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Abstract. Let X be a smooth projective variety over an algebraically closed field k ⊂ C of
characteristic zero, and Y ⊂ X a smooth complete intersection. The Weak Lefschetz theorem
states that the natural restriction map Hi(X(C),Q) → Hi(Y (C),Q) on singular cohomology
is an isomorphism for all i < dim(Y ). The Bloch-Beilinson conjectures on the existence of
certain filtrations on Chow groups combined with standard conjectures in the theory of motives
imply that a similar result should be true for Chow groups, and, more generally, for motivic
cohomology. In this note, we prove a consequence of the Motivic Weak Lefschetz conjecture (see
Conjecture 1.2) for codimension 2 cycles.

1. Introduction

In this note we study a motivic analog of the Weak Lefschetz Theorem. Throughout, X will
be a smooth projective variety over an algebraically closed field k ⊂ C of characteristic zero. Let
H∗(X) := Hi(X(C),Q) denote the singular cohomology with rational coefficients. Let Y ⊂ X
be a smooth complete intersection of dimension n. Then one has the following result:

Theorem 1.1 (The Weak Lefschetz theorem). The restriction map Hi(X) → Hi(Y ) is an
isomorphism for i < n and injective for i = n.

It is known that étale cohomology, and all other good cohomology theories on smooth pro-
jective varieties over k also satisfy the above property. The following conjecture is a motivic
analog of the Weak Lefschetz Theorem (see, for instance, [11], 1.5):

Conjecture 1.2. Let X be a smooth projective variety over k and Y ⊂ X a smooth complete
intersection. The natural restriction map CHp(X)Q → CHp(Y )Q is an isomorphism for all
p < dim(Y )/2.

The above conjecture can be deduced from more general conjectures of Bloch and Beilinson
(see [8]) on the existence of certain filtrations on Chow groups. In fact, one also expects Weak
Lefschetz theorems more generally for higher Chow groups and motivic cohomology (cf. §2).
The case p = 1 of the above conjecture is a classical theorem of Lefschetz and Grothendieck (see
[4]). In this case, the conjecture even holds integrally.

Theorem 1.3 (Grothendieck-Lefschetz). Let X be a smooth projective variety and Y ⊂ X a
smooth complete intersection such that dim(Y ) ≥ 3. Then the natural restriction map

Pic(X)→ Pic(Y )

is an isomorphism.
1
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The Grothendieck-Lefschetz theorem is proved by factoring the restriction map Pic(X) →
Pic(Y ) as a composition

Pic(X)→ Pic(X)→ Pic(Y ),

where X is the formal completion of X along Y , and showing that each of these arrows is an
isomorphism. If we adopt a similar strategy to study the higher codimension case, then as a
first step, we would like to write the restriction map CHp(X)→ CHp(Y ) as a composition

CHp(X)→ CHp(X)→ CHp(Y ).

In particular, we would like to define the middle term.

Recall that the Bloch-Quillen formula, which relates the Chow groups of smooth projective
varieties to K-cohomology groups, gives a natural isomorphism

CHp(X) ∼= Hp(X,Kp,X).

Here Kp,X is the sheaf associated to the presheaf which sends an open subset U ⊂ X to Kp(U),
where Kp(U) is the p-th Quillen K-theory group of the exact category of locally free sheaves
on U . Using this formula, we may define the Chow group of codimension p cycles CHp(X) to
be Hp(X,Kp,X) where Kp,X is defined in an analogous manner. One can then show that the
restriction map CHp(X)→ CHp(Y ) factors as

CHp(X)→ CHp(X)→ CHp(Y ).

We refer to §3 for details.

There is however, yet another definition for the Chow groups of the formal scheme X. For
any projective system of sheaves (Fn) on a scheme V , following Jannsen [7], we can consider the
continuous cohomology groups denoted by Hp

cont(V, (Fn)). The formalism of continuous coho-
mology, together with the Bloch-Quillen formula then suggests another definition for the Chow
group of codimension p cycles of X, namely Hp

cont(Y, (Kp,Yn)). Here Yn is the n-th infinitesimal
thickening of Y in X such that Y0 = Y . For the purposes of this article, we will work with this
definition and set

CHp
cont(X) := Hp

cont(Y, (Kp,Yn)).

One can show that the restriction map CHp(X)→ CHp(Y ) factors as a composition (cf. §3)

(1) CHp(X)→ CHp
cont(X)→ CHp(Y ).

The motivic weak Lefschetz conjecture implies, in particular, that the last morphism in the
sequence of maps (1) is a surjection (after tensoring with Q) for all p < dim(Y )/2. The main
result of this article is the following integral version of this consequence:

Theorem 1.4. Let X and Y be as before with dim(Y ) ≥ 5. Then the natural morphism

CH2
cont(X)→ CH2(Y )

is an isomorphism.

