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1 Introduction to RWRE

We begin with a very brief introduction into the model of RWRE. For simplicity, we will begin by
describing the model of nearest-neighbor RWRE on Z. Once that model is understood it is easy for
the reader to understand how to define RWRE on other graphs such as multi-dimensional integer
lattices, trees, and other random graphs.

The case of one-dimensional RWRE is the simplest to describe since in that case an environment
is an elment ω = {ωx}x∈Z ∈ [0, 1]Z. For any environment ω and any x ∈ Z, we can construct a
Markov chain Xn on Z with distribution given by P xω defined by P xω (X0 = x) = 1 and

P xω (Xn+1 = z |Xn = y) =


ωy z = y + 1

1− ωy z = y − 1

0 otherwise.

Since we will often be concerned with RWRE starting at x = 0 we will use the notation Pω for P 0
ω .

Considering a random walk in an arbitrary environment is obviously too general, and so we
wish to give some additional structure to the environment by assuming that the environment ω is
an Ω-valued random variable with distribution P on the space of environments Ω. Then, since for
any fixed event G for the random walk, P xω (G) is a [0, 1]-valued random variable since ω is random.
Thus, we can define another probability measure Px on Xn by

Px(·) = EP [P xω (·)].

Again, for simplicity we will use the notation P for P0. In general, distirbution on environments is
assumed to be such that the sequence {ωx}x∈Z is stationary and ergodic. However, as an introduc-
tion to the model it is often best to consider the simplest example where the environment {ωx} is
an i.i.d. sequence.

Since there are two different sources of randomness in the model of RWRE (the environment
and the walk), there are two different types of probabilistic questions that can be asked.

• Quenched The distribution Pω of the RWRE for a fixed environment is called the quenched
law of the RWRE. Under the quenched law Xn is a Markov chain, and so all the tools of
Markov chains are available. However, the challenge is typically to prove a result that is true
under the quenched law Pω for P -a.e. environment ω.

• Averaged/Annealed The distribution P is called the averaged law for the RWRE (some
prefer the term “annealed” over “averaged,” but we will use averaged in these notes). Under
the averaged law the RWRE is no longer a Makov chain since the past history gives information
about the environment. For instance, note that P(X1 = 1) = EP [ω0] but

P(X3 = 1 |X1 = 1, X2 = 0) =
P(X1 = 1, X2 = 0, X3 = 1)

P(X1 = 1, X2 = 0)

=
EP [ω2

0(1− ω1)]

EP [ω0(1− ω1)]
.

On the other hand, due to the averaging over all environments the averaged law has ho-
mogeneity that the quenched law is lacking. For instance, due to the stationarity of the
environment ω it is true that P(Xn = X0) = Px(Xn = X0) for any starting location x ∈ Z.
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To make sure one understands the model of RWRE, it is helpful to consider a specific example.

Example 1.1. Suppose that the environment ω = {ωx}x∈Z is i.i.d. with distribution

P (ω0 = 3/4) = p, P (ω0 = 1/3) = 1− p, for some p ∈ [0, 1].

An example of part of such an environment is shown in Figure 1.1 where sites with ωx = 3/4 are
colored red and sites with ωx = 1/3 are colored blue.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 1: An example of an environment from Example 1.1. Sites colored red are such that ωx = 3/4
and blue sites are such that ωx = 1/3.

Thus far we have explained the model of RWRE only in the nearest-neighbor case on Z. How-
ever, it is easy to see that the model can be expanded to other graphs besides Z and that the
distribution on environments does not need to be i.i.d. We now give some examples, leaving the
details of making the model precise to the reader.

Example 1.2 (Random walk among random conductances). For any graph G (common examples
would be Z or Zd), assign a conductance cxy = cyx to every edge (x, y) of the graph. Given these
conductances, the random walk then chooses an adjacent edge to move along with probability
proportional to the conductance of the edge. That is,

Pω(Xn+1 = y |Xn = x) =
cxy∑
z∼x cxz

.

Typically the conductances are chosen to be i.i.d., but this does not make the environment i.i.d. in
the sense that ωx and ωy are dependent if x and y are connected by an edge.

Example 1.3 (Random walk on Galton-Watson trees). In this example, part of the randomness
of the environment is the choice of the graph on which the process evolves. That is, we first choose
a random Galton-Watson tree. Then we can assign transition probabilities ωx to every vertex x of
the tree in some deterministic or random manner. For instance, possible choices are

• Simple random walk - choose one of the neighboring vertices with equal porobability.

• Biased random walk - Fix a parameter β > 0. If the vertex x has k “descendants” then move
to a descendant of x with probability β/(1 + βk) and to the ancestor of x with probability
1/(1 + βk).

• Choose transition probabilities randomly in some way. For instance do a biased random walk
but with a different bias factor βx > 0 at each vertex, where the βx are i.i.d.

Example 1.4 (Random walk on super-critical percolation clusters). Let p > pc(d) be fixed, where
pc(d) is the critical value for edge percolation on Zd. Choose an instance of p-edge percolation on
Zd, conditioned on 0 being in the unique infinite component. Then perform a simple random walk
on the remaining edges. Note that this is a special case of the random conductance example where
the conductances on the edges of Zd are Bernoulli(p).
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2 One-dimensional RWRE - First Order Asymptotics

Having introduced the model of RWRE, we now turn our study to one-dimensional nearest neighbor
RWRE. Recall that for a RWRE on Z, the environment ω = {ωx} ∈ [0, 1]Z. To avoid certain
degeneracy complications, and to make the proofs easier we will make the following assumptions.

Assumption 1. There exists a c > 0 such that P (ω0 ∈ [c, 1− c]) = 1.

Assumption 2. The distribution P is such that {ωx}x is an i.i.d. sequence.

In this section, we will study the first order asymptotics of the behavior of the RWRE: criterion
for recurrence/transience and a law of large numbers.

2.1 Recurrence/Transience

In Solomon’s seminal paper on RWRE [Sol75], Solomon gave an explicit criterion for recurrence
or transience. While a naive guess might be that the RWRE is transient to +∞ if and only if
P(X1 = 1) = EP [ω0] > 1/2 this is not the case. In fact, the recurrence or transience of the RWRE
is determined by the quantity EP [log ρ0], where

ρx =
1− ωx
ωx

, x ∈ Z. (1)

Theorem 2.1. Let Assumptions 1 and 2 hold. Then,

EP [log ρ0] < 0 =⇒ lim
n→∞

Xn = +∞, P− a.s.

EP [log ρ0] > 0 =⇒ lim
n→∞

Xn = −∞, P− a.s.

EP [log ρ0] = 0 =⇒ lim inf
n→∞

Xn = −∞, lim sup
n→∞

Xn = +∞, P− a.s.

Remark 2.2. Note that the statement of Theorem 2.1 is under the averaged measure P, but that it
also holds quenched. For instance, if EP [log ρ0] < 0 then

1 = P( lim
n→∞

Xn =∞) = EP [Pω( lim
n→∞

Xn =∞)],

and so we can conclude that Pω(limn→∞Xn =∞) = 1 for P -a.e. environment ω.

Example 2.3. If the distribution on environments is as in Example 1.1 then Xn is transient to
+∞ if and only if p > log(2)/ log(6) ≈ 0.3869. Note that EP [ω0] > 1/2 if and only if p > 0.4, which
demonstrates the gap between the true criterion for transience and the naive guess.

Proof. The key to the proof of Theorem 2.1 is an explicit formula for hitting probabilities. To
this end, we introduce some notation. For a fixed environment ω, we define the potential V of the
environment by

V (k) =


∑k−1

i=0 log ρi k ≥ 1

0 k = 0

−
∑−1

i=k log ρi k ≤ −1.

(2)
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Also, for any x ∈ Z define the hitting time Tx by

Tx = inf{n ≥ 0 : Xn = x}. (3)

Then, since under the quenched law Pω the random walk is simply a birth-death Markov chain, for
any fixed a ≤ x ≤ b we have the following formula for hitting probabilities.

P xω (Ta < Tb) =

∑b
i=x+1 e

V (i)∑x
i=a+1 e

V (i) +
∑b

i=x+1 e
V (i).

(4)

To see this, it is enough to note that if we denote the right side by h(x) then h(a) = 1, h(b) = 0
and

h(x) = ωxh(x+ 1) + (1− ωx)h(x− 1), a < x < b.

We will prove that the RWRE is transient to +∞ when EP [log ρ0] < 0 and leave the remaining
cases to the reader. First, note that if EP [log ρ0] < 0 then since the environment is i.i.d. it
follows that V (i) ∼ EP [log ρ0]i as i → ±∞. In particular this implies that

∑∞
i=1 e

V (i) < ∞ and∑0
i=−∞ e

V (i) =∞. Therefore, from the hitting probability formula in (4) we obtain that

Pω(Tn <∞) = lim
a→−∞

Pω(Tn < Ta) = lim
a→∞

∑0
i=a+1 e

V (i)∑0
i=a+1 e

V (i) +
∑n

i=1 e
V (i)

= 1,

and

lim
a→−∞

Pω(Ta <∞) = lim
a→−∞

lim
b→∞

Pω(Ta < Tb)

= lim
a→−∞

lim
b→∞

∑b
i=1 e

V (i)∑0
i=a+1 e

V (i) +
∑b

i=1 e
V (i)

= lim
a→−∞

∑∞
i=1 e

V (i)∑0
i=a+1 e

V (i) +
∑∞

i=1 e
V (i)

= 0.

The first of these implies that lim supn→∞Xn =∞, Pω-a.s. The second can be used to show that
lim infn→∞Xn = ∞, Pω-a.s. as well. Indeed otherwise the random walk would return infinitely
often to some vertex, and by uniform ellipticity each time there would be a positive probability of
reaching site a before returning to x. Thus, if any site is visited infinitely often then Ta < ∞ for
all a.

