariant, as a character on the Lie algebra of holomorphic vector field, and independent of the choice of the Kähler form in $c_{1}(X)$. See [Fu]. The necessary condition of existence of Kähler-Einstein metric on X is that the Futaki invariant vanishes.

In [DT], the Futaki invariant is generalized to the singular case. When X is possibly singular normal, first use $\left|k K_{X}^{-1}\right|$ to embed X into projective spaces, $\phi_{k}=\phi_{\left|k K_{X}^{-1}\right|}: X \hookrightarrow \mathbb{C P} \mathbb{P}^{N_{k}} . h_{F S}$ is the Fubini-Study metric determined by an inner product on $H^{0}\left(X, k K_{X}^{-1}\right) . h=\left(\phi_{k}^{*} h_{F S}\right)^{1 / k}$ is an Hermitian metric on K_{X}^{-1}. Note that on the smooth part of X, Hermitian metrics on K_{X}^{-1} one-toone corresponds to volume forms. If $\left\{z_{i}\right\}$ is a local holomorphic coordinate, denote $d z_{1} \wedge \cdots \wedge d z_{n}$ by $d z$, and $d \bar{z}_{1} \wedge \cdots d \bar{z}_{n}$ by $d \bar{z}$, the correspondence is given by

$$
h \mapsto \sqrt{-1}^{n} \frac{d z_{1} \wedge \cdots d z_{n} \wedge d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n}}{\left|d z_{1} \wedge \cdots \wedge d z_{n}\right|_{h^{-1}}^{2}}=\sqrt{-1}^{n} \frac{d z \wedge d \bar{z}}{|d z|_{h^{-1}}^{2}}=: \eta_{h}
$$

$|d z|_{h^{-1}}^{-2}=\left|\partial_{z_{1}} \wedge \cdots \wedge \partial_{z_{n}}\right|_{h}^{2}$ is the induced Hermitian metric on K_{X} by the metric dual. On the smooth part of X,

$$
\omega_{h}:=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log h=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \frac{\eta_{h}}{\sqrt{-1}^{n} d z \wedge d \bar{z}}=:-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \eta_{h}
$$

is a Kähler form, its Ricci curvature is: $\operatorname{Ric}\left(\omega_{h}\right)=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \operatorname{det} \omega_{h}^{n}$.

$$
\operatorname{Ric}\left(\omega_{h}\right)-\omega_{h}=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \frac{\omega_{h}^{n}}{\eta_{h}}
$$

So the Ricci potential is $h_{\omega_{h}}=-\log \frac{\omega_{h}^{n}}{\eta_{h}}$.

$$
\begin{aligned}
-\int_{X_{s m}} v\left(\log \frac{\omega_{h}^{n}}{\eta_{h}}\right) \omega_{h}^{n} & =-\int_{X_{s m}} v\left(\frac{\omega_{h}^{n}}{\eta_{h}}\right) \eta_{h}=-\int_{X_{s m}}\left(L_{v} \omega_{h}^{n}-\frac{L_{v} \eta_{h}}{\eta_{h}} \omega_{h}^{n}\right) \\
& =\int_{X_{s m}} d i v_{\eta_{h}}(v) \omega_{h}^{n}=\frac{1}{n+1} \int_{X_{s m}}\left(d i v_{\eta_{h}}(v)+\omega_{h}\right)^{n+1}
\end{aligned}
$$

In [DT], it's proved this is still a well defined holomorphic invariant. Note that in local holomorphic coordinate, $L_{v} d \bar{z}_{i}=0$, so

$$
\frac{L_{v}\left(\eta_{h}\right)}{\eta_{h}}=\frac{L_{v}(d z)}{d z}+v\left(\log |d z|_{h^{-1}}^{-2}\right)
$$

Note that the first term on the right is holomorphic, so

$$
\begin{equation*}
\bar{\partial} d i v_{\eta_{h}}(v)=-i_{v} \bar{\partial} \partial \log |d z|_{h^{-1}}^{-2}=-\frac{2 \pi}{\sqrt{-1}} i_{v} \omega_{h} \tag{2}
\end{equation*}
$$