The proof proceeds by first reducing to showing that ∀n > 0, one has isomorphisms

H2(Y,K2,Yn)→ H2(Y,K2,Y ).
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On the other hand, a theorem of Bloch (Corollary 5.2), allows one to understand the kernel of
K2,Yn → K2,Y , denoted by K2,(Yn,Y ), in terms of the sheaf of relative 1-forms over Z. Therefore,
we are reduced to showing certain cohomology vanishing statements for this sheaf. A standard
argument allows one to further reduce to showing analogous vanishing statements for the sheaf
of relative 1-forms over k. Finally, an application of Kodaira-Nakano vanishing gives the desired
vanishing statements.

An approach analogous to the one considered here has also been recently suggested by Bloch,
Esnault, and Kerz (see [2]) in the context of the p-adic variational Hodge conjecture. In that
setting, one has a smooth projective scheme X over the Witt vectors, and one would like to
deform cycles from the special fiber to the ambient scheme X. A similar approach to deforming
algebraic cycles was also proposed by Green-Griffiths (see [3]) in the context of the usual varia-
tional Hodge conjecture. In both of these situations, one is interested in deforming cycles from
the special fiber to the ambient variety. The situation we consider here however is different. In
the setting of this paper, the central issue we will be concerned with is to deform cycles from the
closed complete intersection subvariety Y to each of its nilpotent thickenings Yn in the ambient
variety X.

We conclude this introduction with a brief description of the following sections. In §2, we
recall how the Motivic Weak Lefschetz conjecture follows from standard conjectures in the the-
ory of motives. In §3, we recall some standard facts about continuous cohomology groups and
discuss the two definitions of Chow groups of formal schemes mentioned above. In §4, we ap-
ply Kodaira-Nakano to show the vanishing of the cohomology of certain sheaves of differentials
over k. In §5, we prove the analogous vanishing statements for sheaves of relative differentials
over Z, and, use a theorem of Bloch to conclude that the latter vanishing gives the desired result.

Acknowledgements. The authors are indebted to Marc Levine for a careful reading of an
earlier version of this article. The present version has benefited immensely from his comments
and suggestions. We are grateful to Moritz Kerz for some very useful correspondence during the
initial stages of this project. We are also grateful to C. Weibel for some e-mail correspondence.
The first author would like to thank Indiana University, Bloomington for its support. The
second author acknowledges partial support by grant #207893 from the Simons Foundation, an
UM Research Board grant and a College of arts and sciences research grant at the University
of Missouri – St. Louis.

2. Weak Lefschetz Conjecture

In this section, we recall Weak Lefschetz type conjectures on motivic cohomology. Let k
be a fixed algebraically closed field of characteristic zero. The motivic philosophy predicts the
existence of a Tannakian categoryM(k) of pure motives. A construction ofM(k) was proposed
by Grothendieck. The resulting category should conjecturally satisfy the following properties
([8], Conjecture 4.8). In the following, we shall always work with the Q-linear category of
motives.

M1 M(k) comes equipped with a contravariant symmetric monoidal functor H : Var(k) →
M(k). Here Var(k) denotes the category of smooth projective varieties over k.
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M2 There is a natural decomposition H(X) = ⊕i=2n
i=0 h

i(X), where n = dimX.
M3 For k ↪→ C, there is a fully faithful realization functor RH :M(k)→ Hdg to the category

of Hodge structures. Furthermore, RH(hi(X)) = Hi(X(C),Q)
M4 There is a Tate object Q(1) whose realization is the Tate Hodge structure.

There is a deep connection between extension groups in the categoryM(k) and Higher Chow
groups. In particular, Beilinson predicts the existence of filtrations on motivic cohomology
whose graded quotients are determined by certain Ext groups in M(k). We recall the precise

conjectures ([8], Remark 4.5). In the following Hi
M(X, j) := K2j−i(X)

(j)
Q . In terms of Bloch’s

higher Chow groups one has Hi
M(X, j) = CHj(X, 2j − i)Q. Beilinson conjectures the existence

of a decreasing filtration F · on Hi
M(X, j) such that:

B1 F 0Hi
M(X, j) = Hi

M(X, j), F 1CHj(X)Q = CHj(X)hom,Q. Here CHj(X)hom is the sub-
group of cycles homologically equivalent to zero.

B2 F rHi1
M(X, j1) · F sHi2

M(X, j2) ⊂ F r+sHi1+i2
M (X, j1 + j2)

B3 F respects pull backs and push forwards for morphisms between smooth projective va-
rieties f : X → Y .