2.2 Law of Large Numbers

Having established a criterion for recurrence/transience we now turn toward a law of large numbers.
That is, we wish to show that the limit limn→∞Xn/n exists and doesn’t depend on the environment
ω.

Theorem 2.4 ([Sol75]). If Assumptions 1 and 2 hold, then

lim
n→∞

Xn

n
=


1−EP [ρ0]
1+EP [ρ0] EP [ρ0] < 1

0 EP [ρ0] ≥ 1 and EP [ρ−1
0 ] ≥ 1

−1−EP [ρ−1
0 ]

1+EP [ρ−1
0 ]

EP [ρ−1
0 ] < 1,

P-a.s.
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Remark 2.5. Jensen’s inequality implies that 1/EP [ρ−1
0 ] ≤ EP [ρ0], and thus it cannot happen

that EP [ρ0] < 1 and EP [ρ−1
0 ] < 1. Also, Jensen’s inequality implies that it is possible to have

EP [log ρ0] < 0 and EP [ρ0] ≥ 1 (see the example below) so that the RWRE can be transient but
with asymptotically zero speed.

Example 2.6. Again, if the distribution on environments is as in Example 1.1 then the speed is pos-
itive if p > 0.6. Thus, the RWRE is transient with asymptotically zero speed if p ∈ (0.3689..., 0.6].

We will give the proof of Theorem 2.4 when EP [log ρ0] ≤ 0 (that is, when the random walk is
recurrent or transient to the right). The formula for the limiting speed when the walk is transient
to the left is obtained by symmetry.

The starting point for the proof of Theorem 2.4 is the following lemma.

Lemma 2.7. Suppose that lim supn→∞Xn =∞ and limn→∞ Tn/n = c ∈ [1,∞]. Then,

lim
n→∞

Xn

n
=

{
1
c if c <∞
0 if c =∞.

Proof. Let X∗n = maxk≤nXk denote the maximum distance to the right that the random walk has
reached by time n. Then, TX∗n ≤ n < TX∗n+1 so that

TX∗n
X∗n
≤ n

X∗n
≤

TX∗n+1

X∗n + 1

X∗n + 1

X∗n
.

Since X∗n →∞, the fact that Tk/k → c implies that

lim
n→∞

X∗n
n

=

{
1
c if c <∞
0 if c =∞.

It remains to show that Xn/n has the same limit as X∗n/n. Since Xn ≤ X∗n this is trivial when
c =∞ (that is, when X∗n/n→ 0), and so it is enough to show that limn→∞(X∗n−Xn)/n = 0 when
c <∞. Since the step sizes are at most 1 we have that X∗n −Xn ≤ n− TX∗n , and thus

lim sup
n→∞

X∗n −Xn

n
≤ lim

n→∞
1− lim

n→∞

(
TX∗n
X∗n

)(
X∗n
n

)
= 1− c

(
1

c

)
= 0.

Next, we introduce some notation. For any k ≥ 1 let τk := Tk − Tk−1. (Recall that we are
assuming the random walk is recurrent or transient to the right so that τk <∞ for all k ≥ 1.)

Lemma 2.8. Under the averaged measure P, the sequence {τk}k≥1 is ergodic.

Proof. Let {ξk,j}k∈Z, j≥0 be a i.i.d. collection of U(0, 1) random variables that is independent of ω.
Then, given an environment ω we can use the random variables ξk,j to construct the random walk.
If X∗n = k and n− TX∗n = j then

Xn+1 = 1{ξk,j<ωXn} − 1{ξk,j≥ωXn} if k = X∗n and j = n− TX∗n .

6



It is clear that the random walk constructed this way has the same distribution as the averaged
law for the RWRE. Note that to construct the path of the RWRE up until time T1, only the
random variables {ξ0,j}j≥0 are needed. Similarly, the path of the random walk on the time interval
[Tk, Tk+1] only depends on {ξk,j}j≥1.

Now, denote Ξk = {ξk,j}j≥0 and let θ be the left shift operator on environments so that (θkω)n =
ωk+n. Then it is clear from the above construction of the random walk that there is a deterministic
function f such that τk = f(θk−1ω,Ξk−1). Since the environment is i.i.d. and the sequence {Ξk}k∈Z
is independent of ω, it follows that {(θkω,Ξk)}k∈Z is ergodic and therefore τk = f(θk−1ω,Ξk−1) is
ergodic as well.

The final ingredient we need before giving the proof of Theorem 2.4 is a formula for the quenched
mean of T1.

Lemma 2.9. If EP [log ρ0] < 0, then for P -a.e. environment ω

Eω[τ1] =
1

ω0
+
∞∑
k=1

1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

= 1 + 2
∞∑
k=0

ρ−kρ−k+1 · · · ρ0.

(5)

Proof. First we give the idea of the proof. By conditioning on the first step of the random walk we
obtain that

Eω[τ1] = ω0 + (1− ω0)E−1
ω [1 + T1]

= 1 + (1− ω0)E−1
ω [T1]

= 1 + (1− ω0) (Eθ−1ω[τ1] + Eω[τ1]) .

Then, solving for Eω[τ1] we obtain that

Eω[τ1] =
1

ω0
+ ρ0Eθ−1ω[τ1]. (6)

Iterating this formula we obtain that for any m <∞

Eω[τ1] =
1

ω0
+

m∑
k=1

(
1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

)
+ ρ−mρ−m+1 · · · ρ0Eθ−m−1ω[τ1]. (7)

Finally, taking m → ∞ we obtain the first equality in (5). There are two difficulties in the above
argument. First of all, in order to solve for Eω[τ1] as in (6) we need Eω[τ1] <∞, and to iterate this
we need Eθ−kω[τ1] <∞ for any k ≥ 1 as well. Secondly, even if all these quenched expectations are
finite we need to prove that the last term in (7) vanishes as m→ 0.

Both of these difficulties can be handled by truncating the hitting times. For a fixed M <∞ it
is easy to see that

Eω[τ1 ∧M ] = 1 + (1− ω0)E−1
ω [(1 + T1) ∧M ]

≤ 1 + (1− ω0) (Eθ−1ω[τ1 ∧M ] + Eω[τ1 ∧M ]) ,
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and since now all expectations are finite we obtain that

Eω[τ1 ∧M ] ≤ 1

ω0
+ ρ0Eθ−1ω[τ1 ∧M ].

Iterating this gives

Eω[τ1 ∧M ] =
1

ω0
+

m∑
k=1

(
1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

)
+ ρ−mρ−m+1 · · · ρ0Eθ−m−1ω[τ1 ∧M ]

The assumption that EP [log ρ0] < ∞ implies that ρ−mρ−m+1 · · · ρ0 → 0 as m → ∞ and last
quenched expectation is bounded above by M . Thus, can take m→∞ to obtain that

Eω[τ1 ∧M ] ≤ 1

ω0
+

∞∑
k=1

(
1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

)
.

Taking M →∞, the monotone convergence theorem then gives

Eω[τ1] ≤ 1

ω0
+
∞∑
k=1

(
1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

)
. (8)

To obtain the corresponding lower bound to (5), note that the sum on the right side of (5) is
finite P -a.s. since EP [log ρ0] < 1. Therefore, Eω[τ1] <∞ for almost every environment ω, and since
the environment ω = {ωx}x∈Z is stationary it follows that Eθ−kω[τ1] < ∞ for all k ∈ Z for almost
every environment ω. Thus, the argument leading to (7) is valid and by omitting the last term we
obtain that

Eω[τ1] ≥ 1

ω0
+

m∑
k=1

(
1

ω−k
ρ−k+1ρ−k+2 · · · ρ0

)
.

Finally, taking m→∞ proves a matching lower bound to (8).

We have thus proved the first equality in (5). The second equality follows easily from the fact
that 1/ωx = 1 + ρx.

We are now ready to give the proof of Theorem 2.4.

Proof. Since the sequence {τk}k≥1 is ergodic under P, Birkhoff’s ergodic theorem implies that

lim
n→∞

Tn
n

= lim
n→∞

1

n

n∑
k=1

τk = E[τ1].

Using the second formula for Eω[τ1] in (5) and the fact that the environment is i.i.d., we obtain
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that

E[τ1] = EP [Eω[τ1]]

= 1 + 2
∞∑
k=0

EP [ρ−kρ−k+1 · · · ρ0]

= 1 + 2
∞∑
k=0

EP [ρ0]k+1

=

{
1+EP [ρ0]
1−EP [ρ0] if EP [ρ0] < 1

∞ if EP [ρ0] ≥ 1.

This gives a formula for limn→∞ Tn/n. The formula for limn→∞Xn/n follows from Lemma 2.7.

2.3 Notes

The results in this section are true under much weaker assumptions.

• Theorem 2.1 holds as long as the environment is ergodic and EP [log ρ0] exists (including +∞
or −∞). The only part of the proof that is more difficult without the i.i.d. assumption is
proving recurrence when EP [log ρ0] = 0. For this what is needed is that

∑n−1
j=0 log ρj changes

sign infinitely many times as n→∞. Zeitouni uses a Lemma of Kesten to show that this is
indeed the case [Zei04].

• The law of large numbers also holds under the weaker assumptions of ergodic environments
and EP [log ρ0] being well defined. However, if the environment is not i.i.d. then the formula
for the speed vP does not simplify as much. Instead, the best we can do is

vP =

(
1 + 2

∞∑
k=0

EP [ρ−kρ−k+1 · · · ρ0]

)−1

.
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3 Limiting Distributions - Central Limit Theorems

Having given a characterization of recurrence/transience and a formula for the limiting velocity,
the next natural step is to consider fluctuations from the deterministic velocity - that is, limiting
distributions. In this section we focus on the case when the limiting distributions are Gaussian.
We will see in the next section that this is certainly not always the case.

3.1 Limiting Distributions for Hitting Times

As was the case with the proof of the law of large numbers, we will deduce limiting distributions
for Xn by first proving limiting distributions for Tn. We begin with the following quenched CLT
for the hitting times.