2 Calculation by Log Resolution

Assume \tilde{X} is an equivariant log resolution of singularity of X such that

$$
K_{\tilde{X}}^{-1}=\pi^{*} K_{X}^{-1}-\sum_{i} a_{i} E_{i}
$$

E_{i} are exceptional divisors with normal crossings. v lifts to be a smooth holomorphic vector field \tilde{v} on \tilde{X}, which is tangential to each exceptional divisor E_{i}. Let S_{i} be the defining section of $\left[E_{i}\right]$, so $E_{i}=\left\{S_{i}=0\right\}$. Let h_{i} be an Hermitian metric on $\left[E_{i}\right]$ and $R_{h_{i}}=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log h_{i}$ be the corresponding curvature form. By $\partial \bar{\partial}$ lemma (or Hodge theory), there is an Hermitian metric \tilde{h} on $K_{\tilde{X}}^{-1}$ such that its curvature form $R_{\tilde{h}}=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log \tilde{h}=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \eta_{\tilde{h}}$ satisfies

$$
R_{\tilde{h}}=\pi^{*} \omega_{h}-\sum_{i} a_{i} R_{h_{i}}
$$

So

$$
\begin{gathered}
\pi^{*}\left(\operatorname{Ric}\left(\omega_{h}\right)-\omega_{h}\right)=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \frac{\pi^{*} \omega_{h}^{n}}{\eta_{\tilde{h}}}+\frac{\sqrt{-1}}{2 \pi} \sum_{i} a_{i} \partial \bar{\partial} \log \left|S_{i}\right|_{h_{i}}^{2} \\
\pi^{*} h_{\omega_{h}}=-\log \frac{\pi^{*} \omega_{h}^{n}}{\eta_{\tilde{h}}}+\sum_{i} a_{i} \log \left|S_{i}\right|_{h_{i}}^{2}+C \\
\int_{X_{s m}} v\left(h_{\omega_{h}}\right) \omega_{h}^{n}=\int_{X \backslash \cup_{i} E_{i}} \pi^{*}\left(v\left(h_{\omega_{h}}\right)\right) \pi^{*} \omega_{h}^{n}=\int_{X \backslash \cup_{i} E_{i}}-\tilde{v}\left(\frac{\pi^{*} \omega_{h}^{n}}{\eta_{\tilde{h}}}\right) \eta_{\tilde{h}}+\sum_{i} a_{i} \tilde{v}\left(\log \left|S_{i}\right|_{h_{i}}^{2}\right) \pi^{*} \omega_{h}^{n} \\
\tilde{v}\left(\frac{\pi^{*} \omega_{h}^{n}}{\eta_{\tilde{h}}}\right) \text { is a smooth function on } \tilde{X} .
\end{gathered}
$$

Lemma 1. $\theta_{i}=\tilde{v}\left(\log \left|S_{i}\right|_{h_{i}}^{2}\right)$ extends to a smooth function on \tilde{X} such that

$$
\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \theta_{i}=-i_{\tilde{v}} R_{h_{i}}
$$

Proof. It's clearly true away from exceptional divisors. Let $p \in E_{i}$, in a neighborhood U of p, choose a local frame e_{i} of $\left[E_{i}\right], S_{i}=f_{i} e_{i}$, and $E_{i}=\left\{f_{i}=0\right\}$. We assume E_{i} is smooth at p, so we can take f_{i} to be a coordinate function, say z_{1}. Since \tilde{v} is tangent to E_{i}, \tilde{v} is of the form

$$
\tilde{v}(z)=z_{1} b_{1}(z) \partial_{z_{1}}+\sum_{i>1} c_{i}(z) \partial_{z_{i}}
$$

$b_{1}(z), c_{i}(z)$ are holomorphic functions near p. Now

$$
\theta_{i}=\tilde{v}\left(\log \left|z_{1}\right|^{2}\right)+\tilde{v}\left(\log \left|e_{i}\right|_{h_{i}}^{2}\right)
$$

the second term is smooth near p, and

$$
\tilde{v}\left(\log \left|z_{1}\right|^{2}\right)=\frac{\tilde{v}\left(z_{1}\right)}{z_{1}}=b_{1}(z)
$$

is holomorphic near p. Also

$$
\begin{equation*}
\bar{\partial} \theta_{i}=\bar{\partial}\left(v\left(\log \left|e_{i}\right|_{h_{i}}^{2}\right)\right)=-i_{v} \bar{\partial} \partial \log \left|e_{i}\right|_{h_{i}}^{2}=-\frac{2 \pi}{\sqrt{-1}} i_{v} R_{h_{i}} \tag{3}
\end{equation*}
$$

