
Some notes on Futaki invariant
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1 Analytic Definition of Futaki Invariant

Let X be an n dimensional normal variety. Assume it’s Fano, i.e. its anticanonical line bundle
K−1

X is ample. If X is smooth, then for any Kähler form ω in [c1(x)], by ∂∂̄-lemma, we have a
smooth function hω, such that

Ric(ω) − ω =

√
−1

2π
∂∂̄hω

We call hω := − log
ωn

h

ηh
the Ricci potential of ω. Let v be a holomorphic vector field on X, i.e. v

is of type (1,0) and ∂̄v = 0. Then the Futaki invariant is defined to be

Fc1(X)(v) =

∫

X

v(hω)ωn (1)

It’s a holomorphic invariant, as a character on the Lie algebra of holomorphic vector field, and
independent of the choice of the Kähler form in c1(X). See [Fu]. The necessary condition of
existence of Kähler-Einstein metric on X is that the Futaki invariant vanishes.

In [DT], the Futaki invariant is generalized to the singular case. When X is possibly singular
normal, first use |kK−1

X | to embed X into projective spaces, φk = φ|kK−1

X
| : X →֒ CP

Nk . hFS is

the Fubini-Study metric determined by an inner product on H0(X, kK−1
X ). h = (φ∗

khFS)1/k is an
Hermitian metric on K−1

X . Note that on the smooth part of X, Hermitian metrics on K−1
X one-to-

one corresponds to volume forms. If {zi} is a local holomorphic coordinate, denote dz1 ∧ · · · ∧ dzn

by dz, and dz̄1 ∧ · · · dz̄n by dz̄, the correspondence is given by

h 7→
√
−1

n dz1 ∧ · · · dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

|dz1 ∧ · · · ∧ dzn|2h−1

=
√
−1

n dz ∧ dz̄

|dz|2h−1

=: ηh

|dz|−2
h−1 = |∂z1

∧ · · · ∧ ∂zn
|2h is the induced Hermitian metric on KX by the metric dual. On the

smooth part of X ,

ωh :=

√
−1

2π
∂̄∂ log h = −

√
−1

2π
∂∂̄ log

ηh√
−1

n
dz ∧ dz̄

=: −
√
−1

2π
∂∂̄ log ηh

is a Kähler form, its Ricci curvature is: Ric(ωh) = −
√
−1
2π ∂∂̄ log detωn

h .

Ric(ωh) − ωh = −
√
−1

2π
∂∂̄ log

ωn
h

ηh

So the Ricci potential is hωh
= − log

ωn
h

ηh
.

−
∫

Xsm

v(log
ωn

h

ηh
)ωn

h = −
∫

Xsm

v(
ωn

h

ηh
)ηh = −

∫

Xsm

(Lvω
n
h − Lvηh

ηh
ωn

h)

=

∫

Xsm

divηh
(v)ωn

h =
1

n + 1

∫

Xsm

(divηh
(v) + ωh)n+1

In [DT], it’s proved this is still a well defined holomorphic invariant. Note that in local holomorphic
coordinate, Lvdz̄i = 0, so

Lv(ηh)

ηh
=

Lv(dz)

dz
+ v(log |dz|−2

h−1)
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Note that the first term on the right is holomorphic , so

∂̄divηh
(v) = −iv∂̄∂ log |dz|−2

h−1 = − 2π√
−1

ivωh (2)

2 Calculation by Log Resolution

Assume X̃ is an equivariant log resolution of singularity of X such that

K−1

X̃
= π∗K−1

X −
∑

i

aiEi

Ei are exceptional divisors with normal crossings. v lifts to be a smooth holomorphic vector field
ṽ on X̃, which is tangential to each exceptional divisor Ei. Let Si be the defining section of

[Ei], so Ei = {Si = 0}. Let hi be an Hermitian metric on [Ei] and Rhi
=

√
−1
2π ∂̄∂ log hi be the

corresponding curvature form. By ∂∂̄ lemma (or Hodge theory), there is an Hermitian metric h̃

on K−1

X̃
such that its curvature form Rh̃ =

√
−1
2π ∂̄∂ log h̃ = −

√
−1
2π ∂∂̄ log ηh̃ satisfies

Rh̃ = π∗ωh −
∑

i

aiRhi

So

π∗(Ric(ωh) − ωh) = −
√
−1

2π
∂∂̄ log

π∗ωn
h

ηh̃

+

√
−1

2π

∑

i

ai∂∂̄ log |Si|2hi

π∗hωh
= − log

π∗ωn
h

ηh̃

+
∑

i

ai log |Si|2hi
+ C

∫

Xsm

v(hωh
)ωn

h =

∫

X\∪iEi

π∗(v(hωh
))π∗ωn

h =

∫

X\∪iEi

−ṽ(
π∗ωn

h

ηh̃

)ηh̃ +
∑

i

aiṽ(log |Si|2hi
)π∗ωn

h

ṽ(
π∗ωn

h

η
h̃

) is a smooth function on X̃ .