B4 There are functorial isomorphisms GrνF (Hi
M(X, j)) = ExtνM(k)(1, h

i−ν(X)(j)).

B5 F νHi
M(X, j) = 0 for ν >> 0.

We now state the motivic Weak Lefschetz conjecture and derive it from the above conjectures.

Conjecture 2.1. Let X be a smooth projective variety over k and Y ⊂ X a smooth complete
intersection. Then the natural restriction map

Hi
M(X, j)→ Hi

M(Y, j)

is an isomorphism for all i < dim(Y ).

Proof of Conjecture 2.1 assuming above conjectures. Recall that the usual weak Lefschetz theo-
rem gives an isomorphism of Hodge structures

Hi(X(C),Q(j))→ Hi(Y (C),Q(j))

for all i < dim(Y ). By M3 and M4, this morphism is the realization of

hi(X)(j)→ hi(Y )(j).

On the other hand, the realization functor is fully faithful; in particular, a morphism in M(k)
is an isomorphism if and only if its realization is an isomorphism. It follows that

hi(X)(j)→ hi(Y )(j)

is an isomorphism for all i < dim(Y ). On the other hand, (B4) now implies that the natural
restriction map

GrνF (Hi
M(X, j))→ GrνF (Hi

M(Y, j))

is an isomorphism for all i − ν < dim(Y ). In particular, it is an isomorphism for all ν if
i < dim(Y ). �

Remark 2.2. One has CHi(X)Q = H2i
M(X, i). It follows that the conjecture implies

CHi(X)Q → CHi(Y )Q

is an isomorphism for all i < dim(Y )/2.
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3. Preliminaries on Chow groups of formal schemes

Let X denote, as before, a smooth projective variety over an algebraically closed field k of
characteristic zero. Furthermore, let Y ⊂ X denote a smooth closed subvariety, and Yn denote
the n-th infinitesimal thickening of Y in X with Y0 = Y . Finally, let X denote the formal
completion of X along Y . Recall, there are natural morphisms of ringed spaces:

Y → Yn → X
π→ X.

In the following, we discuss the two possible definitions for the Chow groups of a formal scheme
and state some basic properties. While we shall only work with one of these possible choices,
we include a discussion of both here for the sake of completeness.

For any open U ⊂ X, let Kp,U denote the sheaf associated to the presheaf which sends U
to Kp(OX|U). Here Kp(OX|U) denotes the p-th Quillen K-group of the category of locally free
OX|U-modules, where OX|U denotes the usual topological restriction to U of the structure sheaf
of the formal scheme X. For any open U ⊂ X, we can consider the formal scheme U given by
taking the formal completion of U along Y ∩ U . Then U is an open formal subscheme of X.
Furthermore, the functor which sends a locally free sheaf on U to its formal completion along
Y ∩ U , gives a morphism of K-groups:

Kp(U) = Kp(OU )→ Kp(OX|U).

This follows from the fact that the formal completion of a locally free sheaf is still locally free,
and that this is an exact functor. It follows that one has a natural morphism of sheaves

π−1(Kp,X)→ Kp,X,
which gives rise to a natural morphism

Hp(X,Kp,X)→ Hp(X,Kp,X).

Similarly, for an open V ⊂ Y , one has restriction maps

Kp(OX|V )→ Kp(OYn |V ),

giving rise to natural morphisms

Hp(X,Kp,X)→ Hp(Y,Kp,Yn).

Furthermore, it follows by construction that the composition

Hp(X,Kp,X)→ Hp(X,Kp,X)→ Hp(Y,Kp,Yn)

is simply the natural restriction map

Hp(X,Kp,X)→ Hp(Y,Kp,Yn)

induced by the pullback map on K-groups

Kp(U)→ Kp(U ∩ Yn).

We set CHp(X) := Hp(X,Kp,X).

For the other definition of Chow groups of formal schemes using the continuous cohomology
groups, we begin by recalling some preliminaries on continuous cohomology. If Z is a topological
space, and (Fn) is a projective system of sheaves on Z, then following Jannsen [7], we can
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consider the continuous cohomology groups Hp
cont(Z, (Fn)). These satisfy the usual properties

for a cohomology theory. In particular they are covariant in the (Fn) and short exact sequences
of projective systems give rise to long exact sequences in continuous cohomology. Furthermore,
one has the following standard exact sequence:

0→ R1lim←−Hp(Z,Fn)→ Hp+1
cont(Z, (Fn))→ lim←−Hp+1(Z,Fn)→ 0.

Note that lim←− is a left exact functor on the category of projective systems of abelian groups,

and R1lim←− denotes the corresponding first right derived functor. We refer to [7] for the details.