So the Futaki invariant can be written as

$$
\begin{aligned}
F_{c_{1}(X)}(v) & =\int_{\tilde{X}}\left(\frac{L_{\tilde{v}} \eta_{\tilde{h}}}{\eta_{\tilde{h}}}+\sum_{i} a_{i} \theta_{i}\right)\left(R_{\tilde{h}}+\sum_{i} a_{i} R_{h_{i}}\right)^{n} \\
& =\frac{1}{n+1} \int_{\tilde{X}}\left(\operatorname{div}_{\tilde{\eta}}(\tilde{v})+\sum_{i} a_{i} \theta_{i}+R_{\tilde{h}}+\sum_{i} a_{i} R_{h_{i}}\right)^{n+1}
\end{aligned}
$$

Now by (2) and (3), $\left(\operatorname{div}_{\tilde{\eta}}(\tilde{v})+\sum_{i} a_{i} \theta_{i}+R_{\tilde{h}}+\sum_{i} a_{i} R_{h_{i}}\right)$ is an equivariantly closed form, so we can apply localization formula to this integral. See [BGV], [Ti2] for localization formula.

Remark 1. Note that at any zero point p of \tilde{v}, the divergence div $v_{\tilde{\eta}}(\tilde{v})$ is well defined independent of volume forms. Also by the proof of previous lemma, if $p \in E_{i}, \theta_{i}(p)=b_{1}(p)$ is the weight on the normal bundle of E_{i} at p, otherwise $\theta_{i}(p)=0$. In any case, if $q=\pi(p) \in X$, then $\operatorname{div}(\tilde{v})(p)+\sum_{i} a_{i} \theta_{i}(p)$ is the weight on $\left.K_{X}^{-1}\right|_{q}$.

3 An example of calculation

We calculate an example from [DT] using \log resolution.
X is the hypersurface given by $F=Z_{0} Z_{1}^{2}+Z_{1} Z_{3}^{2}+Z_{2}^{3} . v$ is given by $\lambda(t)=\operatorname{diag}\left(1, e^{6 t}, e^{4 t}, e^{3 t}\right)$. The zero points of v are $[1,0,0,0],[0,1,0,0],[0,0,0,1]$.
$[1,0,0,0]$ is an A-D-E singular point of type E_{6}. Locally, it's $\mathbb{C}^{2} / \Gamma, \Gamma$ is the lifting to $S U(2)$ of the symmetric group of Tetrahedron in $S O(3) .|\Gamma|=24$. After a (nonlinear) change of coordinate, we change it to the standard form $z_{1}^{2}+z_{2}^{3}+z_{3}^{4}$. The vector field is given by $v=6 z_{1} \partial_{z_{1}}+4 z_{2} \partial_{z_{2}}+$ $3 z_{3} \partial_{z_{3}}$. By viewing the surface as a two-fold covering of \mathbb{C}^{2}, branched along a singular curve, we can equivariantly resolve the singularity by blowup and normalization (at the origin of each step). See [BPV].

1. $z_{1}^{2}+z_{2}^{3}+z_{3}^{4}=0$. $z_{1} \mapsto e^{6 t} z_{1}, z_{2} \mapsto e^{4 t} z_{2}, z_{3} \mapsto e^{3 t} z_{3}$.
2. $s_{1}^{2}+z_{3}\left(z_{3}+t_{1}^{3}\right)=0$. $t_{1}=\frac{z_{2}}{z_{3}} \mapsto e^{t} t_{1}, s_{1}=\frac{z_{1}}{z_{3}} \mapsto e^{3 t} s_{1}$.
3. $s_{2}^{2}+t_{2}\left(t_{2}+t_{1}^{2}\right)=0 . t_{2}=\frac{z_{3}}{t_{1}} \mapsto e^{2 t} t_{2}, s_{2}=\frac{s_{1}}{t_{1}} \mapsto e^{2 t} s_{2}$.
4. $s_{3}^{2}+t_{3}\left(t_{3}+t_{1}\right)=0 . t_{3}=\frac{t_{2}}{t_{1}} \mapsto e^{t} t_{3}, s_{3}=\frac{s_{2}}{t_{1}} \mapsto e^{t} s_{3}$.
5. $s_{4}^{2}+t_{4}\left(t_{4}+1\right)=0 . t_{4}=\frac{t_{3}}{t_{1}} \mapsto t_{4}, s_{4}=\frac{s_{3}}{t_{1}} \mapsto s_{4}$.

