Some notes on Futaki invariant

Chi Li

1 Analytic Definition of Futaki Invariant

Let X be an n dimensional normal variety. Assume it’s Fano, i.e. its anticanonical line bundle
Ki' is ample. If X is smooth, then for any Kihler form w in [e; ()], by 9d-lemma, we have a
smooth function h,,, such that
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Ric(w) —w = ?Bahw

We call h, := —log f]—g the Ricci potential of w. Let v be a holomorphic vector field on X, i.e. v
is of type (1,0) and dv = 0. Then the Futaki invariant is defined to be

Foy () = /X o) (1)

It’s a holomorphic invariant, as a character on the Lie algebra of holomorphic vector field, and
independent of the choice of the K&hler form in ¢;(X). See [Fu]. The necessary condition of
existence of Kéhler-Einstein metric on X is that the Futaki invariant vanishes.

In [DT], the Futaki invariant is generalized to the singular case. When X is possibly singular
normal, first use |kK;(1| to embed X into projective spaces, ¢ = (b‘kK;(l‘ : X — CPM*. hpg is
the Fubini-Study metric determined by an inner product on H%(X,kKy'). h = (¢;hps)'/* is an
Hermitian metric on K ;{1. Note that on the smooth part of X, Hermitian metrics on K)_(l one-to-
one corresponds to volume forms. If {z;} is a local holomorphic coordinate, denote dz3 A --- Adz,
by dz, and dz; A ---dZz, by dz, the correspondence is given by
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|dz|, % =102, A+ ADs,|? is the induced Hermitian metric on Kx by the metric dual. On the
smooth part of X,
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is a Kahler form, its Ricci curvature is: Ric(wp) = —g@g log det wj.
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So the Ricci potential is h,, = —log ‘;—E
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In [DT], it’s proved this is still a well defined holomorphic invariant. Note that in local holomorphic
coordinate, L,dz; = 0, so
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Note that the first term on the right is holomorphic , so
2

\/—__1 iUWh (2)

ddivy, (v) = —i,00log |dz|; % = —

2 Calculation by Log Resolution

Assume X is an equivariant log resolution of singularity of X such that
K =mKy' =) P
i

E; are exceptional divisors with normal crossings. v lifts to be a smooth holomorphic vector field
v on X, which is tangential to each exceptional divisor E;. Let S; be the defining section of

[E;], so E; = {S; = 0}. Let h; be an Hermitian metric on [F;] and Rp, = %58 log h; be the
corresponding curvature form. By 00 lemma (or Hodge theory), there is an Hermitian metric h
on K)El such that its curvature form R; = gé@ logh = —%85 log n;, satisfies

Rﬁ = w*wh — E aiRhi
%

So
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(%) is a smooth function on X.
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Lemma 1. 0; = o(log|S;[}, ) extends to a smooth function on X such that

Vo5, - —isRn,
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Proof. Tt’s clearly true away from exceptional divisors. Let p € E;, in a neighborhood U of p,
choose a local frame e; of [E;], S; = fie;, and F; = {f; = 0}. We assume E; is smooth at p, so we
can take f; to be a coordinate function, say z;. Since v is tangent to Ej, v is of the form

5(2) = 21b1(2)0:, + Y _ €i(2)0s,
i>1
b1(z), ¢i(z) are holomorphic functions near p. Now
0; = v(log |21|*) + v(log les7,)
the second term is smooth near p, and

ofiog =11%) = “E2 = by(2)

is holomorphic near p. Also
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So the Futaki invariant can be written as
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Now by (2) and (3), (divy(0) + >, aiti + Rj, + >, aiRp,;) is an equivariantly closed form, so we
can apply localization formula to this integral. See [BGV], [Ti2] for localization formula.

Remark 1. Note that at any zero point p of ¥, the divergence divi(v) is well defined independent
of volume forms. Also by the proof of previous lemma, if p € E;, 0;(p) = bi1(p) is the weight
on the normal bundle of E; at p, otherwise 0;(p) = 0. In any case, if ¢ = w(p) € X, then
div(9)(p) + 32, aibli(p) is the weight on Kx'|,.

3 An example of calculation

We calculate an example from [DT] using log resolution.

X is the hypersurface given by F' = ZoZ%+ Z1Z2 +Z3. v is given by A(t) = diag(1, €5, e, e3').
The zero points of v are [1,0,0,0], [0,1,0,0], [0,0,0,1].

[1,0,0,0] is an A-D-E singular point of type Eg. Locally, it’s C2/T", T is the lifting to SU(2) of
the symmetric group of Tetrahedron in SO(3). |I'| = 24. After a (nonlinear) change of coordinate,
we change it to the standard form 27 + 25 + 24. The vector field is given by v = 6210, + 4220, +
3230.,. By viewing the surface as a two-fold covering of C?, branched along a singular curve, we

can equivariantly resolve the singularity by blowup and normalization (at the origin of each step).
See [BPV].
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The intersection diagram of Exceptional divisors is of type Fg. Assume

Kf( :w*KX—i—ZaiEi



Note that 7*Kx - E; = 0, then
K)”( . El = ZajEj . El
J
By adjoint formula,
Ky E;=Kp,-E;—E?=0
Because the intersection matrix {E; - E;} is negative definite, we have a; = 0. So

KX:TF*KX

The zero points set of ¥ are: U?_, {P;} U Ejy.