It is a standard fact that this R1lim←− vanishes on Mittag-Leffler systems. In particular, if the

transition maps in the projective system (Hp(Z,Fn)) are surjective, one has an isomorphism:

Hp+1
cont(Z, (Fn))

∼=→ lim←−Hp+1(Z,Fn).

It follows that if (F) is the constant pro-system, then one has

Hp
cont(Z, (F)) = Hp(Z,F).

The natural restriction maps

Kp,Yn → Kp,Yn−1

gives rise to a pro-system (Kp,Yn) on Y , and so we can consider the continuous cohomology
groups Hp

cont(Y, (Kp,Yn)). The Bloch-Quillen formula then suggests the seond definition for the
Chow groups of a formal scheme, and we let CHp

cont(X) := Hp
cont(Y, (Kp,Yn)). Note that one has

natural morphisms of pro-systems:

(π−1(Kp,X))→ (Kp,X)→ (Kp,Yn)→ (Kp,Y ).

This gives rise to natural morphisms:

CHp(X)→ CHp(X)→ CHp
cont(X)→ CHp(Y ).

Furthermore, it is clear from the previous remarks that this composition is the usual restriction
map

CHp(X)→ CHp(Y ).

We conclude this section with the following proposition which shows that in the case of p = 1,
both definitions agree with the usual Picard group of the formal scheme.

Proposition 3.1. With X,Y as above, the natural restriction map

CH1(X)→ CH1
cont(X)

is an isomorphism. Furthermore, both are isomorphic to Pic(X).

Proof. First, note that K1,Yn = O×Yn . It follows that (H0(Y,O×Yn)) is Mittag-Leffler and, therefore,
one has natural isomorphisms:

H1
cont(Y, (K1,Yn))→ lim←−H1(Y,K1,Yn) ∼= lim←−Pic(Yn).

Since Pic(X)→ lim←−Pic(Yn) is an isomorphism (see [5], page 200), we are done.

�
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4. Cohomology of sheaves of differentials

Let X be a scheme over a field k (algebraically closed of characteristic zero) and i : Y ↪→ X
a closed subscheme defined by a sheaf of ideals I ⊂ OX . Let Yn denote the n-th infinitesimal
neighborhood of Y in X with Y0 = Y . We let Ω1

X/k denote the usual sheaf of 1-forms on X

relative to k. The goal of this section is to prove the following theorem:

Theorem 4.1. Let X be a smooth projective variety over k, and Y a smooth complete intersec-
tion of multidegree (d1, . . . , dr) such that dim(Y ) ≥ 3. Then

Hi(Yn+1,Ω
1
Yn+1/k

)→ Hi(Yn,Ω
1
Yn/k

)

is an isomorphism for 0 ≤ i < dim(Y )− 2, and an injection for i = dimY − 2.

We begin with some preliminary lemmas.

Lemma 4.2. Let X be a smooth projective variety and Y ⊂ X a smooth complete intersection
of multidegree (d1, . . . , dr). Then one has natural short exact sequences:

0→ In/In+1 → Ω1
X/k ⊗OX

OYn−1 → Ω1
Yn−1/k

→ 0, and

0→ In/In+1 → Ω1
X/Z ⊗OX

OYn−1 → Ω1
Yn−1/Z → 0.

Proof. For any scheme V , let Ω1
V denote Ω1

V/k or Ω1
V/Z. One has an exact sequence:

In/I2n δ→ Ω1
X ⊗OX

OYn−1 → Ω1
Yn−1

→ 0,

and by the local description of δ ([5], Proposition 8.4A, page 173), we have δ(In+1/I2n) = 0,
and hence the left arrow factors as

In/I2n → In/In+1 → Ω1
X ⊗OX

OYn−1 .

By Lemma 1.7 in [10], the composite

In/In+1 → Ω1
X ⊗OX

OYn−1 → Ω1
Yn ⊗OX

OYn−1

is injective. Hence the first map is injective. �

Lemma 4.3. Let X be a smooth projective variety and Y ⊂ X a smooth complete intersection
of multidegree (d1, . . . , dr). Then one has

Hi(Y, In/In+1) = 0 for all 0 ≤ i < dim(Y ).

Proof. Under our assumptions, Y is given to be the scheme-theoretic intersection of r hypersur-
faces of degrees d1, · · · , dr in some projective space PN with X. It follows that

I/I2 = OY (−d1)⊕ · · · ⊕ OY (−dr).