Lemma 1. θi = ṽ(log |Si|2hi
) extends to a smooth function on X̃ such that

√
−1

2π
∂̄θi = −iṽRhi

Proof. It’s clearly true away from exceptional divisors. Let p ∈ Ei, in a neighborhood U of p,
choose a local frame ei of [Ei], Si = fiei, and Ei = {fi = 0}. We assume Ei is smooth at p, so we
can take fi to be a coordinate function, say z1. Since ṽ is tangent to Ei, ṽ is of the form

ṽ(z) = z1b1(z)∂z1
+

∑

i>1

ci(z)∂zi

b1(z), ci(z) are holomorphic functions near p. Now

θi = ṽ(log |z1|2) + ṽ(log |ei|2hi
)

the second term is smooth near p, and

ṽ(log |z1|2) =
ṽ(z1)

z1
= b1(z)

is holomorphic near p. Also

∂̄θi = ∂̄(v(log |ei|2hi
)) = −iv∂̄∂ log |ei|2hi

= − 2π√
−1

ivRhi
(3)
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So the Futaki invariant can be written as

Fc1(X)(v) =

∫

X̃

(
Lṽηh̃

ηh̃

+
∑

i

aiθi)(Rh̃ +
∑

i

aiRhi
)n

=
1

n + 1

∫

X̃

(divη̃(ṽ) +
∑

i

aiθi + Rh̃ +
∑

i

aiRhi
)n+1

Now by (2) and (3), (divη̃(ṽ) +
∑

i aiθi + Rh̃ +
∑

i aiRhi
) is an equivariantly closed form, so we

can apply localization formula to this integral. See [BGV], [Ti2] for localization formula.

Remark 1. Note that at any zero point p of ṽ, the divergence divη̃(ṽ) is well defined independent
of volume forms. Also by the proof of previous lemma, if p ∈ Ei, θi(p) = b1(p) is the weight
on the normal bundle of Ei at p, otherwise θi(p) = 0. In any case, if q = π(p) ∈ X, then
div(ṽ)(p) +

∑

i aiθi(p) is the weight on K−1
X |q.

3 An example of calculation

We calculate an example from [DT] using log resolution.
X is the hypersurface given by F = Z0Z

2
1 +Z1Z

2
3 +Z3

2 . v is given by λ(t) = diag(1, e6t, e4t, e3t).
The zero points of v are [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1].

[1, 0, 0, 0] is an A-D-E singular point of type E6. Locally, it’s C2/Γ, Γ is the lifting to SU(2) of
the symmetric group of Tetrahedron in SO(3). |Γ| = 24. After a (nonlinear) change of coordinate,
we change it to the standard form z2

1 + z3
2 + z4

3 . The vector field is given by v = 6z1∂z1
+ 4z2∂z2

+
3z3∂z3

. By viewing the surface as a two-fold covering of C2, branched along a singular curve, we
can equivariantly resolve the singularity by blowup and normalization (at the origin of each step).
See [BPV].

1. z2
1 + z3

2 + z4
3 = 0. z1 7→ e6tz1, z2 7→ e4tz2, z3 7→ e3tz3.

2. s2
1 + z3(z3 + t31) = 0. t1 = z2

z3

7→ ett1, s1 = z1

z3

7→ e3ts1.

3. s2
2 + t2(t2 + t21) = 0. t2 = z3

t1
7→ e2tt2, s2 = s1

t1
7→ e2ts2.

4. s2
3 + t3(t3 + t1) = 0. t3 = t2

t1
7→ ett3, s3 = s2

t1
7→ ets3.