The intersection diagram of Exceptional divisors is of type E_{6}. Assume

$$
K_{\tilde{X}}=\pi^{*} K_{X}+\sum_{i} a_{i} E_{i}
$$

Note that $\pi^{*} K_{X} \cdot E_{i}=0$, then

$$
K_{\tilde{X}} \cdot E_{i}=\sum_{j} a_{j} E_{j} \cdot E_{i}
$$

By adjoint formula,

$$
K_{\tilde{X}} \cdot E_{i}=K_{E_{i}} \cdot E_{i}-E_{i}^{2}=0
$$

Because the intersection matrix $\left\{E_{i} \cdot E_{j}\right\}$ is negative definite, we have $a_{i}=0$. So

$$
K_{\tilde{X}}=\pi^{*} K_{X}
$$

The zero points set of \tilde{v} are: $\cup_{i=1}^{5}\left\{P_{i}\right\} \cup E_{4}$.

1. equation near P_{1} is: $u_{1}^{2}+z_{2}\left(1+t_{1}^{4} z_{2}\right)=0$. $u_{1}=\frac{z_{1}}{z_{2}} \mapsto e^{2 t} u_{1}, t_{1}^{\prime}=\frac{z_{3}}{z_{2}} \mapsto e^{-t} t_{1}^{\prime}$.
2. equation near P_{2}, P_{3} is: $u_{2}^{2}+t_{2}^{\prime 3} z_{3}^{2}+1=0 . t_{2}^{\prime}=\frac{t_{1}}{z_{3}} \mapsto e^{-2 t} t_{2}^{\prime}, z_{3} \mapsto e^{3 t} z_{3}$.
3. equation near P_{4}, P_{5} is: $u_{3}^{2}+t_{3}^{\prime 2} t_{2}+1=0 . t_{3}^{\prime}=\frac{t_{1}}{t_{2}} \mapsto e^{-t} t_{3}^{\prime}, t_{2} \mapsto e^{2 t} t_{2}$.
4. equation near E_{4} (away from P_{6}, P_{7}) is: $s_{4}^{2}+t_{4}\left(t_{4}+1\right)=0$. (near P_{6}, P_{7}, the equation is $\left.u_{4}^{2}+t_{4}^{\prime 2}+1=0\right) E_{4}=\left\{t_{1}=0\right\} . t_{1} \mapsto e^{t} t_{1}$.
So the contribution to the localization formula of Futaki invariant at point $[1,0,0,0]$ is:

$$
\frac{1}{-2}+2 \frac{1}{-6}+2 \frac{1}{-2}+\int_{E} \frac{1}{1+c_{1}([E])}=\frac{1}{6}
$$

the contributions from the other two fixed points are easily calculated, so the Futaki invariant is:

$$
F_{c_{1}(X)}(v)=\frac{1}{3}\left(\frac{1}{6}+\frac{(-5)^{3}}{6}+\frac{(-2)^{3}}{-3}\right)=-6
$$

Remark 2. The contribution of the singular point can also be calculated using the localization formula for orbifolds given in $[D T]$. Note that the local uniformization is given by:

$$
\left.\begin{array}{ll}
\pi_{1}: \mathbb{C}^{2} & \longrightarrow \mathbb{C}^{2} / \Gamma \subset \mathbb{C}^{3} \\
\left(z_{1}, z_{2}\right) & \mapsto
\end{array}\right]\left[1,\left(z_{1}^{4}+2 \sqrt{-3} z_{1}^{2} z_{2}^{2}+z_{2}^{4}\right)^{3}, 2(-3)^{\frac{3}{4}} z_{1} z_{2}\left(z_{1}^{4}-z_{2}^{4}\right),-\left(z_{1}^{8}+14 z_{1}^{4} z_{2}^{4}+z_{2}^{8}\right)\right], ~ l
$$

So $\pi_{1}^{*} v=\frac{1}{2}\left(z_{1} \partial_{z_{1}}+z_{2} \partial_{z_{2}}\right)$, and

$$
\frac{1}{|\Gamma|} \frac{\left(\operatorname{div}\left(\pi_{1}^{*} v\right)\right)^{n+1}}{\operatorname{det}\left(\left.\nabla\left(\pi_{1}^{*} v\right)\right|_{T_{z} X}\right)}=\frac{1}{24} \frac{1^{3}}{1 / 4}=\frac{1}{6}
$$

4 Algebraic Definition

We can transform the expression of Futaki invariant (1) into another form:

$$
\begin{equation*}
F_{c_{1}(X)}(v)=-\int_{X}(S(\omega)-\omega) \theta_{v} \omega^{n} \tag{4}
\end{equation*}
$$

where $S(\omega)$ is the scalar curvature of ω, and θ_{v} is the potential function of the vector field v satisfying

$$
i_{v} \omega=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \theta_{v}
$$

In this way, the Futaki invariant generalizes to any Kähler class. The vanishing of Futaki invariant is necessary for the existence of constant scalar Kähler metric in the fixed Kähler class.