Since In/In+1 = Symn(I/I2), Hi(Y, In/In+1) = 0 for 0 ≤ i < dim(Y ) is now a direct conse-
quence of Kodaira vanishing. �

We state the following corollary of the previous lemma for future reference. Although it will
not be used in the rest of this section, it will be needed in § 4.
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Corollary 4.4. Let X be a smooth projective variety and Y ⊂ X a smooth complete intersection
of multidegree (d1, . . . , dr). Then one has

Hi(Y, Ij/In+1) = 0 for all 0 ≤ i < dim(Y ) and 1 ≤ j ≤ n.

Proof. First note that we have a descending filtration:

I/In+1 ⊃ I2/In+1 ⊃ · · · ⊃ In−1/In+1 ⊃ In/In+1 ⊃ 0.

The result now follows via descending induction on j, by an application of Lemma 4.3 to the
graded pieces of this filtration. For the base case j = n, the result follows from Lemma 4.3
above. So assume that the result is true for some j = j0 where 1 < j0 ≤ n. Consider the short
exact sequence

0→ Ij0/In+1 → Ij0−1/In+1 → Ij0−1/Ij0 → 0.

Taking cohomology, we get a long exact sequence

· · · → Hi(Y, Ij0/In+1)→ Hi(Y, Ij0−1/In+1)→ Hi(Y, Ij0−1/Ij0)→ · · · .
Now the extreme terms vanish by induction and Lemma 4.3 respectively, and thus we are
done. �

Proof of Theorem 4.1. Consider the following commutative diagram:

(2) 0

��
Ω1
X/k ⊗OX

In/In+1

��
0 // In+1/In+2 //

��

Ω1
X/k ⊗OX

OYn //

��

Ω1
Yn/k

//

��

0

0 // In/In+1 // Ω1
X/k ⊗OX

OYn−1
//

��

Ω1
Yn−1/k

// 0

0

The bottom two rows are exact by the Lemma 4.2. The middle column is given by tensoring
the standard exact sequence

(3) 0→ In/In+1 → OYn → OYn−1 → 0

with the locally free sheaf Ω1
X/k and hence is exact. We consider this as a diagram of sheaves

on Y .
We first claim that the leftmost vertical arrow is zero. This is because the composite

In+1/In+2 → In/In+1 → Ω1
X/k ⊗OX

OYn−1

is zero by [5], Proposition 8.4A, page 173. Since the second map is an injection, this implies
that the first map is zero.
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Next, we note that Hi(Y,Ω1
X/k ⊗OX

In/In+1) = 0 for all 0 ≤ i < dim(Y ) − 1. To see this,

consider the short exact sequence

(4) 0→ In+1/In+2 → Ω1
X/k ⊗OX

In/In+1 → Ω1
Y/k ⊗OX

In/In+1 → 0,

obtained by tensoring with In/In+1, the exact sequence

0→ I/I2 → Ω1
X/k ⊗OX

OY → Ω1
Y/k → 0.

Taking cohomology, we get an exact sequence

· · · → Hi(Y, In+1/In+2)→ Hi(Y,Ω1
X/k ⊗OX

In/In+1)→ Hi(Y,Ω1
Y/k ⊗OX

In/In+1)→ · · · .

By Kodaira vanishing, we see that Hi(Y, In+1/In+2) = 0 for 0 ≤ i < dimY , and by Kodaira-
Akizuki-Nakano vanishing, we have Hi(Y,Ω1

Y/k ⊗OX
In/In+1) = 0 for 0 ≤ i < dimY − 1. It

follows that Hi(Y,Ω1
X/k ⊗OX

In/In+1) = 0 for all 0 ≤ i < dim(Y )− 1.

Therefore, taking the long exact sequence in cohomology associated to the middle vertical
column in the diagram above gives isomorphisms

Hi(Y,Ω1
X/k ⊗OX

OYn)→ Hi(Y,Ω1
X/k ⊗OX

OYn−1)

for all 0 ≤ i < dim(Y ) − 2 and an injection when i = dim(Y ) − 2. Taking cohomology of
the horizontal exact sequences in diagram (2) above, gives the following diagram of long exact
sequences:

Hi(Y, In+1/In+2) //

��

Hi(Y,Ω1
X/k ⊗OX

OYn) //

��

Hi(Y,Ω1
Yn/k

) //

��

Hi+1(Y, In+1/In+2)

��
Hi(Y, In/In+1) // Hi(Y,Ω1

X/k ⊗OX
OYn−1) // Hi(Y,Ω1

Yn−1/k
) // Hi+1(Y, In/In+1)

By the vanishings obtained above, it follows that the restriction maps

Hi(Y,Ω1
Yn/k

)→ Hi(Y,Ω1
Yn−1/k

)

are isomorphisms for all 0 ≤ i < dim(Y )− 2, and an injection for i = dimY − 2.
�

Let Ω1
(Yn,Yn−1)/k

denote the kernel of the natural surjection Ω1
Yn/k

→ Ω1
Yn−1/k

. Then we have

the following corollary.