5. s2
4 + t4(t4 + 1) = 0. t4 = t3

t1
7→ t4, s4 = s3

t1
7→ s4.

z2

z3

z3
2 + z4

3 = 0

z3

t1

z2

z3 + t31 = 0

t2

t1

z2

z3

t2 + t21 = 0

t3

t1

t1 + t3 = 0

z2

t2

z3 t4

t1

z2
t3

t2

z3

t4 = −1

P6

P7

P4

P5

E4

E1
3

P2

E1
2

E2
3

P3

E2
2

P9

P8E1
P1

E1
2

(−2)
E1

3

(−2)

E4

(−2)
E2

3

(−2)
E2

2

(−2)

E1
(−2)

P4 P6 P7 P5

P8

The intersection diagram of Exceptional divisors is of type E6. Assume

KX̃ = π∗KX +
∑

i

aiEi
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Note that π∗KX · Ei = 0, then

KX̃ · Ei =
∑

j

ajEj · Ei

By adjoint formula,
KX̃ · Ei = KEi

· Ei − E2
i = 0

Because the intersection matrix {Ei · Ej} is negative definite, we have ai = 0. So

KX̃ = π∗KX

The zero points set of ṽ are: ∪5
i=1{Pi} ∪ E4.

1. equation near P1 is: u2
1 + z2(1 + t′41 z2) = 0. u1 = z1

z2

7→ e2tu1, t′1 = z3

z2

7→ e−tt′1.

2. equation near P2, P3 is: u2
2 + t′32 z2

3 + 1 = 0. t′2 = t1
z3

7→ e−2tt′2, z3 7→ e3tz3.

3. equation near P4, P5 is: u2
3 + t′23 t2 + 1 = 0. t′3 = t1

t2
7→ e−tt′3, t2 7→ e2tt2.

4. equation near E4 (away from P6, P7) is: s2
4 + t4(t4 + 1) = 0. (near P6, P7, the equation is

u2
4 + t′24 + 1 = 0) E4 = {t1 = 0}. t1 7→ ett1.

So the contribution to the localization formula of Futaki invariant at point [1, 0, 0, 0] is:

1

−2
+ 2

1

−6
+ 2

1

−2
+

∫

E

1

1 + c1([E])
=

1

6

the contributions from the other two fixed points are easily calculated, so the Futaki invariant is:

Fc1(X)(v) =
1

3
(
1

6
+

(−5)3

6
+

(−2)3

−3
) = −6

Remark 2. The contribution of the singular point can also be calculated using the localization
formula for orbifolds given in [DT]. Note that the local uniformization is given by:

π1 : C
2 −→ C

2/Γ ⊂ C
3

(z1, z2) 7→ [1, (z4
1 + 2

√
−3z2

1z
2
2 + z4

2)3, 2(−3)
3

4 z1z2(z
4
1 − z4

2),−(z8
1 + 14z4

1z
4
2 + z8

2)]

So π∗
1v = 1

2 (z1∂z1
+ z2∂z2

), and

1

|Γ|
(div(π∗

1v))n+1

det(∇(π∗
1v)|TzX)

=
1

24

13

1/4
=

1

6

4 Algebraic Definition

We can transform the expression of Futaki invariant (1) into another form:

Fc1(X)(v) = −
∫

X

(S(ω) − ω)θvω
n (4)

where S(ω) is the scalar curvature of ω, and θv is the potential function of the vector field v
satisfying

ivω =

√
−1

2π
∂̄θv

In this way, the Futaki invariant generalizes to any Kähler class. The vanishing of Futaki invariant
is necessary for the existence of constant scalar Kähler metric in the fixed Kähler class.

Assume there is a C∗ action on (X, L), there are induced actions on H0(X, Lk). Let wk be the
k − th (Hilbert) weight of these actions. For k sufficiently large,

wk = a0
kn+1

n!
+ a1

kn

2n!
+ O(kn−1) (5)
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dk = dimH0(X, Lk) = b1
kn

n!
+ b2

kn−1

2n!
+ O(kn−2)

At least in the smooth case, one can show that (See [Do])

a0 =

∫

X

θvω
n, a1 =

∫

X

S(ω)θvω
n (6)

b1 =

∫

X

ωn, b2 =

∫

X

S(ω)ωn

By this, Donaldson [Do] gives an algebro-geometric definition of Futaki invariant:

Fc1(L)(v) = −a1b1 − a0b2

b1
(7)

Remark 3. Assume we can embed X into P(H0(X, L)∗) using the complete linear system |L| such
that the C∗ action is induced by a one parameter subgroup in SL(d1, C). Then we see that, at
least in the smooth case, if we normalize θv, the (normalized) leading coefficient ((n + 1)a0) in the
expansion (5) is the Chow weight of this C∗ action.