3 iqe g2 /4 _ _ Zz 2t Iz —tyql
L. equation near P is: uj + z2(1 +¢1°22) = 0. ug = ZL — e*fuy, t] = 2 — e 1.
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t —2tyr 3
e Ty, e

2. equation near Py, Psis: u3 + 1525 +1=0. t) = t2s.
3. equation near Py, Ps is: u3 +t#ta +1=0. th = ’;—; et ty s e,

4. equation near Ey (away from P, P;) is: s +t4(ty +1) = 0. (near Ps, Py, the equation is
ui +tf +1= 0) E4 = {tl = 0} tl — ettl.

So the contribution to the localization formula of Futaki invariant at point [1,0,0, 0] is:

R P R
-2 "6 -2 Jgl+a(E]) 6
the contributions from the other two fixed points are easily calculated, so the Futaki invariant is:
11 (=5 (=2
F = —\= —_— _— ) = —6

Remark 2. The contribution of the singular point can also be calculated using the localization
formula for orbifolds given in [DT]. Note that the local uniformization is given by:

m:C* — C*TccC?
(21,22) = [1,(21 +2V=32025 + 23)°, 2(=3) i maz (2] — 23), —(2F + 142123 + 25)]
So miv = 3(210, + 220.,), and

1 (div(riv))"t? 113 1

[T] det(V(miv)lr.x) 241/4 6

4 Algebraic Definition

We can transform the expression of Futaki invariant (1) into another form:

Fraon () == [ (5() =)t g
where S(w) is the scalar curvature of w, and 6, is the potential function of the vector field v

satisfying
=1
lyw = ——00,
27
In this way, the Futaki invariant generalizes to any Kahler class. The vanishing of Futaki invariant
is necessary for the existence of constant scalar Kahler metric in the fixed Kéhler class.
Assume there is a C* action on (X, L), there are induced actions on H°(X, L*). Let wy, be the
k — th (Hilbert) weight of these actions. For k sufficiently large,
knJrl L

+a15— + O(k" ) (5)

Wy = ag——
n! 2n!
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At least in the smooth case, one can show that (See [Do])
ap = / O™, a1 = / S(w)f,w™ (6)
p's s

b1:/ w", b2:/ S(w)w™
b's b's

By this, Donaldson [Do] gives an algebro-geometric definition of Futaki invariant:

a1by — apb
Fc1(L)(v) = _% (7)

Remark 3. Assume we can embed X into P(H°(X, L)*) using the complete linear system |L| such
that the C* action is induced by a one parameter subgroup in SL(dy,C). Then we see that, at
least in the smooth case, if we normalize 0,, the (normalized) leading coefficient ((n+ 1)ag) in the
expansion (5) is the Chow weight of this C* action.

5 Futaki invariant of Complete Intersections

We will use the algebraic definition to calculate. Assume X € CP" is a complete intersection given
by:
X =Ny {Fa =0}
Assume deg F,, = d, so
deg X = H do,

Let R =C[Zy, - ,Zn]. X has homogeneous coordinate ring
R(X) =Cl[Zo,---, Zn]/(I(X)) = R/I(X)

I(X) is the homogeneous ideal generated by homogeneous polynomial {F,}. It is well known that
R(X) has a minimal free resolution by Koszul complex:

0= R(= Y da)(CJ[Fa) = -+ = €D R(=da—dp)-(C-(FuFp)) = @D R(~da)®(C-Fa) = R — R(X) — 0
a=0 « a<f a=0

Let A(t) € PSL(N + 1,C) be a one-parameter subgroup generated by A = diag(Xo,- -+, An), and
v be the corresponding holomorphic vector field. Assume that

N

d
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(C*)? acts on S(X). Let ax; = dimS(X)y, be the dimensions of weight spaces, then this action
has character:
T (1 — gleghe
cnsx) = Y anthty = UomtUZ 0Dy, )
(k,l)ENXZ Hi:o(l — t1th )

The k — th Hilbert weight is (note it’s a finite sum)

Wy = E akﬁle
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Let g(t) = = 3 o (tat® [Tppa(1+- TN AN T (L + 9 = N1 — 7, let

o = Mo — ﬁda’ then fi is invariant when A(¢) differs by a diagonal matrix. by the lemma, we
can get
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By (7), we can get the Futaki invariant

N+1-3" dy fi
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Remark 4. In hypersurface case, the above formula becomes

(d-—1)(N+1) A
F = — _
er(0(1)) (V) N =577
Apply this to the example in section 3, where d = 3, N =3, A=6+3+4 = 13, p = 12,
O(1) = Ky, then we get the same result as before.
2-4 13

Remark 5. We can calculate directly the leading coefficient of wy, in (10)using the Lelong-Poincdre
equation. Also see [Luj.

d)

Lemma 3 (Poincdre-Lelong equation). Assume L is a holomorphic line bundle on X, s is a
nonzero holomorphic section of L, D is the zero divisor of s, i.e. {s = 0} counted with multiplicities.

h is an Hermitian metric on L, Ry = %58 log h is its curvature form. Then in the sense of
distribution, we have the identity

v=1 -
—8810g|s|i:/ —Ry,
2T D

i.e., for any smooth (2n — 2) form n on X, we have

/ (log |s[3) 5377—/77—/Rh/\n
D X

Let Xo = CPY, Xop1 = Xo N {Fy =0}, then Xo 5 X1--- > Xy = X. 0, = =NZE ey

Y lzi?
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Using integration by parts, the second integral on the right equals
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By induction, we get
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This is the same as g(1), (9).
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