Assume there is a \mathbb{C}^{*} action on (X, L), there are induced actions on $H^{0}\left(X, L^{k}\right)$. Let w_{k} be the $k-t h$ (Hilbert) weight of these actions. For k sufficiently large,

$$
\begin{equation*}
w_{k}=a_{0} \frac{k^{n+1}}{n!}+a_{1} \frac{k^{n}}{2 n!}+O\left(k^{n-1}\right) \tag{5}
\end{equation*}
$$

$$
d_{k}=\operatorname{dim} H^{0}\left(X, L^{k}\right)=b_{1} \frac{k^{n}}{n!}+b_{2} \frac{k^{n-1}}{2 n!}+O\left(k^{n-2}\right)
$$

At least in the smooth case, one can show that (See [Do])

$$
\begin{gather*}
a_{0}=\int_{X} \theta_{v} \omega^{n}, \quad a_{1}=\int_{X} S(\omega) \theta_{v} \omega^{n} \tag{6}\\
b_{1}=\int_{X} \omega^{n}, \quad b_{2}=\int_{X} S(\omega) \omega^{n}
\end{gather*}
$$

By this, Donaldson [Do] gives an algebro-geometric definition of Futaki invariant:

$$
\begin{equation*}
F_{c_{1}(L)}(v)=-\frac{a_{1} b_{1}-a_{0} b_{2}}{b_{1}} \tag{7}
\end{equation*}
$$

Remark 3. Assume we can embed X into $\mathbb{P}\left(H^{0}(X, L)^{*}\right)$ using the complete linear system $|L|$ such that the \mathbb{C}^{*} action is induced by a one parameter subgroup in $S L\left(d_{1}, \mathbb{C}\right)$. Then we see that, at least in the smooth case, if we normalize θ_{v}, the (normalized) leading coefficient $\left((n+1) a_{0}\right)$ in the expansion (5) is the Chow weight of this \mathbb{C}^{*} action.

5 Futaki invariant of Complete Intersections

We will use the algebraic definition to calculate. Assume $X \in \mathbb{C P}^{N}$ is a complete intersection given by:

$$
X=\cap_{\alpha=1}^{r}\left\{F_{\alpha}=0\right\}
$$

Assume $\operatorname{deg} F_{\alpha}=d_{\alpha}$, so

$$
\operatorname{deg} X=\prod_{\alpha} d_{\alpha}
$$

Let $R=\mathbb{C}\left[Z_{0}, \cdots, Z_{N}\right] . X$ has homogeneous coordinate ring

$$
R(X)=\mathbb{C}\left[Z_{0}, \cdots, Z_{N}\right] /(I(X))=R / I(X)
$$

$I(X)$ is the homogeneous ideal generated by homogeneous polynomial $\left\{F_{\alpha}\right\}$. It is well known that $R(X)$ has a minimal free resolution by Koszul complex:
$0 \rightarrow R\left(-\sum_{\alpha=0}^{r} d_{\alpha}\right) \otimes\left(\mathbb{C} \cdot \prod_{\alpha} F_{\alpha}\right) \rightarrow \cdots \rightarrow \bigoplus_{\alpha<\beta}^{r} R\left(-d_{\alpha}-d_{\beta}\right) \cdot\left(\mathbb{C} \cdot\left(F_{\alpha} F_{\beta}\right)\right) \rightarrow \bigoplus_{\alpha=0}^{r} R\left(-d_{\alpha}\right) \otimes\left(\mathbb{C} \cdot F_{\alpha}\right) \rightarrow R \rightarrow R(X) \rightarrow 0$
Let $\lambda(t) \in P S L(N+1, \mathbb{C})$ be a one-parameter subgroup generated by $A=\operatorname{diag}\left(\lambda_{0}, \cdots, \lambda_{N}\right)$, and v be the corresponding holomorphic vector field. Assume that

$$
\sum_{i=0}^{N} \lambda_{i} Z_{i} \frac{\partial}{\partial Z_{i}} F(Z)=\mu_{\alpha} F_{\alpha}
$$