5 Futaki invariant of Complete Intersections

We will use the algebraic definition to calculate. Assume X ∈ CP
N is a complete intersection given

by:
X = ∩r

α=1{Fα = 0}
Assume deg Fα = dα, so

deg X =
∏

α

dα

Let R = C[Z0, · · · , ZN ]. X has homogeneous coordinate ring

R(X) = C[Z0, · · · , ZN ]/(I(X)) = R/I(X)

I(X) is the homogeneous ideal generated by homogeneous polynomial {Fα}. It is well known that
R(X) has a minimal free resolution by Koszul complex:

0 → R(−
r

∑

α=0

dα)⊗(C·
∏

α

Fα) → · · · →
r

⊕

α<β

R(−dα−dβ)·(C·(FαFβ)) →
r

⊕

α=0

R(−dα)⊗(C·Fα) → R → R(X) → 0

Let λ(t) ∈ PSL(N + 1, C) be a one-parameter subgroup generated by A = diag(λ0, · · · , λN ), and
v be the corresponding holomorphic vector field. Assume that

N
∑

i=0

λiZi
∂

∂Zi
F (Z) = µαFα

(C∗)2 acts on S(X). Let ak,l = dimS(X)k,l be the dimensions of weight spaces, then this action
has character:

Ch(S(X)) =
∑

(k,l)∈N×Z

ak,lt
k
1tl2 =

∏r
α=1(1 − tdα

1 tµα

2 )
∏N

i=0(1 − t1t
λi

2 )
= f(t1, t2)

The k − th Hilbert weight is (note it’s a finite sum)

wk =
∑

l∈Z

ak,l × l
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and

∑

k∈N

wktk1 =
∂f

∂t2

∣

∣

∣

∣

t2=1

= −
∑

α(µαtdα

1

∏

β 6=α(1 − t
dβ

1 ))

(1 − t1)N+1
+ (

∑

i

λi)t1

∏r
α=1(1 − tdα

1 )

(1 − t1)N+2

= −
∑

α(µαtdα

1

∏

β 6=α(1 + · · · + t
dβ−1
1 ))

(1 − t1)N+2−r
+ λt1

∏r
α=1(1 + · · · + tdα−1

1 )

(1 − t1)N+2−r
(8)

Lemma 2. Let

f(t) =
g(t)

(1 − t)n+1
=

∑r
i=0 ait

i

(1 − t)n+1
=

+∞
∑

k=0

bktk

then

bk =
kn

n!
g(1) +

kn−1

2(n − 1)!
((n + 1)g(1) − 2g′(1)) + O(kn−2)

Proof.

f(t) = (
r

∑

i=0

ait
i) ·

∞
∑

j=0

(

n + j

n

)

tj

So when k ≫ 1,

bk =

r
∑

i=0

ai

(

n + k − i

n

)

=

r
∑

i=0

ai
(n + k − i) · · · (k − i + 1)

n!

=
kn

n!

r
∑

i=0

ai +
kn−1

2(n − 1)!

r
∑

i=0

ai(n + 1 − 2i) + O(kn−2)

=
kn

n!
g(1) +

kn−1

2(n − 1)!
((n + 1)g(1) − 2g′(1)) + O(kn−2)

Let g(t) = −∑

α(µαtdα

1

∏

β 6=α(1 + · · ·+ t
dβ−1
1 )) + λt1

∏r
α=1(1 + · · ·+ tdα−1

1 ), n = N + 1− r, let

µ̃α = µα − λ
N+1dα, then µ̃ is invariant when λ(t) differs by a diagonal matrix. by the lemma, we

can get

g(1) = −
∑

α

µα

∏

β 6=α

dβ+λ
∏

α

dα = −
∏

α

dα(
∑

β

µβ

dβ
−λ) = −

∏

α

dα





∑

β

µ̃β

dβ
− λ

N + 1
(N + 1 − r)





(9)

(N − r + 2)g(1) − 2g′(1) = −
∏

α

dα



(N + 1 −
∑

β

dβ)
∑

γ

µγ

dγ
−

∑

β

µβ − λ(N −
∑

β

dβ)