Theorem 3.1. If Assumptions 1 and 2 hold and EP [ρ2
0] < 1 then

lim
n→∞

Pω

(
Tn − EωTn
σ1
√
n

≤ t
)

=

∫ t

−∞

1√
2π
e−z

2/2 dz =: Φ(t), ∀t ∈ R, P -a.s., (9)

where σ2
1 = EP [Varω(T1)] <∞.

Remark 3.2. As stated, the convergence in (9) is true for P -a.e. environment and any fixed t.
However, since Φ(t) is a continuous function and both sides are monotone in t it follows that the
convergence is uniform in t. That is,

lim
n→∞

sup
t∈R

∣∣∣∣Pω (Tn − EωTnσ1
√
n

≤ t
)
− Φ(t)

∣∣∣∣ = 0, P -a.s.

A key element in the proof of Theorem 3.1 will be the following Lemma.

Lemma 3.3. If EP [ρ2
0] < 1 then E[τ2

1 ] <∞.

Proof. we first derive a formula for Eω[τ2
1 ] in a similar manner to the derivation of the formula for

Eω[τ1] in Lemma 2.9. By conditioning on the first step of the random walk,

Eω[τ2
1 ] = ω0 + (1− ω0)E−1

ω [(1 + T1)2]

= 1 + (1− ω0)
{

2Eθ−1ω[τ1] + 2Eω[τ1] + 2(Eθ−1ω[τ1])(Eω[τ1]) + Eθ−1ω[τ2
1 ] + Eω[τ2

1 ]
}
.

Then we can solve for Eω[τ2
1 ] to obtain

Eω[τ2
1 ] =

1

ω0
+ ρ0

{
2Eθ−1ω[τ1] + 2Eω[τ1] + 2(Eθ−1ω[τ1])(Eω[τ1]) + Eθ−1ω[τ2

1 ]
}
.

At this point, we can simplify things by noting that ρ0Eθ−1ω[τ1] = Eω[τ1] − 1
ω0

. Combining this

with the above formula for Eω[τ2
1 ] and doing a little bit of algebra one obtains that

Eω[τ2
1 ] = 2(Eω[τ1])2 − 1

ω0
+ ρ0Eθ−1ω[τ2

1 ].
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Iterating this m times and then taking m→∞ we can arrive at the following formula for Eω[τ2
1 ].

Eω[τ2
1 ] = 2(Eω[τ1])2 + 2

∞∑
n=1

{
(ρ−n+1ρ−n+2 · · · ρ0) (Eθ−nω[τ1])2

}
− Eω[τ1]. (10)

We remark that the argument leading to (10) we have ignored some technical difficulties that arise.
However, as in the proof of Lemma 2.9 the formula in (10) can be justified by repeating the above
argument for the truncated second moment Eω[(τ1 ∧M)2]. We leave the details to the interested
reader.

Having proved the formula (10), we now note that since the environment is i.i.d. that

E[τ2
1 ] = 2EP [(Eωτ1)2]

∞∑
n=0

EP [ρ0]n − E[τ1].

(Note that here we have used that Eθ−nω[τ1] depends only on ωx for x ≤ n.) Since EP [ρ2
0] < 1

implies that EP [ρ0] < 1 as well, it will follow that E[τ2
1 ] <∞ if we can show that EP [(Eωτ1)2] <∞.

To this end, from the second formula for Eω[τ1] in (5) it follows that

EP [(Eω[τ1])2] ≤ 4EP

( ∞∑
k=0

ρ−kρ−k+1 · · · ρ0

)2


= 4EP

∑
k≥0

(ρ−kρ−k+1 · · · ρ0)2 + 2
∑

0≤k<n
(ρ−n · · · ρ−k−1)(ρ−kρ−k+1 · · · ρ0)2


= 4

∑
k≥0

(EP [ρ2
0])k+1 +

∑
0≤k<n

(EP [ρ0])n−k(EP [ρ2
0])k+1

 ,

(11)

and these last sums are finite when EP [ρ2
0] < 1.

Remark 3.4. Since σ2
1 = EP [Eω[τ2

1 ] − (Eω[τ1])2] = E[τ2
1 ] − EP [(Eω[τ1])2], it follows from Lemma

3.3 that σ2
1 < ∞ if EP [ρ2

0] < 1. In fact, by being more careful with the argument in the proof of
Lemma 3.3 one can derive the following formula for σ2

1 in terms of EP [ρ0] and EP [ρ2
0].

σ2
1 =

4(1 + EP [ρ0])(EP [ρ0] + EP [ρ2
0])

(1− EP [ρ0])2(1− EP [ρ2
0])

.

Proof of Theorem 3.1. Under the quenched measure, Tn − EωTn =
∑n

k=1(τk − Eω[τk]) is the sum
of n independent zero mean random variables (note that the random variables are not identically
distributed). The main idea is to use the Lindberg-Feller criterion to prove a central limit theorem.
That is, the statement of the theorem will follow if we can check that

lim
n→∞

1

n

n∑
k=1

Eω[(τk − Eω[τk])
2] = σ2

1, P -a.s., (12)

and

lim
n→∞

1

n

n∑
k=1

Eω

[
(τk − Eωτk)21{|τk−Eω [τk]|≥ε

√
n}

]
= 0, ∀ε > 0, P -a.s. (13)

11



To prove (12), note that

lim
n→∞

1

n

n∑
k=1

Eω[(τk − Eω[τk])
2] = lim

n→∞

1

n

n∑
k=1

Varθk−1ωτ1 = EP [Varωτ1],

where the last equality follows from Birkohff’s ergodic Theorem. The proof of (13) is similar. Fix
ε > 0 and M <∞. Then,

lim sup
n→∞

1

n

n∑
k=1

Eω

[
(τk − Eωτk)21{|τk−Eω [τk]|≥ε

√
n}

]
≤ lim

n→∞

1

n

n∑
k=1

Eω
[
(τk − Eωτk)21{|τk−Eω [τk]|≥M}

]
= EP

[
Eω
[
(τk − Eωτk)21{|τk−Eω [τk]|≥M}

]]
,

where again the last equality follows from Birkhoff’s ergodic Theorem. Since σ2
1 = EP [Eω[(τ1 −

Eω[τ1])2] <∞, it follows that the right side can be made arbitrarily small by taking M →∞. This
finishes the proofs of (12) and (13), and thus also the proof of the theorem.

Having proved the quenched central limit theorem for hitting times, we next give an limiting
distribution under the averaged measure.

Theorem 3.5. If Assumptions 1 and 2 hold and EP [ρ2
0] < 1 then

lim
n→∞

Pω

(
Tn − n/vP
σ
√
n

≤ t
)

= Φ(t), ∀t ∈ R,

where σ2 = σ2
1 + σ2

2, with σ2
1 defined as in Theorem 3.1 and

σ2
2 = Var(Eω[τ1]) + 2

n−1∑
k=1

Cov(Eω[τ1], Eθkω[τ1]) <∞.

Remark 3.6. Using the second formula in (5) for Eω[τ1], it is not too difficult to compute Var(Eω[τ1])
and Cov(Eω[τ1], Eθkω[τ1]). By doing this, one can derive the following formula for σ2

2.

σ2
2 =

4(1 + EP [ρ0])VarP (ρ0)

(1− EP [ρ0])3(1− EP [ρ2
0])
.

A first step in proving the averaged CLT is to prove the following CLT for the quenched mean
of the hitting times.

Theorem 3.7. If Assumptions 1 and 2 hold and EP [ρ2
0] < 1 then

lim
n→∞

P

(
Eω[Tn]− n/vP

σ2
√
n

≤ t
)

= Φ(t), ∀t ∈ R,

where σ2
2 <∞ is defined as in Theorem 3.5.

Proof. Note that Eω[Tn] − n/vP =
∑n

k=1(Eω[τk] − 1/vP ) =
∑n−1

k=0(Eθkω[τ1] − 1/vP ) is the sum of
an ergodic, zero-mean sequence. Then the proof of the CLT for Eω[Tn] will follow if we can check

12



the condition for the CLT for sums of ergodic sequences in [Dur96, p. 417]. That is, we need to
show that

∞∑
n=0

√
EP

[
(EP [Eω[τ1]− 1/vP | F−n])2

]
<∞, where F−n = σ(ωx : x ≤ −n). (14)

However, it is clear from the second formula for Eω[τ1] in (5) that

EP [Eω[τ1]− 1/vP | F−n] = 1 + 2

n∑
k=1

EP [ρ0]k + 2EP [ρ0]n
∑
k≥n

ρ−kρ−k+1 · · · ρ−n −
1

vP

= EP [ρ0]n

− 1

1− EP [ρ0]
+ 2

∑
k≥n

ρ−kρ−k+1 · · · ρ−n

 ,

where the second inequality follows from the fact that 1/vP = E[τ1] = (1 + EP [ρ0])/(1 − EP [ρ0])
and a little bit of algebra. Therefore,

∞∑
n=0

√
EP

[
(EP [Eω[τ1]− 1/vP | F−n])2

]

=
∞∑
n=0

EP [ρ0]n

√√√√√EP

− 1

1− EP [ρ0]
+ 2

∑
k≥n

ρ−kρ−k+1 · · · ρ−n

2

=

√√√√√EP

− 1

1− EP [ρ0]
+ 2

∑
k≥0

ρ−kρ−k+1 · · · ρ0

2 ∞∑
n=0

EP [ρ0]n

where the last equality follows from the fact that the environment is a stationary sequence. Fi-
nally, the computation in (11) shows that the expectation under the square rootis finite, and since
EP [ρ0] < 1 the sum is finite as well. This completes the proof of (14) and thus also of the theo-
rem.