$\left(\mathbb{C}^{*}\right)^{2}$ acts on $S(X)$. Let $a_{k, l}=\operatorname{dim} S(X)_{k, l}$ be the dimensions of weight spaces, then this action has character:

$$
C h(S(X))=\sum_{(k, l) \in \mathbb{N} \times \mathbb{Z}} a_{k, l} t_{1}^{k} t_{2}^{l}=\frac{\prod_{\alpha=1}^{r}\left(1-t_{1}^{d_{\alpha}} t_{2}^{\mu_{\alpha}}\right)}{\prod_{i=0}^{N}\left(1-t_{1} t_{2}^{\lambda_{i}}\right)}=f\left(t_{1}, t_{2}\right)
$$

The $k-t h$ Hilbert weight is (note it's a finite sum)

$$
w_{k}=\sum_{l \in \mathbb{Z}} a_{k, l} \times l
$$

and

$$
\begin{align*}
\sum_{k \in \mathbb{N}} w_{k} t_{1}^{k} & =\left.\frac{\partial f}{\partial t_{2}}\right|_{t_{2}=1}=-\frac{\sum_{\alpha}\left(\mu_{\alpha} t_{1}^{d_{\alpha}} \prod_{\beta \neq \alpha}\left(1-t_{1}^{d_{\beta}}\right)\right)}{\left(1-t_{1}\right)^{N+1}}+\left(\sum_{i} \lambda_{i}\right) t_{1} \frac{\prod_{\alpha=1}^{r}\left(1-t_{1}^{d_{\alpha}}\right)}{\left(1-t_{1}\right)^{N+2}} \\
& =-\frac{\sum_{\alpha}\left(\mu_{\alpha} t_{1}^{d_{\alpha}} \prod_{\beta \neq \alpha}\left(1+\cdots+t_{1}^{d_{\beta}-1}\right)\right)}{\left(1-t_{1}\right)^{N+2-r}}+\lambda t_{1} \frac{\prod_{\alpha=1}^{r}\left(1+\cdots+t_{1}^{d_{\alpha}-1}\right)}{\left(1-t_{1}\right)^{N+2-r}} \tag{8}
\end{align*}
$$

Lemma 2. Let

$$
f(t)=\frac{g(t)}{(1-t)^{n+1}}=\frac{\sum_{i=0}^{r} a_{i} t^{i}}{(1-t)^{n+1}}=\sum_{k=0}^{+\infty} b_{k} t^{k}
$$

then

$$
b_{k}=\frac{k^{n}}{n!} g(1)+\frac{k^{n-1}}{2(n-1)!}\left((n+1) g(1)-2 g^{\prime}(1)\right)+O\left(k^{n-2}\right)
$$

Proof.

$$
f(t)=\left(\sum_{i=0}^{r} a_{i} t^{i}\right) \cdot \sum_{j=0}^{\infty}\binom{n+j}{n} t^{j}
$$

So when $k \gg 1$,

$$
\begin{aligned}
b_{k} & =\sum_{i=0}^{r} a_{i}\binom{n+k-i}{n}=\sum_{i=0}^{r} a_{i} \frac{(n+k-i) \cdots(k-i+1)}{n!} \\
& =\frac{k^{n}}{n!} \sum_{i=0}^{r} a_{i}+\frac{k^{n-1}}{2(n-1)!} \sum_{i=0}^{r} a_{i}(n+1-2 i)+O\left(k^{n-2}\right) \\
& =\frac{k^{n}}{n!} g(1)+\frac{k^{n-1}}{2(n-1)!}\left((n+1) g(1)-2 g^{\prime}(1)\right)+O\left(k^{n-2}\right)
\end{aligned}
$$

Let $g(t)=-\sum_{\alpha}\left(\mu_{\alpha} t_{1}^{d_{\alpha}} \prod_{\beta \neq \alpha}\left(1+\cdots+t_{1}^{d_{\beta}-1}\right)\right)+\lambda t_{1} \prod_{\alpha=1}^{r}\left(1+\cdots+t_{1}^{d_{\alpha}-1}\right), n=N+1-r$, let $\tilde{\mu}_{\alpha}=\mu_{\alpha}-\frac{\lambda}{N+1} d_{\alpha}$, then $\tilde{\mu}$ is invariant when $\lambda(t)$ differs by a diagonal matrix. by the lemma, we can get