Corollary 4.5. Let X and Y be as above. Then

Hi(Y,Ω1
(Yn,Yn−1)/k

) = 0

for 0 ≤ i < dim(Y )− 1.

Proof. This follows directly from the theorem by looking at the long exact sequence in cohomol-
ogy associated to following short exact sequence:

0→ Ω1
(Yn,Yn−1)/k

→ Ω1
Yn/k

→ Ω1
Yn−1/k

→ 0.

�
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5. Stability for K-Cohomology

In this section, we prove a stability theorem for K-cohomology under infinitesimal thickenings
of Y ⊂ X, and use this to prove the main theorem. In the following, X and Y will be satisfy
the same assumptions as in §3. As before, Yn will denote the n-th infinitesimal neighborhood of
Y in X.

We begin by recalling a theorem of Bloch allowing us to compute the fiber of K-theory along
a nilpotent thickening. As before, we denote by Ki(X) the i-th Quillen K-theory group of the
exact category of locally free sheaves on X. Recall, Ki,X denotes the sheaf on X associated to
the presheaf given by sending U ⊂ X to Ki(U).

Theorem 5.1 ([1], Theorem (0.1)). Let B be a local Q-algebra, A an augmented, commutative
B-algebra and assume that J is the kernel of the augmentation homomorphism satisfying JN = 0,
N >> 0. If Ω1

A/Z denotes the module of absolute Kähler differentials, then there is a canonical

isomorphism

τ :
Ω1
(A,J)/Z

d(J)
∼= K2(A, J),

where Ω1
(A,J)/Z := ker(Ω1

A/Z → Ω1
B/Z), and K2(A, J) := ker(K2(A)→ K2(B)).

One has the following sheafified version of Bloch’s theorem.

Corollary 5.2 ([9]). Let V be a Q-scheme, Z an infinitesimal extension of V . Suppose that
OZ → OV is locally split. Define

Ω1
(Z,V )/Z = ker(Ω1

Z/Z → Ω1
V/Z).

Let I be the ideal sheaf of V in Z. Then there is a natural isomorphism of sheaves

Ω1
(Z,V )/Z

d(I)
∼= K2,(Z,V ).

We begin with some preliminary lemmas. Unless otherwise mentioned, for any scheme V , we
will let Ω1

V denote either Ω1
V/Z or Ω1

V/k.

Lemma 5.3. With notation as above, we have

(5) Ω1
X ⊗OX

OYn−1

∼=→ Ω1
Yn ⊗OYn

OYn−1 .

Proof. By Lemma 4.2, we have an exact sequence

0→ In+1/In+2 δ→ Ω1
X ⊗OX

OYn → Ω1
Yn → 0.

Once again by the local description of δ ([5], Proposition 8.4A, page 173), we see that the
left arrow vanishes on restricting to Yn−1, and hence we have an isomorphism of the last two
terms. �

Lemma 5.4. There is an exact sequence of sheaves on Y :

(6) 0→ Ω1
Y ⊗OX

In/In+1 → Ω1
Yn → Ω1

Yn ⊗OYn
OYn−1 → 0



TOWARDS CONNECTIVITY FOR CODIMENSION 2 CYCLES: INFINITESIMAL DEFORMATIONS 11

Proof. We claim that we have a commutative diagram with exact rows and columns:

0

��

0

��
In+1/In+2

��

In+1/In+2

��
0 // Ω1

X ⊗OX
In/In+1 // Ω1

X ⊗OX
OYn //

��

Ω1
X ⊗OX

OYn−1
//

∼=
��

0

Ω1
Yn

//

��

Ω1
Yn
⊗OYn

OYn−1
// 0

0

The middle row is the sequence obtained by tensoring the exact sequence (3), over OX , with
the locally free sheaf Ω1

X , and hence is exact. The middle column is exact by Lemma 4.2, and
the isomorphism in the right column is by Lemma 5.3. The square in the bottom right corner
is commutative as all the maps are restriction maps. The isomorphism in the diagram implies
that the injection in the middle column factors as

In+1/In+2 ↪→ Ω1
X ⊗OX

In/In+1 ↪→ Ω1
X ⊗OX

OYn .

This proves our claim.
The statement in the lemma now follows by noting that in the diagram above, the kernel

of the map in the bottom row is isomorphic, by the snake lemma, to the cokernel of the left
vertical map which in turn by the short exact sequence (4) is isomorphic to Ω1

Y ⊗OX
In/In+1.