Proof of Theorem 3.5. The proof of the averaged CLT for hitting times follows easily from Theo-
rems 3.1 and 3.7. The idea is that

Tn − n/vP√
n

=
Tn − Eω[Tn]√

n
+
Eω[Tn]− n/vP√

n
,

and Theorems 3.1 and 3.7 imply that the terms on the right side are asymptotically zero mean
Gaussian random variables with variance σ2

1 and σ2
2 respectively. Moreover, the second term on the

right depends only on the environment, while the first term is asymptotically independent of the
environment (since the limiting distribution in Theorem 3.1 doesn’t depend on ω). Therefore, we
expect that right side should be asymptotically the sum of two independent mean zero Gaussians
with varianes σ2

1 and σ2
2.

To make the proof precise, we first write

P
(
Tn − n/vP
σ
√
n

≤ t
)

= P
(
Tn − Eω[Tn]

σ
√
n

≤ t− Eω[Tn]− n/vP
σ
√
n

)
= EP

[
Pω

(
Tn − Eω[Tn]

σ1
√
n

≤ σt

σ1
− σ2

σ1

Eω[Tn]− n/vP
σ2
√
n

)]
.

13



Since, as noted in Remark 3.2, the convergence in the quenched CLT is uniform in t it follows that

lim
n→∞

P
(
Tn − n/vP
σ
√
n

≤ t
)

= lim
n→∞

EP

[
Φ

(
σt

σ1
− σ2

σ1

Eω[Tn]− n/vP
σ2
√
n

)]
= E

[
Φ

(
σt

σ1
− σ2

σ1
Z

)]
, with Z ∼ N(0, 1). (15)

Note that the last equality above follows from Theorem 3.7. Finally, note that

Φ

(
σt

σ1
− σ2

σ1
Z

)
= P

(
Z ′ ≤ σt

σ1
− σ2

σ1
Z

)
= P

(σ1

σ
Z ′ +

σ2

σ
Z ≤ t

)
,

where Z ′ is a N(0, 1) random variable that is independent of Z. Since σ1
σ Z
′+ σ2

σ Z ∼ N(0, 1) (recall
that σ2 = σ2

1 + σ2
2) it follows that the last line of (15) is equal to Φ(t).

3.2 Limiting Distributions for the Position of the RWRE

We now show how to deduce quenched and averaged CLTs for Xn from the corresponding CLTs
for the hitting times Tn.

Theorem 3.8. If Assumptions 1 and 2 hold and EP [ρ2
0] < 1, then

lim
n→∞

P

(
Xn − nvP

v
3/2
P σ
√
n
< t

)
= Φ(t), ∀t ∈ R,

where as in Theorem 3.5 σ2 = σ2
1 + σ2

2 <∞.

Proof. Recall the definition of X∗n = maxk≤nXk. We will first prove the averaged CLT for X∗n in
place of Xn and then show that Xn is close enough to X∗n for the same limiting distribution to hold.

Note that {X∗n < k} = {Tk > n}. Then, for any t ∈ R and n ≥ 1 let x(n) := dnvP + v
3/2
P σ
√
nte so

that

P

(
X∗n − nvP

v
3/2
P σ
√
n
< t

)
= P

(
X∗n < nvP + v

3/2
P σ
√
nt
)

= P
(
Tx(n,t) > n

)
= P

(
Tx(n,t) − x(n, t)/vP

σ
√
x(n, t)

>
n− x(n, t)/vP

σ
√
x(n, t)

)
.

It follows from the above definition of x(n, t) that

lim
n→∞

n− x(n, t)/vP

σ
√
x(n, t)

= −t.

Thus, we can conclude from Theorem 3.5 that

lim
n→∞

P

(
X∗n − nvP

v
3/2
P σ
√
n
< t

)
= lim

n→∞
P

(
Tx(n,t) − x(n, t)/vP

σ
√
x(n, t)

> −t

)
= 1− Φ(−t) = Φ(t).

It remains to show that Xn is close enough to X∗n to have the same limiting distribution. To
this end, the following Lemma is more than enough to finish the proof of the CLT for Xn.
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Lemma 3.9. If Assumptions 1 and 2 hold and EP [log ρ0] <∞, then

lim
n→∞

X∗n −Xn

(log n)2
= 0, P-a.s.

Proof. By the Borel-Cantelli Lemma, it is enough to show that∑
n≥1

P(X∗n −Xn ≥ δ(log n)2) <∞, ∀δ > 0. (16)

To this end, note that the event {X∗n −Xn ≥ δ(log n)2} implies that after first hitting some k ≤ n
the random walk then backtracks to k − dδ(log n)2e. Thus, by the strong Markov property (using
the quenched law)

Pω(X∗n −Xn ≥ δ(log n)2) ≤
n∑
k=1

P kω (Tk−dδ(logn)2e <∞).

Taking expectations with respect to P we obtain

P(X∗n −Xn ≥ δ(log n)2) ≤
n∑
k=1

EP

[
P kω (Tk−dδ(logn)2e <∞)

]
= nP(T−dδ(logn)2e <∞),

where in the last equality we used the stationarity of the distribution on environments. Then, the
proof of (16) will be completed if we can show that there exist constants C1, C2 > 0 such that

P(T−k <∞) ≤ C1e
−C2k, ∀k ≥ 1. (17)

To this end, note that from the formula for hitting probabilities (4) we can see that

Pω(T−k <∞) =

∑
j≥1 e

V (j)∑
j≥−k+1 e

V (j)
≤
∑
j≥1

eV (j)−V (−k+1).

Typically, V (j)−V (−k+1) is close to (j+k−1)EP [log ρ0] and so for k large we expect Pω(T−k <∞)
to be exponentially small. To this end, fix c > 0 and note that

P(T−k <∞) = EP [Pω(T−k <∞)] ≤ e−kc

1− e−c
+ P

 ∞∑
j=1

eV (j)−V (−k+1) >
e−kc

1− e−c


≤ e−kc

1− e−c
+
∑
j≥1

P
(
eV (j)−V (−k+1) > e−c(j+k−1)

)
=

e−kc

1− e−c
+
∑
j≥1

P (V (j)− V (−k + 1) > −c(j + k − 1))

=
e−kc

1− e−c
+
∑
j≥k

P (V (j) > −cj) , (18)

where the last equality follows from the fact that V (j) − V (−k + 1) has the same distribution as
V (j + k − 1) since the environment ω is stationary. Now since V (j) =

∑j−1
i=0 log ρi is the sum of

i.i.d. bounded random variables, it follows from Cramer’s Theorem [DZ98, Theorem 2.2.3] that
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P (V (j) > −cj) decays exponentially in j if c < −EP [log ρ0]. That is, for 0 < c < −EP [log ρ0]
there exists a δ > 0 (depending on c) such that P (V (j) > −cj) ≤ e−δj for all j sufficiently large.
Applying this to (18) we obtain that

P(T−k <∞) ≤ e−kc

1− e−c
+

e−δk

1− ε−δ

for all k sufficiently large. This proves (17) and thus also the lemma.

We can also prove a quenched CLT for Xn. However, since the centering is random (depending
on the environment) instead of deterministic in the the quenched CLT for Tn, determining the
proper centering for Xn is more difficult.

Theorem 3.10. If Assumptions 1 and 2 hold and EP [ρ2
0] < 1, then

lim
n→∞

Pω

(
Xn − nvP + Zn(ω)

v
3/2
P σ1

√
n

< t

)
= Φ(t), ∀t ∈ R, (19)

where σ2
1 is defined as in Theorem 3.1 and Zn(ω) = vP

∑bnvP c
k=1 (Eω[τk]− 1/vP ).

Sketch of the proof. The idea of the proof is essentially the same as the proof of Theorem 3.8. As
mentioned above, the main difficulty is determining a proper quenched centering. Let cn(ω) be some

possible environment-dependent centering scheme. Then, denoting y(n, t, ω) = dcn(ω)+v
3/2
P σ1

√
nte

Pω

(
X∗n − cn(ω)

v
3/2
P σ1

√
n

< t

)
= Pω

(
X∗n < cn(ω) + v

3/2
P σ1

√
nt
)

= Pω
(
Ty(n,t,ω) > n

)
= Pω

(
Ty(n,t,ω) − Eω

[
Ty(n,t,ω)

]
σ1

√
y(n, t, ω)

>
n− Eω

[
Ty(n,t,ω)

]
σ1

√
y(n, t, ω)

)
.

We wish to choose the centering scheme cn(ω) so that

lim
n→∞

y(n, t, ω)

n
= vP , and lim

n→∞

n− Eω
[
Ty(n,t,ω)

]
σ1
√
nvP

= −t, ∀t, P -a.s., (20)

in which case it would follow from Theorem 3.1 that

lim
n→∞

Pω

(
X∗n − cn(ω)

v
3/2
P σ1

√
n

< t

)
= lim

n→∞
Pω

(
Ty(n,t,ω) − Eω

[
Ty(n,t,ω)

]
σ1

√
y(n, t, ω)

> −t

)
= 1− Φ(−t) = Φ(t).

It remains to check that the conditions in (20) are satisfied for cn(ω) = nvP − Zn(ω). We will
not give a completely rigorous proof of these facts, but instead explain why they indeed hold and
leave the details to the reader. It will be crucial below to note that Theorem 3.7 and the definition
of Zn(ω) imply that Zn(ω)/

√
n converges in distribution to a zero-mean Gaussian random variable.
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Informally, this implies that Zn(ω) is typically of size O(
√
n). The first condition in (20) is easily

checked since

lim
n→∞

y(n, t, ω)

n
= lim

n→∞

dnvP − Zn(ω) + v
3/2
P σ1

√
nte

n
= vP − lim

n→∞

Zn(ω)

n
= vP , P -a.s.