$$
\begin{align*}
& g(1)=-\sum_{\alpha} \mu_{\alpha} \prod_{\beta \neq \alpha} d_{\beta}+\lambda \prod_{\alpha} d_{\alpha}=-\prod_{\alpha} d_{\alpha}\left(\sum_{\beta} \frac{\mu_{\beta}}{d_{\beta}}-\lambda\right)=-\prod_{\alpha} d_{\alpha}\left(\sum_{\beta} \frac{\tilde{\mu}_{\beta}}{d_{\beta}}-\frac{\lambda}{N+1}(N+1-r)\right) \tag{9}\\
&(N-r+2) g(1)-2 g^{\prime}(1)=-\prod_{\alpha} d_{\alpha}\left(\left(N+1-\sum_{\beta} d_{\beta}\right) \sum_{\gamma} \frac{\mu_{\gamma}}{d_{\gamma}}-\sum_{\beta} \mu_{\beta}-\lambda\left(N-\sum_{\beta} d_{\beta}\right)\right) \\
&=-\prod_{\alpha} d_{\alpha}\left(\left(N+1-\sum_{\beta} d_{\beta}\right) \sum_{\gamma} \frac{\tilde{\mu}_{\gamma}}{d_{\gamma}}-\sum_{\beta} \tilde{\mu}_{\beta}-\frac{\lambda}{N+1}(N-r)\left(N+1-\sum_{\alpha} d_{\alpha}\right)\right) \\
& w_{k}=-\prod_{\alpha} d_{\alpha} \sum_{\beta} \frac{\tilde{\mu}_{\beta}}{d_{\beta}} \frac{k^{N+1-r}}{(N+1-r)!}-\prod_{\alpha} d_{\alpha}\left(\left(N+1-\sum_{\beta} d_{\beta}\right) \sum_{\gamma} \frac{\tilde{\mu}_{\gamma}}{d_{\gamma}}-\sum_{\beta} \tilde{\mu}_{\beta}\right) \frac{k^{N-r}}{2(N-r)!}+O\left(k^{N-r-1}\right) \\
&+\frac{\lambda}{N+1} k \cdot \operatorname{dim}^{0}(X, \mathcal{O}(k)) \tag{10}
\end{align*}
$$

By (7), we can get the Futaki invariant

$$
F_{c_{1}(\mathcal{O}(1))}(v)=-\prod_{\alpha} d_{\alpha}\left(\sum_{\beta} \tilde{\mu}_{\beta}-\frac{N+1-\sum_{\gamma} d_{\gamma}}{N+1-r} \sum_{\beta} \frac{\tilde{\mu}_{\beta}}{d_{\beta}}\right)
$$

Remark 4. In hypersurface case, the above formula becomes

$$
F_{c_{1}(\mathcal{O}(1))}(v)=-\frac{(d-1)(N+1)}{N}\left(\mu-\frac{\lambda}{N+1} d\right)
$$

Apply this to the example in section 3, where $d=3, N=3, \lambda=6+3+4=13, \mu=12$, $\mathcal{O}(1)=K_{X}^{-1}$, then we get the same result as before.

$$
F_{c_{1}(X)}(v)=-\frac{2 \cdot 4}{3}\left(12-\frac{13}{4} \cdot 3\right)=-6
$$

Remark 5. We can calculate directly the leading coefficient of w_{k} in (10)using the Lelong-Poincáre equation. Also see [Lu].
Lemma 3 (Poincáre-Lelong equation). Assume L is a holomorphic line bundle on X, s is a nonzero holomorphic section of L, D is the zero divisor of s, i.e. $\{s=0\}$ counted with multiplicities. h is an Hermitian metric on $L, R_{h}=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log h$ is its curvature form. Then in the sense of distribution, we have the identity

$$
\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log |s|_{h}^{2}=\int_{D}-R_{h}
$$

i.e., for any smooth $(2 n-2)$ form η on X, we have

$$
\frac{\sqrt{-1}}{2 \pi} \int_{X}\left(\log |s|_{h}^{2}\right) \partial \bar{\partial} \eta=\int_{D} \eta-\int_{X} R_{h} \wedge \eta
$$

Let $X_{0}=\mathbb{C P}^{N}, X_{a+1}=X_{a} \cap\left\{F_{a}=0\right\}$, then $X_{0} \supset X_{1} \cdots \supset X_{r}=X . \theta_{v}=\frac{\sum_{i} \lambda_{i}\left|Z_{i}\right|^{2}}{\sum_{i}\left|Z_{i}\right|^{2}}$, then $i_{v} \omega_{F S}=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \theta_{v}$. On X_{a-1}, by the lemma, we have

$$
\left.\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \frac{\left|F_{a}\right|^{2}}{\left(\sum_{i}\left|Z_{i}\right|^{2}\right)^{d_{a}}}\right|_{X_{a-1}}=\int_{X_{a}}-\left.d_{a} \cdot \omega_{F S}\right|_{X_{a-1}}
$$