This yields the desired exact sequence. �

Lemma 5.5. With notation as above, we have a short exact sequence

(7) 0→ Ω1
k/Z ⊗k OYn → Ω1

Yn/Z → Ω1
Yn/k

→ 0.

Proof. We only need to show that the first map is injective. When n = 0, this is true since
Y = Y0 is assumed to be smooth. For general n, we will prove this by induction. Consider the
commutative square

(8) // Ω1
k/Z ⊗k OYn−1

// Ω1
Yn/Z ⊗OYn

OYn−1
//

��

Ω1
Yn/k
⊗OYn

OYn−1
//

��

0

0 // Ω1
k/Z ⊗k OYn−1

// Ω1
Yn−1/Z

// Ω1
Yn−1/k

// 0

The bottom row is exact by the inductive hypothesis. The vertical arrows are just the re-
striction maps. It follows now that the top row is left exact as well. This in fact, proves more:
namely that the sequence

0→ Ω1
k/Z ⊗k OYm → Ω1

Yn/Z ⊗OYn
OYm → Ω1

Yn/k
⊗OYn

OYm → 0
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is also exact for any m < n. To complete the proof, now consider the following commutative
diagram:

0

��

0

��

0

��
0 // Ω1

k/Z ⊗k I
n/In+1

��

// Ω1
Y/Z ⊗OYn

In/In+1

��

// Ω1
Y/k ⊗OYn

In/In+1

��

// 0

// Ω1
k/Z ⊗k OYn

��

// Ω1
Yn/Z

//

��

Ω1
Yn/k

//

��

0

0 // Ω1
k/Z ⊗k OYn−1

//

��

Ω1
Yn/Z ⊗OYn

OYn−1
//

��

Ω1
Yn/k
⊗OYn

OYn−1
//

��

0

0 0 0

The exactness of the top row follows from the fact that Y is smooth, and that of the bottom
row was proved in the preceding paragraph. By Lemma 5.4, the middle and right columns are
exact. The left column is exact as it is obtained by tensoring an exact sequence with a vector
space. The exactness of the middle row now follows. �

Lemma 5.6. One has a short exact sequence:

0→ Ω1
k/Z ⊗k I/I

n+1 → Ω1
(Yn,Y )/Z → Ω1

(Yn,Y )/k → 0.

Proof. One has a commutative diagram:

(9) 0

��

0

��

0

��
0 // Ω1

k/Z ⊗k I/I
n+1 //

��

Ω1
(Yn,Y )/Z

//

��

Ω1
(Yn,Y )/k

��

// 0

0 // Ω1
k/Z ⊗k OYn //

��

Ω1
Yn/Z

//

��

Ω1
Yn/k

��

// 0

0 // Ω1
k/Z ⊗k OY //

��

Ω1
Y/Z

//

��

Ω1
Y/k

//

��

0

0 0 0

The exactness of the middle and rightmost columns follow by definition. The left column is
given by tensoring

0→ I/In+1 → OYn → OY → 0
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with the vector space Ω1
k/Z and is therefore exact. The exactness of the middle row follows from

Lemma 5.5 and that of bottom row from the fact that Y is smooth. It follows that the top row
is exact. �

Lemma 5.7. Let X be a smooth projective variety and Y ⊂ X a smooth complete intersection
as before. Then

Hi(Y,Ω1
(Yn,Y )/Z) = 0 for all 0 ≤ i < dim(Y )− 1.

Proof. Taking the cohomology long exact sequence associated to the short exact sequence in the
top row of the commutative diagram (9) in the previous lemma gives:

· · · → Hi(Y,Ω1
k/Z ⊗k I/I

n+1)→ Hi(Y,Ω1
(Yn,Y )/Z)→ Hi(Y,Ω1

(Yn,Y )/k)→ · · · .
If V is a finite dimensional k-vector space, then by Lemma 4.4,

Hi(Y, V ⊗k I/In+1) = Hi(Y, I/In+1)⊗ V = 0, for 0 ≤ i < dim(Y ).

On the other hand, any k-vector space is a direct limit of finite dimensional subspaces. Since
tensor product and cohomology commute with direct limits, it follows that same result holds
for Hi(Y,Ω1

k/Z ⊗k I/I
n+1).

We next claim that the cohomology group Hi(Y,Ω1
(Yn,Y )/k) vanishes in the desired range. To

see this, consider the commutative diagram

(10) 0

��
Ω1
(Yn−1,Y )/k

��
0 // Ω1

(Yn,Yn−1)/k
//

��

Ω1
Yn/k

// Ω1
Yn−1/k

��

// 0

0 // Ω1
(Yn,Y )/k

// Ω1
Yn/k

// Ω1
Y/k

��

// 0

0

By applying the snake lemma to this diagram, we get a short exact sequence

0→ Ω1
(Yn,Yn−1)/k

→ Ω1
(Yn,Y )/k → Ω1

(Yn−1,Y )/k → 0.