Checking the second condition in (20) is more difficult. First note that

n− Eω[Ty(n,t,ω)] = n− Eω[TbnvP−Zn(ω)c]−
dnvP−Zn(ω)+v

3/2
P σ1

√
nte∑

k=bnvP−Zn(ω)c+1

Eω[τk]. (21)

Since the last sum on the right is the sum of v
3/2
P σ1

√
nt ergodic random variables with mean 1/vP

it should be true that

lim
n→∞

1

σ1
√
nvP

dnvP−Zn(ω)+v
3/2
P σ1

√
nte∑

k=bnvP−Zn(ω)c+1

Eω[τk] = t, P -a.s. (22)

Next, note that

Eω[TbnvP−Zn(ω)c]− n =

bnvP−Zn(ω)c∑
k=1

(
Eω[τk]−

1

vP

)
+
bnvP − Zn(ω)c

vP
− n

=

bnvP−Zn(ω)c∑
k=1

(
Eω[τk]−

1

vP

)
− Zn(ω)

vP
+ δn(ω)

= −
bnvP c∑

k=bnvP−Zn(ω)c+1

(
Eω[τk]−

1

vP

)
+ δn(ω)

where |δn(ω)| < 1/vP is an error term coming from the integer effects of the floor function, and the
last equality follows from the definition of Zn(ω). Since this last sum is the sum of Zn(ω) zero-mean
ergodic terms and Zn(ω)/

√
n converges in distribution, it should be the case that

lim
n→∞

n− Eω[TbnvP−Zn(ω)c]√
n

= lim
n→∞

1√
n

bnvP c∑
k=bnvP−Zn(ω)c+1

(
Eω[τk]−

1

vP

)
= 0, P -a.s. (23)

Combining (21), (22) and (23) verifies the second condition in (20).

Remark 3.11. As mentioned above, the above justification of the centering scheme cn(ω) = nvP −
Zn(ω) skips some technical details (in particular we are trying to apply Birkhoff’s ergodic theorem
with ω-dependent endpoints of the summands). For more details and other centering schemes that
can be used see [Gol07].

3.3 Notes

The above proofs of the quenched and averaged CLTs differ from those given at other places in the
literature.
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• Kesten, Kozlov, and Spitzer [KKS75] also deduce limiting distributions for Xn from corre-
sponding limiting distributions for Tn. However, since they are primarily interested in the
non-Gaussian limits when EP [ρ2

0] < 1 (see the next section) they prove much more than is
needed to obtain a CLT in the case when EP [ρ2

0] < 1. Also, in [KKS75] only averaged limiting
distributions are proved for Xn and Tn.

• Zeitouni [Zei04] proves an averaged CLT for Xn using a method known as the environment
viewed from the point of view of the particle. With this method he is able to prove a CLT
for certain ergodic, non-i.i.d. laws on environments. As a byproduct he comes very close to
proving a quenched CLT, but with the limit (19) holding only in P -probability instead of
P -a.s.

• The idea of using the Lindberg-Feller criterion for proving a quenched CLT for Tn first used
by Alili [Ali99]. However, it wasn’t until later that Goldsheid [Gol07] and independently
Peterson [Pet08] showed how to obtain a quenched CLT for Xn by choosing an appropriate
environment-dependent centering scheme. Goldsheid is able to prove the quenched CLT for
certain uniformly ergodic environment. Peterson’s proof on the other hand proves a functional
CLT (convergence to Brownian motion) for both Tn and Xn and is valid for environments
satifying a certain technical mixing condition.
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4 Limiting Distributions - The non-Gaussian Case

In the previous section we proved quenched and averaged central limit theorems under the assump-
tion that EP [ρ2

0] < 1. In this section we will examine the (quenched and averaged) limiting distri-
butions when this assumption is removed. We will, however, continue to assume that EP [ρ0] < 0
so that the RWRE is transient to the right. The recurrent case is very different, but at the end of
the section we will make some remarks about the limiting distributions in the recurrent case.

The reader should be warned that this section begins a change in the notes where we will omit
the proofs of certain technical arguments. Many of the remaining results are quite technical, and
to aid the reader we will instead try to give a hueristic understanding of the technical parts and
only give the full arguments for the less technical sections.

Throughout this section, we will always be assuming Assumptions 1 and 2 and that EP [log ρ0] <
0. If in addition we have P (ω0 ≥ 1/2) = 1, then P (ρ0 ≤ 1) = 1 and P (ρ0 < 1) > 0. In this case
EP [ρ2

0] < 1 and so the central limit theorems from the previous section apply. Thus, we will assume
instead that P (ω0 < 1/2) > 0 and we claim that in this case there exists a unique κ = κ(P ) > 0
such that

EP [ρκ0 ] = 1. (24)

To see this, note that φ(γ) = EP [ργ0 ] = EP [eγ log ρ0 ] is the moment generating function for log ρ0.
Therefore, φ(γ) is a convex function in γ with slope φ′(0) = EP [log ρ0] < 0 at the origin. Therefore,
φ(γ) < r(0) = 1 for some γ > 0. On the other hand, since P (ω0 < 1/2) = P (ρ0 > 1) > 0 then it
follows that φ(γ) → ∞ as γ → ∞ (note that Assumption 1 implies that φ(γ) < ∞ for all γ ∈ R).
Since φ(γ) is convex there is thus a unique κ > 0 satisfying (24).

φ(γ) = EP [ρ
γ
0 ]

κ

1

γ

Figure 2: A visual depiction of the parameter κ = κ(P ). Note that the derivative of the curve at
the origin is EP [log ρ0] < 0. Also, it is clear from the picture that EP [ργ0 ] < 1 ⇐⇒ γ ∈ (0, κ).

Note that some of the results in the previous sections can be stated in terms of κ.

• The random walk is transient with zero speed if κ ∈ (0, 1] and with positive speed if κ > 1.

• The central limit theorems and the moment bounds on τ1 in Section 3 all hold if and only if
κ > 2.
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The main results in this section will also need the following technical assumption.

Assumption 3. The distribution of log ρ0 is non-arithmetic. That is, the support of log ρ0 is not
contained in a+ bZ for any a, b ∈ R.

The key place that this assumption is used is in the following Lemma.

Lemma 4.1. Let Assumptions 1, 2 and 3 hold and let κ > 0 be defined as in (24). Then, there
exists a constant C > 0 such that

lim
t→∞

P (Eω[τ1] > t) ∼ Ct−κ, as t→∞. (25)

Proof. This is essentially a direct application of [Kes73, Theorem 5].

Remark 4.2. The proof of Lemma 4.1 is rather technical and so we will content ourselves with
only giving a reference to the paper [Kes73]. However, to give some intuition of the result note
that Lemma 4.1 implies that EP [(Eω[τ1])γ ] < ∞ if and only if γ < κ. Since Eω[τ1] = 1 +
2
∑∞

k=0(ρ−k · · · ρ0) it is reasonable to expect that EP [(Eω[τ1])γ ] <∞ if and only if EP [ργ0 ] < 1, but
the definition of the parameter κ implies that EP [ργ0 ] < 1 if and only if γ ∈ (0, κ).

4.1 Background - Stable Distributions and Poisson Point Processes

Before discussing the limiting distributions when κ ∈ (0, 2) we need to review some facts about
stable distributions and Poisson point processes.

4.1.1 Stable Distribution

Recall that a (non-degenerate) distribution F is a stable distribution if for any n ≥ 2 there exist
constants cn ∈ R and an > 0 such that if X1, X2, . . . Xn are i.i.d. with common distribution F , then
(X1 +X2 + · · ·+Xn − cn)/an also has distribution F .

The stable distributions are characterized first of all by their index α ∈ (0, 2]. We will refer to a
stable distribution with index α as an α-stable distribution. The 2-stable distributions are the two-
parameter family of Normal/Gaussian distributions N(µ, σ2). The family of α-stable distributions
with α ∈ (0, 2) are a characterized by three parameters:

centering µ ∈ R, scaling b > 0, and skewness γ ∈ [−1, 1].

The centering and scaling parameters have the same roles as the mean and variance of the normal
family of distributions. However, note that α-stable random variables have infinite variance when
α < 2 and infinite mean when α < 1. Unlike the Normal distributions, the α-stable distributions
are symmetric only when the skewness parameter γ = 0. When the skewness parameter γ = 1 or
γ = −1, the distribution is said to be totally skewed to the right or left, respectively.

In general, there are not explicit formulas for the stable distributions. However, there are a few
special cases where the densities are known.
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• The standard Cauchy distribution has density f(x) = 1
π(1+x2)

. This is a 1-stable distribution

with µ = 0, b = 1, and γ = 0.

• The Lévy distribution has density f(x) = (2π)−1/2x−3/2e−
1
2x1{x>0}. This is a 1

2 -stable dis-
tribution with µ = 0, b = 1, and γ = 1.

Aside from the normal distributions and the above two examples, the stable distributions are
generally defined by their characteristic function.

Example 4.3. The stable distributions that we will be interested in with regard to RWRE are
the α-stable distributions that are totally skewed to the right. We will denote by Lα,b the α-stable
distribution with scaling parameter b, centering µ = 0, and skew γ = 1. These are the distributions
with characteristic functions

L̂α,b(u) =

∫
R
eixu Lα,b(dx)

= exp

{
−b|u|α

(
1− i u

|u|
φα(u)

)}
where φα(u) :=

{
tan

(
απ
2

)
α 6= 1

2
π log |u| α = 1.

Stable distributions arise naturally as limiting distributions of sums of i.i.d. random variables.
If the i.i.d. random variables have finite mean, then the central limit theorem implies that (after
centering and scaling properly) the limiting distribution is Gaussian. On the other hand, stable
distributions with α < 2 arise as limits of sums of i.i.d. random variables with infinite variance.
However, while the central limit theorem is robust in the sense that only a finite moment is needed,
to obtain α-stable limiting distributions more precise information on the tail asymptotics is needed.