So

$$
\int_{X_{a}} \theta_{v} \omega_{F S}^{N-a}=d_{a} \int_{X_{a-1}} \theta_{v} \omega_{F S}^{N-a+1}+\frac{\sqrt{-1}}{2 \pi} \int_{X_{a-1}} \theta_{v} \partial \bar{\partial} \log \frac{\left|F_{a}\right|^{2}}{\left(\sum_{i}\left|Z_{i}\right|^{2}\right)^{d}} \wedge \omega_{F S}^{N-a}
$$

Using integration by parts, the second integral on the right equals

$$
\begin{aligned}
\frac{\sqrt{-1}}{2 \pi} \int_{X_{a-1}} \bar{\partial} \theta_{v} & \wedge \partial \log \frac{\left|F_{a}\right|^{2}}{\left(\sum_{i}\left|Z_{i}\right|^{2}\right)^{d}} \wedge \omega_{F S}^{N-a}=\int_{X_{a-1}} i_{v} \omega_{F S} \wedge \partial \log \frac{\left|F_{a}\right|^{2}}{\left(\sum_{i}\left|Z_{i}\right|^{2}\right)^{d_{a}}} \wedge \omega_{F S}^{N-a} \\
& =-\frac{1}{N-a+1} \int_{X_{a-1}} v\left(\log \frac{\left|F_{a}\right|^{2}}{\left(\sum_{i}\left|Z_{i}\right|^{2}\right)^{d}}\right) \omega_{F S}^{N-a+1} \\
& =-\frac{1}{N-a+1} \int_{X_{a-1}}\left(\mu_{a}-d_{a} \frac{\sum_{i} \lambda_{i}\left|Z_{i}\right|^{2}}{\sum_{i}\left|Z_{i}\right|^{2}}\right) \omega_{F S}^{N-a+1} \\
& =-\frac{1}{N-a+1} \mu_{a} \operatorname{deg}\left(X_{a-1}\right)+d_{a} \frac{1}{N-a+1} \int_{X_{a-1}} \theta_{v} \omega_{F S}^{N-a+1}
\end{aligned}
$$

So

$$
(N-a+1) \int_{X_{a}} \theta_{v} \omega_{F S}^{N-a}=-\mu_{a} \operatorname{deg}\left(X_{a-1}\right)+d_{a}(N-a+2) \int_{X_{a-1}} \theta_{v} \omega_{F S}^{N-a+1}
$$

While

$$
(N+1) \int_{X_{0}} \theta_{v} \omega_{F S}^{N}=(N+1) \int_{\mathbb{C P}^{N}} \frac{\sum_{i} \lambda_{i}\left|Z_{i}\right|^{2}}{\sum_{i}\left|Z_{i}\right|^{2}} \omega_{F S}^{N}=\sum_{i} \lambda_{i}=\lambda
$$

By induction, we get

$$
(N-r+1) \int_{X_{r}} \theta_{v} \omega_{F S}^{N-r}=-\prod_{\alpha} d_{\alpha} \sum_{\beta} \frac{\mu_{\beta}}{d_{\beta}}+\lambda \prod_{\alpha} d_{\alpha}=\prod_{\alpha} d_{\alpha}\left(-\sum_{\beta} \frac{\tilde{\mu}_{\beta}}{d_{\beta}}+(N+1-r) \frac{\lambda}{N+1}\right)
$$

This is the same as $g(1)$, (9).

References

[BGV] Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Springer-Verlag Berlin-Heidelberg-New York, 1992
[BPV] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin-Heidelberg-New York: Springer 1984
[DT] Ding, W. and Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math., 110, 315-335 (1992)
[Do] Donaldson, S.: Scalar curvature and stability of toric varieties, J. Diff. Geom., 62 (2002), 289-349
[Fu] Futaki, A.: An obstruction to the existence of Einstein-Kähler metrics. Invent. Math., 73, 437-443 (1983)
[Lu] Lu, Z.: On the Futaki invariants of complete intersections, Duke Math. J., Volume 100, Number 2 (1999), 359-372
[Ti1] Tian, G.: Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 137 (1997), 1-37
[Ti2] Tian, G.: Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2000