Taking cohomology, we get an exact sequence

· · · → Hi(Y,Ω1
(Yn,Yn−1)/k

)→ Hi(Y,Ω1
(Yn,Y )/k)→ Hi(Y,Ω1

(Yn−1,Y )/k)→ · · · .
We use induction on n to prove the claim above. When n = 1, this follows by Corollary 4.5.
So suppose that Hi(Y,Ω1

(Yn−1,Y )/k) = 0 for 0 ≤ i < dimY − 1. Then the leftmost term in the

above long exact sequence of cohomologies vanishes, once again by Corollary 4.5. The result
now follows. �

Theorem 5.8. The cohomology groups Hi(Y,K2,(Yn,Y )) vanish for 0 ≤ i < dim(Y )− 1.



14 D. PATEL AND G. V. RAVINDRA

Proof. There is a short exact sequence:

(11) 0→ I/In+1 d→ Ω1
(Yn,Y )/Z → K2,(Yn,Y ) → 0.

The sequence is exact everywhere, except possibly on the left, by Corollary 5.2. Left exactness
follows from the fact that the composite

I/In+1 d→ Ω1
(Yn,Y )/Z → Ω1

(Yn,Y )/k ↪→ Ω1
Yn/k

,

is the composite

I/In+1 → OYn
d→ Ω1

Yn/k
.

As explained in the proof of Lemma 4.2, the first map is injective, and the kernel of the second
map contains scalars which miss the image of the first map. Hence the composite is injective.

The exact sequence (11) above gives a long exact sequence in cohomology

· · · → Hi(Y,Ω1
(Yn,Y )/Z)→ Hi(Y,K2,(Yn,Y ))→ Hi+1(X, I/In+1)→ · · · .

The result now follows by an application of Corollary 4.4 and the previous lemma. �

Lemma 5.9. Let X be a smooth projective variety, Y ⊂ X as above, and Yn the n-th infinites-
imal thickening as before. Then the natural morphism of sheaves Ki,Yn → Ki,Y is surjective.

Proof. It is enough to show that the morphism on stalks

Ki,Yn,y → Ki,Y,y
is surjective. In particular, it is enough to show that the morphism

Ki(OYn,y)→ Ki(OY,y)
is surjective. Since the map on algebras splits, so does the resulting map on K-theory. The
splitting of the map of algebras is a consequence of formal smoothness. For example, after
restricting to some small enough open neighborhood U of y ∈ Y , and some Un ⊂ Yn extending
U , we have that the natural morphism

Hom(Un, U)→ Hom(U,U)

is surjective. In particular, the embedding Y → Yn has a section in some neighborhood of y. �

Theorem 5.10. Let Y ⊂ X be a smooth complete intersection such that dim(Y ) ≥ 3. Then
one has:

(1) Hi(Y,K2,Yn) ∼= Hi(Y,K2,Yn−1) for all 0 ≤ i < dim(Y )− 2.

(2) Hi(Y,K2,Yn)→ Hi(Y,K2,Yn−1) is injective for i = dim(Y )− 2.

Proof. We prove the first statement, the proof of the second is similar. First note that it is
enough to show the result for the restriction maps

Hi(Y,K2,Yn) ∼= Hi(Y,K2,Y ).

It follows from the previous lemma that we have an exact sequence:

0→ K2,(Yn,Y ) → K2,Yn → K2,Y → 0.

Applying Theorem 5.8 to the associated cohomology long exact sequence gives the result. �

The following is a direct consequence of the above theorem.



TOWARDS CONNECTIVITY FOR CODIMENSION 2 CYCLES: INFINITESIMAL DEFORMATIONS 15

Corollary 5.11. Let X and Y be as in the theorem and suppose that dim(Y ) ≥ 5. Then one
has a natural isomorphism

lim←−H2(Y,K2,Yn)→ H2(Y,K2,Y ).

We now prove the main result of this note.

Proof of Theorem 1.4. We need to show that the restriction map

H2
cont(Y, (K2,Yn))→ H2(Y,K2,Y )

is an isomorphism. Recall, we have an exact sequence [7]:

0→ R1lim←−H1(Y,K2,Yn)→ H2
cont(Y, (K2,Yn))→ lim←−H2(Y,K2,Yn)→ 0.

By Theorem 5.10, (H1(Y,K2,Yn)) is Mittag-Leffler. In particular, the left term in the exact
sequence vanishes. Finally, by Corollary 5.11, the right term is H2(Y,K2,Y ). �
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