Example 4.4. Let ξ1, ξ2, ξ3, . . . be a sequence of non-negative i.i.d. random variables, and suppose
that there exists some b > 0 and α ∈ (0, 2) such that

P (ξ1 > t) ∼ bt−α, as t→∞. (26)

Recall that Lα,b are the distribution functions for the totally skewed to the right α-stable distribu-
tions. Then,

lim
n→∞

P

(∑n
i=1 ξi − Cα(n)

n1/α
≤ x

)
= Lα,b(x),

where the centering term

Cα(n) =


0 α ∈ (0, 1)

nE[ξ11{ξ1≤n}] α = 1

nE[ξ1] α ∈ (1, 2).

Note that when α = 1 the tail asymptotics (26) imply that C1(n) ∼ bn log n, but that in general
we cannot replace the centering term by bn log n in this case since it may be that

lim sup
n→∞

|C1(n)− bn log n|
n

= lim sup
n→∞

∣∣E[ξ11{ξ1≤n}]− log n
∣∣ > 0.
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Example 4.5. Again, let ξ1, ξ2, ξ3, . . . be i.i.d. random variables, but now assume that P (ξ1 >
t) ∼ bt−2 as t → ∞. Note that this tail decay implies that Var(ξ1) = ∞ so that the central limit
theorem does not apply. Nevertheless, if we take a scaling that is slightly larger than

√
n we can

still obtain a Gaussian limiting distribution. That is, there exists an a > 0 such that

lim
n→∞

P

(∑n
i=1 ξi − nE[ξ1]

a
√
n log n

≤ x
)

= Φ(x).

4.1.2 Stable Distributions and Poisson Point Processes

Next, we briefly recall the relationship between Poisson point process and α-stable distributions
when α < 2. Recall that a point proccess N =

∑
i≥1 δxi is a measure valued random variable.

The xi are called the atoms of the point process N (note that the ordering of the atoms does not
matter), and for any (Borel-measurable) A ⊂ R, N(A) is the number of atoms contained in A.

Definition 4.1. N is a non-homogeneous Poisson point process with intensity λ(x) if

(i) N ∼ Poisson
(∫
A λ(x) dx

)
for all A ⊂ R.

(ii) {N(A1), N(A2), . . . , N(Ak)} are independent if the sets A1, A2, . . . , Ak are disjoint.

Example 4.6. Let M =
∑

i≥1 δti be a homogeneous rate 1 Poisson point process on (0,∞) (that is
the intensity 1x>0). Fix a constant λ > 0 and α > 0 and let Nλ,α be the transformed point process

Nλ,α =
∑
i≥1

δ
λ1/αx

−1/α
i

.

Then Nλ,α is a Poisson point process with intensity λαx−α−1. This is a standard exercise in
transformed Poisson point process, but as a review we will note that since λ1/αx−1/α ∈ [a, b] if and
only if x ∈ [λb−α, λa−α] it follows that

Nλ,α([a, b]) = M([λb−α, λa−α]) ∼ Poisson
(
λ(a−α − b−α)

)
= Poisson

(∫ b

a
λαx−α−1 dx

)
.

We now show how the Poisson point processes from Example 4.6 are related to the totally
skewed to the right α-stable distributions from Example 4.3.

Example 4.7. Let Nλ,α be a Poisson point process with intensity λαx−α−1. If α ∈ (0, 1] the
random variable

Z =

∫
xNλ,α(dx).

is almost surely well defined and has distribution Lα,λ as defined in Example 4.3.

To see that Z is well defined let Nλ,α =
∑

i≥1 δzi so that Z =
∑

i≥1 zi. Recall from Example

4.6 that we can represent the atoms zi of Nλ,α by zi = λ1/αx
−1/α
i , where the xi are the atoms of

a homogeneous Poisson process with rate 1. Since we know that xi ∼ i as i → ∞ it follows that
zi ∼ λ1/αi−1/α as i → ∞. Since

∑
i≥1 i

−1/α < ∞ when α < 1 this shows that Z is almost surely
well defined.
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The fact that Z has distribution Lα,λ can be verified by directly computing the characteristic
function. This is a somewhat involved computation, but more simply one can easily check that Z
has a stable distribution. Let N1, N2, . . . , Nn be n independent point processes, all with the same
distribution as Nλ,α. Then if Zi =

∫
xNi(dx), the random variables Z1, . . . , Zn are i.i.d. and all

with the same distribution as Z. It follows from the superposition of Poisson point processes that

n∑
i=1

Zi =

∫
xN(dx),

where N is a Poisson point process with intensity nλαx−α−1. Also, if Nλ,α =
∑

i≥1 δxi then∑
i≥1 δn1/αxi

is a Poisson point process with intensity nλαx−α−1 as well. From this it is clear that

Z1 + Z2 + · · ·Zn
n1/α

Law
= Z.

Example 4.8. Let Nλ,α be a Poisson point process with intensity λαx−α−1. If α ∈ (1, 2) then the
random variable

Z = lim
δ→0

(∫ ∞
δ

xNλ,α(dx)− λαδ1−α

α− 1

)
, (27)

is almost surely well defined and has distribution Lα,λ as defined in Example 4.3.

For convenience of notation, let Zδ =
∫∞
δ xNλ,α(dx)− λαδ1−α

α−1 . To see that the limit limδ→0 Zδ
exists, first note that

E

[∫ ∞
δ

xNλ,α(dx)

]
=

∫ ∞
δ

λαx−α dx =
λαδ1−α

α− 1
,

so that E[Zδ] = 0 for all δ > 0. Secondly, note that for any 0 < ε < δ

Var(Zδ − Zε) = Var

(∫ δ

ε
xNλ,α(dx)

)
=

∫ δ

ε
λαx1−α dx =

λα

2− α
(
δ2−α − ε2−α) ≤ λαδ2−α

2− α
.

Since α < 2 this vanishes as δ → 0. This shows that Zδ is Cauchy in probability and thus converges
in probability. In fact, it can be shown that the limit converges almost surely, but we will content
ourselves with the above argument for now.

As in the previous example it can be checked using the superposition of Poisson processes that
n−1/α(Z1 + · · ·Zn) has the same distribution as Z for any n. Finally, it can be checked by direct
computation that limδ→0E[eiuZδ ] = L̂α,λ(u) so that Z does have distribution Lα,λ.

4.2 Averaged Limiting Distributions - κ ≤ 2

Having reviewed the necessary information on stable distributions, we are now ready to begin the
study of the limiting distributions for RWRE when κ ∈ (0, 2). In contrast to the previous section
we will discuss the averaged limiting distributions first since they are much easier. However, as in
the previous section we fill first study the limiting distributions for hitting times and then deduce
the corresponding limiting distributions for Xn.

Theorem 4.9. Let Assumptions 1, 2, and 3 hold. If κ is defined as in (24) then
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(i) If κ ∈ (0, 1), then there exists a b > 0 such that

lim
n→∞

P
(
Tn

n1/κ
≤ t
)

= Lκ,b(t), ∀t.

(ii) If κ = 1, then there exists a constant b > 0 and a sequence D(n) ∼ b log n such that

lim
n→∞

P
(
Tn − nD(n)

n
≤ t
)

= L1,b(t), ∀t.

(iii) If κ ∈ (1, 2), then there exists a b > 0 such that

lim
n→∞

P
(
Tn − n/vP

n1/κ
≤ t
)

= Lκ,b(t), ∀t.

(iv) If κ = 2, then there exists a b > 0 such that

lim
n→∞

P
(
Tn − n/vP
b
√
n log n

≤ t
)

= Φ(t), ∀t.

Note the similarity in the above limiting distributions to those for sums of i.i.d. non-negative
heavy tailed random variables in Examples 4.4 and 4.5. On the one hand this is not surprising since
Tn =

∑n
k=1 τk, but under the averaged measure P the random variables τk are neither independent

nor identically distributed. However, as we will see below the main idea of the proof is that if we
group certain of the τk together the sums of the τk within the groups become essentially independent
and identically distributed with heavy tails.

Recall the definition of the potential of the environment V in (2). For a given environment ω
we will define a sequence of “ladder locations” of the environment as follows.

ν0 = 0, and νk = inf{i > νk−1 : V (i) < V (νk−1)} for k ≥ 1. (28)

The idea of the proof of Theorem 4.9 is to show that the times to cross between ladder locations

Uk := Tνk − Tνk−1
(29)

have slowly varying tails and are approximately i.i.d.

First of all, we note that the crossing times Uk are “almost” a stationary sequence. The reason
for this is that the distribution on the environment near ν0 = 0 is different from the distribution
of the environment near νk for k ≥ 1. In particular, while the definition of the ladder locations
implies that V (j) > V (νk) for all j ∈ [0, νk) it is possible that V (j) ≤ V (0) = 0 for some j ≤ 0. To
rectify this problem we define a new measure Q on environments by

Q(·) = P (· |V (j) > 0, ∀j ≤ −1). (30)

Note that the measureQ is well defined since EP [log ρ0] < 0 implies that P (V (j) > 0, ∀j ≤ −1) > 0.
The environment is no longer i.i.d. under the measure Q, but it does have the following useful
properties.

Lemma 4.10. If the measure Q is defined as in (30) then
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(i) Under the measure Q on environments the environment ω is stationary under shifts of the
ladder locations in the sense that {θνkω}k≥0 is a stationary sequence.

(ii) P and Q can be coupled so that there exists a distribution on pairs of environments (ω, ω′)
such that ω ∼ P , ω′ ∼ Q, and ωx = ω′x for all x ≥ 0.

(iii) The “blocks” of the environment between ladder locations are i.i.d. That is, if

Bk = (ωνk−1
, ωνk−1+1, . . . , ωνk−1),

then the sequence {Bk}k≥1 is i.i.d.

Proof. Stationarity under shifts of the ladder locations follows easily from the definition of Q. The
coupling of P and Q is easy to construct since the conditioning event in the definition of Q only
depends on the environment to the left of the origin. It is easy to see that the blocks between ladder
locations Bk are i.i.d. under the measure P since the environment is i.i.d. under P and νk − νk−1

only depends on the environment to the right of νk−1. Finally, since the Bk only depend on the
environment to the right of the origin they have the same distribution under Q as under P .