= −
∏

α

dα



(N + 1 −
∑

β

dβ)
∑

γ

µ̃γ

dγ
−

∑

β

µ̃β − λ

N + 1
(N − r)(N + 1 −

∑

α

dα)





wk = −
∏

α

dα

∑

β

µ̃β

dβ

kN+1−r

(N + 1 − r)!
−

∏

α

dα



(N + 1 −
∑

β

dβ)
∑

γ

µ̃γ

dγ
−

∑

β

µ̃β





kN−r

2(N − r)!
+ O(kN−r−1)

+
λ

N + 1
k · dimH0(X,O(k)) (10)

By (7), we can get the Futaki invariant

Fc1(O(1))(v) = −
∏

α

dα





∑

β

µ̃β −
N + 1 − ∑

γ dγ

N + 1 − r

∑

β

µ̃β

dβ




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Remark 4. In hypersurface case, the above formula becomes

Fc1(O(1))(v) = − (d − 1)(N + 1)

N
(µ − λ

N + 1
d)

Apply this to the example in section 3, where d = 3, N = 3, λ = 6 + 3 + 4 = 13, µ = 12,
O(1) = K−1

X , then we get the same result as before.

Fc1(X)(v) = −2 · 4
3

(12 − 13

4
· 3) = −6

Remark 5. We can calculate directly the leading coefficient of wk in (10)using the Lelong-Poincáre
equation. Also see [Lu].

Lemma 3 (Poincáre-Lelong equation). Assume L is a holomorphic line bundle on X, s is a
nonzero holomorphic section of L, D is the zero divisor of s, i.e. {s = 0} counted with multiplicities.

h is an Hermitian metric on L, Rh =
√
−1
2π ∂̄∂ log h is its curvature form. Then in the sense of

distribution, we have the identity
√
−1

2π
∂∂̄ log |s|2h =

∫

D

−Rh

i.e., for any smooth (2n − 2) form η on X, we have
√
−1

2π

∫

X

(log |s|2h)∂∂̄η =

∫

D

η −
∫

X

Rh ∧ η

Let X0 = CP
N , Xa+1 = Xa ∩ {Fa = 0}, then X0 ⊃ X1 · · · ⊃ Xr = X. θv =

∑

i
λi|Zi|2

∑

i
|Zi|2 , then

ivωFS =
√
−1
2π ∂̄θv. On Xa−1, by the lemma, we have

√
−1

2π
∂∂̄ log

|Fa|2
(
∑

i |Zi|2)da

∣

∣

∣

∣

Xa−1

=

∫

Xa

−da · ωFS |Xa−1

So
∫

Xa

θvω
N−a
FS = da

∫

Xa−1

θvω
N−a+1
FS +

√
−1

2π

∫

Xa−1

θv∂∂̄ log
|Fa|2

(
∑

i |Zi|2)d
∧ ωN−a

FS

Using integration by parts, the second integral on the right equals
√
−1

2π

∫

Xa−1

∂̄θv ∧ ∂ log
|Fa|2

(
∑

i |Zi|2)d
∧ ωN−a

FS =

∫

Xa−1

ivωFS ∧ ∂ log
|Fa|2

(
∑

i |Zi|2)da
∧ ωN−a

FS

= − 1

N − a + 1

∫

Xa−1

v(log
|Fa|2

(
∑

i |Zi|2)da
)ωN−a+1

FS

= − 1

N − a + 1

∫

Xa−1

(µa − da

∑

i λi|Zi|2
∑

i |Zi|2
)ωN−a+1

FS

= − 1

N − a + 1
µa deg(Xa−1) + da

1

N − a + 1

∫

Xa−1

θvωN−a+1
FS

So

(N − a + 1)

∫

Xa

θvω
N−a
FS = −µa deg(Xa−1) + da(N − a + 2)

∫

Xa−1

θvω
N−a+1
FS

While

(N + 1)

∫

X0

θvωN
FS = (N + 1)

∫

CPN

∑

i λi|Zi|2
∑

i |Zi|2
ωN

FS =
∑

i

λi = λ

By induction, we get

(N − r + 1)

∫

Xr

θvω
N−r
FS = −

∏

α

dα

∑

β

µβ

dβ
+ λ

∏

α

dα =
∏

α

dα



−
∑

β

µ̃β

dβ
+ (N + 1 − r)

λ

N + 1





This is the same as g(1), (9).
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