We will use the notation Q to denote the averaged distribution of the RWRE when the envi-
ronment has distribution Q. That is Q(·) = EQ[Pω(·)]. Part (1) of Lemma 4.10 can easily be seen
to imply the following Corollary.

Corollary 4.11. Under the measure Q, the crossing times of ladder locations Uk = Tνk − Tνk−1

are a stationary sequence.

Remark 4.12. The proof of Corollary 4.11 is essentially the same as that of Lemma 2.8 and is
therefore ommitted. Also, it can be shown in fact that under Q the environment is ergodic under
the shifts of the ladder locations and thus that Uk is ergodic under Q.

We still need to show that the sequence Uk has (nicely behaved) heavy tails and is “fast-mixing”
so that it is almost i.i.d. To accomplish this, it will be helpful to seperate the randomness in Uk
due to the environment and the random walk, respectively. Define for any k ≥ 1,

βk = βk(ω) = Eω[Uk] = E
νk−1
ω [Tνk ]. (31)

Also, by possibly expanding the probability space Pω, let {ηk}k≥1 be a sequence of i.i.d. Exp(1)
random variables. The main idea of the proof is to show that

∑
k Uk has approximately the same

distribution as
∑

k βkηk.

Lemma 4.13. Under the measure Q, the sequence {βk}k≥1 is stationary. Moreover, there exists a
constant C0 > 0 such that

Q(β1 > t) ∼ C0t
−κ, as t→∞.

Proof. The stationarity of the βk under Q follows easily from Theorem 4.10 part (1). The proof of
the tail asymptotics of β1 is quite technical and therefore ommitted (the details can be found in
[PZ09]). However, note that the nice polynomial tail decay is not surprising in light of the similar
tail decay of Eω[τ1] as stated in Lemma 4.1.
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Corollary 4.14. If C0 is the constant from Lemma 4.13, then

Q(β1η1 > t) ∼ Γ(κ+ 1)C0t
−κ, as t→∞.

Proof. We need to show that limt→∞ t
κQ(β1η1 > t) = Γ(κ+1)C0. By conditioning on η1 we obtain

tκQ(β1η1 > t) =

∫ ∞
0

tκQ(β1 > t/y)e−y dy.

The tail asymptotics of β1 from Lemma 4.13 imply that there is a constant K < ∞ such that
tκQ(β1 > t) ≤ K for all t ≥ 0. Thus, tκQ(β1 > t/y) = yκ(t/y)κQ(β1 > t/y) ≤ yκK and so we may
apply the dominated convergence theorem and Lemma 4.13 to obtain

lim
t→∞

Q(β1η1 > t) =

∫ ∞
0

lim
t→∞

tκQ(β1 > t/y)e−y dy =

∫ ∞
0

C0y
κe−y dy = C0Γ(κ+ 1).

As noted above, the βk are stationary but not independent. However, the following Lemma
shows that they the dependence is rather weak.

Lemma 4.15. For each n ≥ 1, there exists a stationary sequence {β(n)
k }k≥1 such that

(i) If I ⊂ N is such that |k− j| >
√
n for all k, j ∈ I with k 6= j, then {βk}k∈I is an independent

family of random variables.

(ii) There exist constants C,C ′ > 0 such that

Q
(
|βk − β

(n)
k | > e−n

1/4
)
≤ Ce−C

√
n.

Sketch of proof. For any k, n ≥ 1, let ω(k,n) be then environment ω modified by

ω(k,n)
x =

{
1 if x = νk−1 − b

√
nc

ωx if x 6= νk−1 − b
√
nc.

That is, we modify the environment by putting a reflecting barrier to the right at a distance
√
n to

the left of the ladder location νk−1. We then define β
(n)
k = E

νk−1

ω(n,k) [Tνk ]. The claimed independence

properties of the sequence {β(n)
k }k≥1 is then obvious.

Since backtracking of the random walk is exponentially unlikely (recall Lemma 4.13), it seems
reasonable that modifying the environment a distance

√
n to the left of the starting location won’t

change the expected crossing time by much. In fact, by using the exact formulas for quenched
expectations of hitting times in (5) it can be shown that

βk − β
(n)
k = 2

 νk−1∑
j=νk−1

j∏
i=νk−1

ρi

 ∑
i≤νk−1−b

√
nc

νk−1−1∏
j=i

ρj

 .

Note that in the second term in parenthesis on the right, each product in the sum has at least√
n terms, and as was shown in the proof of Lemma 4.13 with high probability these products are

exponentially small in the number of terms in the product. This can be used to show the second

claimed property of the sequence {β(n)
k }.
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We are now ready to give a (sketch) of the proof of Theorem 4.9

Sketch of proof of Theorem 4.9. First of all, since our assumptions imply that the random walk is
transient, the walk spends only finitely many steps to the left of the origin. Since the measures P
and Q can be coupled so that they only differ to the left of the origin it can be shown that if the
limiting distributions hold under Q then they also hold under P.

Secondly, note that the gaps between ladder locations νk − νk−1 are i.i.d. and thus

lim
n→∞

νn
n

= lim
n→∞

1

n

n∑
k=1

νk − νk−1 = EP [ν1]

In fact, it is easy to see that ν1 has exponential tails so that the deviations of νn/n are exponentially
unlikely. From this, it can be shown that if ᾱ = 1/EP [ν1] then n−1/κ(Tνᾱn − Tn) → 0 in Q-
probability.

We have thus reduced the problem to proving limiting distributions for Tνn =
∑n

k=1 Uk under
the measure Q. As mentioned above, the key will be to be able to approximate the crossing times
between ladder locations Uk = Tνk − Tνk−1

by βkηk. To this end, we will create a coupling of the
random variables Uk and βkηk. For simplicity we will describe this coupling when k = 1 only. The
crossing time U1 = Tν1 can be thought of as a series of excursions away from the origin. There will
be a random number G of excursions that return to the origin before reaching ν1 (we will call these
excursions “failures”) followed by an excursions that goes from 0 to ν1 without first returning to 0
(we will call this a “success” excursion). That is, if we time of the i-th failure excursion by Fi and
the time of the success excursion by S then we can represent

Tν1 =
G∑
i=1

Fi + S.

It is easy to see that the number of failure excursions in this decomposition is geometric with
distribution

Pω(G = k) = (1− pω)kpω, where pω = ω0P
1
ω(Tν1 < T0).

We will couple Tν1 with β1η1 by coupling the exponential random variable η1 with the geometric
random variable G. This is accomplished by letting

G = bcωη1c, where cω =
−1

log(1− pω)
.

It can be shown that this coupling is good enough enough so that

lim
n→∞

n−2/κV arω

(
Tνn −

n∑
k=1

βkηk

)
= 0, in Q-probability. (32)
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Now, for any ε, δ > 0

Q

(∣∣∣∣∣Tνn −
n∑
k=1

βkηk

∣∣∣∣∣ > δn1/κ

)
= EQ

[
Pω

(∣∣∣∣∣Tνn −
n∑
k=1

βkηk

∣∣∣∣∣ > δn1/κ

)]

≤ ε+Q

(
Pω

(∣∣∣∣∣Tνn −
n∑
k=1

βkηk

∣∣∣∣∣ > δn1/κ

)
> ε

)

≤ ε+Q

(
n−2/κVarω

(
Tνn −

n∑
k=1

βkηk

)
≥ εδ

)
.

Since (32) implies that this last probability vanishes as n → ∞ and since ε > 0 was arbitrary we
can conclude that

lim
n→∞

n−1/κ

(
Tνn −

n∑
k=1

βkηk

)
= 0, in Q-probability.

Finally, we are down to proving a limiting distribution for
∑n

k=1 βkηk under the measure Q.
However, Lemma 4.14 shows that the random variables βkηk have well behaved polynomial tails,
and Lemma 4.15 shows that they are close enough to i.i.d. to have limiting distributions of the
same form as in Examples 4.4 and 4.5.

We now state the corresponding averaged limiting distributions for Xn when κ ∈ (0, 2].

Theorem 4.16. Let Assumptions 1, 2, and 3 hold. If κ is defined as in (24) then

(i) If κ ∈ (0, 1), then there exists a b > 0 such that

lim
n→∞

P
(
Tn

n1/κ
≤ t
)

= 1− Lκ,b(t−1/κ), ∀t.

(ii) If κ = 1, then there exists a constant b > 0 and a sequence δ(n) ∼ n/(b log n) such that

lim
n→∞

P
(
Xn − δ(n)

n/(log n)2
≤ t
)

= 1− L1,b(−b2t), ∀t.

(iii) If κ ∈ (1, 2), then there exists a b > 0 such that

lim
n→∞

P
(
Tn − n/vP

n1/κ
≤ t
)

= 1− Lκ,b(tv
−1−1/κ
P ), ∀t.

(iv) If κ = 2, then there exists a b > 0 such that

lim
n→∞

P

(
Tn − n/vP

v
3/2
P b
√
n log n

≤ t

)
= Φ(t), ∀t.
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Remark 4.17. Note that we have stated Theorem 4.16 so that the constants b in each case are the
same scaling parameters appearing in the limiting distributions of the hitting times in Theorem
4.9. Note that when κ ∈ [1, 2) one can simplify the limits on the right hand side by using the fact
that Lκ,b(ct) = Lκ,bc−κ(t) for any c > 0. In this way the right hand side can be written as

1− Lκ,b̄(−t), where b̄ =

{
1
b κ = 1

bv1+κ
P κ ∈ (1, 2).

From this it is clear that when κ ∈ [1, 2) the limiting distribution is a totally skewed to the left κ-
stable distribution. In contrast, when κ ∈ (0, 1) the limiting distribution is 1−Lκ,b(t−1/κ) which is
not a κ-stable distribution but is instead a transformation of a κ-stable distribution. This particular
transformation of κ-stable distributions is sometimes referred to as a Mittag-Leffler distribution.

Proof. The proof of Theorem 4.16 follows from Theorem 4.9 in essentially the same way that
Theorem 3.8 followed from Theorem 3.5. For example, when κ ∈ (0, 1) we have that

P
(
X∗n
nκ

< t

)
= P(X∗n < tnκ) = P(Tdtnκe > n) = P

(
Tdtnκe

dtnκe1/κ
>

n

dtnκe1/κ

)
.

Since n
dtnκe1/κ → t−1/κ as n→∞ it follows from Theorem 4.9 that

lim
n→∞

P
(
X∗n
nκ

< t

)
= lim

n→∞
P
(

Tdtnκe

dtnκe1/κ
> t−1/κ

)
= 1− Lκ,b(t−1/κ).

The proofs of the cases when κ ∈ (1, 2) or κ = 2 are similar and therefore ommitted. The proof of
the case when κ = 1 is slightly more difficult due to the somewhat strange centering term nD(n)
in the limiting distribution for Tn. While Theorem 4.9 states that D(n) ∼ b log n, one actually
better control of the function D(n) to prove the limiting distribution for Xn in this case. In fact,
it turns out that the proof of Theorem 4.9 gives D(n) = (1/ν̄)EQ[β11{β1≤n}] (note the similarity
to the centering term in Example 4.4 when α = 1). From this explicit form for D(n) and the tail
asymptotics of β1 in Lemma 4.13, it follows that there exists a function δ(x) such that

δ(x)D(δ(x)) = x+ o(1), as x→∞.

If the centering term for Xn is chosen in this way, then one can prove the claimed limiting distribu-
tion for Xn in the case κ = 1. (The details of this argument in the case when κ = 1 can be found
in [KKS75, pp. 167-8].)

4.3 Weak Quenched Limiting Distributions - κ < 2

We now turn our attention the study of the asymptotics of the quenched distribution of hitting
times when κ < 2. Much of the work that we did in the proof of the averaged limiting distributions
in Theorem 4.9 was done with this in mind. Recall that in the case κ > 2 we proved a quenched
central limiting distribution. We will refer to this as a strong quenched limiting distribution since
the convergence holds for P -a.e. environment ω. The main result in this subsection shows that
there is no such strong quenched limiting distribution for the hitting times when κ < 2. Instead,
we will prove a what we will call a weak quenched limiting distribution.
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Let M1(R) denote the space of probability measures on (R,B(R)) where B(R) is the Borel
σ-field. Recall that prohorov metric ρ on M1(R) is defined by

ρ(µ, π) = inf{ε : µ(A) ≤ π(A(ε)) + ε, ∀A ∈ B(R)},

where A(ε) = {x : dist(x,A) < ε}. The Prohorov metric ρ induces the topology of weak convergence
(i.e., convergence in distribution) on the spaceM1(R), and the metric space (M1(R), ρ) is a Polish
space.

We will be interested in studying random probability measures - that isM1(R)-valued random
variables. If πn is a sequence of M1(R)-valued random variables and π is another M1(R) valued
random variable we will use the notation µn =⇒ µ to denote convergence in distribution ofM1(R)-
valued random variables.

Remark 4.18. Note that the notation =⇒ for convergence in distribution of random probability
measures should not be confused with the standard convergence of measures in the space M1(R).
The notation µn =⇒ µ means that

lim
n→∞

E[φ(µn)] = E[φ(µ)], for all bounded continuous φ :M1(R)→ R.

On the other hand, pointwise convergence in the space M1(R), which we would denote µn → µ, is
equivalent to

lim
n→∞

∫
φ(x) dµn =

∫
φ(x) dµ, for all bounded continuous φ : R→ R.

Now, for any environment ω ∈ Ω and any n ≥ 1 define µn,ω,κ ∈M1(R) by

µn,ω,κ(·) = Pω

(
Tn − Eω[Tn]

n1/κ
∈ ·
)
.

Since the environment ω is itself random, then we can view µn,ω,κ as a M1(R)-valued random
variable (or a random probability measure). In order to define the limiting random probability
measures that will arise we need to introduce some notation. Let Mp denote the space of Radon
point processes on (0,∞] - i.e., point processes with finitely many points on [x,∞] for any x > 0. We
will equip Mp with the standard topology of vague convergence (see [Res08] for more information
on point processes and the definition of vague convergence). Let F ⊂ Mp denote the subset of
point processes N =

∑
i≥1 δxi such that∫

x2N(dx) =
∑
i≥1

x2
i <∞.

Then, define the function H :Mp →M1(R) by

H(N) =

{
Pη

(∑
k≥1 xk(ηk − 1) ∈ ·

)
if N =

∑
k≥1 δxk ∈ F,

δ0 if N /∈ F,
(33)

where {ηk}k≥1 is an i.i.d. sequence of Exp(1) random variables with distribution Pη.

Remark 4.19. Note that the condition N ∈ F guarantees that the random sum
∑

k≥1 xkηk is finite
Pη-a.s. The definition of H(N) when N /∈ F is arbitrary and will not matter since we will only be
considering point processes that are almost surely in F .
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Theorem 4.20. If Assumptions 1, 2, and 3 hold and the parameter κ < 2, then there exists a
λ > 0 such that µn,ω,κ =⇒ H(Nλ,κ), where Nλ,κ is a non-homogeneous Poisson point process with
intensity λκx−κ−1.

Sketch of proof. As in the proof of the averaged stable limit laws for Tn, the proof of Theorem 4.20
is accomplished by the following reductions. First we show that µn,ω,κ has approximately the same
distribution onM1(R) when ω ∼ P and when ω ∼ Q. Secondly, we show that it is enough to prove
a similar weak quenched limiting distribution for the quenched distribution of Tνn instead of Tn,
and finally we show that we can couple Tνn with a sum of exponential random variables so that
it is enough to study the quenched distribution of

∑n
k=1 βkηk, where βk = βk(ω) is as defined in

(31) and the ηk are i.i.d. Exp(1) random variables that are independent of the βk. That is, letting
σn,ω,κ ∈M1(R) be the random probability measure defined by

σn,ω,κ(·) = Pη

(
1

n1/κ

n∑
k=1

βk(ηk − 1) ∈ ·

)
, (34)

it is enough to show that there exists a λ′ > 0 such that σn,ω,κ =⇒ H(Nλ′,κ) as n → ∞ when ω
has distribution Q.

Note that in the definition of σn,ω,κ in (34), the distribution is entirely determined by the
coefficients βk. Thus, the key to understanding the random probability distribution σn,ω,κ is un-
derstanding the joint distribution of the coefficients βk. To this end, let Nn,ω,κ be the point process

Nn,ω,κ =
n∑
k=1

δβk/n1/κ . (35)

Then, it can be shown that Nn,ω,κ converges in distribution under Q to a non-homogeneous Poisson
point process Nλ′,κ. Recall that in the proof of Theorem 4.9 we remarked that under the distribution
Q the βk have heavy tails and are fast-mixing enough to be close to i.i.d. If the βk were i.i.d. then
the convergence of Nn,ω,κ to the Poisson process Nλ′,κ would be standard, but since the βk are not
quite i.i.d. it takes a little extra work.

Recall the definition of the function H : Mp → M1(R) from (33). Then, the definitions of
the point process Nn,ω,κ and the random measure σn,ω,κ imply that σn,ω,κ = H(Nn,ω,κ). Since we
know the point processes Nn,ω,κ converge in distribution, this suggests that σn,ω,κ should converge
in distribution to H(Nλ′,κ). Unfortunately the function H is not continuous, and so we need to do
a modification. The details of this truncation and the rest of the full proof of Theorem 4.20 can be
found in [PS10].
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5 RWRE on Zd - d ≥ 2

We now turn to discussion of multi-dimesional RWRE. For nearest-neighbor RWRE on Z an en-
vironment can be encoded by a single number ωx ∈ [0, 1] at every site x ∈ Z. However, for
multi-dimensional RWRE we need a probability vector at every site. To simplify things we will
only consider the case of nearest-neighbor RWRE, but obviously one can consider RWRE on
Zd with bounded jumps as well (although less is known in the more general bounded jumps
case). In this case an environment ω = {ωx}x∈Zd where ωx is a probability distribution on
E = {z ∈ Zd : |z| = 1} = {±ei, i = 1, 2, . . . d} in the sense that

ωx = (ωx(z))z∈E ∈ [0, 1]E with
∑
z∈E

ωx(z) = 1.

Given an environment ω = {ωx}x = {ωx(z)}x,z, the quenched transition probabilities for the
random walk are given by

Pω(Xn+1 = x+ z |Xn = x) =

{
ωx(z) if z ∈ E
0 otherwise.

As with our coverage of one-dimensional RWRE we will restrict ourselves to i.i.d. uniformly
elliptic environments.

Assumption 4. The environment ω = {ωx}x∈Zd is i.i.d. under the distribution P on environments.

Assumption 5. There exists a constant c > 0 such that

P (ωx(z) ≥ c, ∀x ∈ Zd, z ∈ E) = 1.

5.1 Directional transience/recurrence

The first natural thing to study for multi-dimensional RWRE is the question of recurrence or
transience. Unfortunately, as we will see below, in contrast to the one-dimensional case where
there is a nice explicit criterion for recurrence/transience (see Theorem 2.1) even the question of
directional transience/recurrence is not yet settled. Let Sd−1 = {z ∈ Rd : |z| = 1} be the d − 1-
dimensional sphere. We will refer to a fixed ` ∈ Sd−1 as a direction in Rd. For any such fixed
direction ` we will define the event of transience in direction ` by

A` =
{

lim
n→∞

Xn · ` = +∞
}
. (36)

The following lemma was proved by Kalikow in [Kal81].

Lemma 5.1 (Kalikow’s 0-1 Law). If the distribution on environments P satisfies Assumptions 4
and 5, then

P(A` ∪A−`) ∈ {0, 1}, ∀` ∈ Sd−1.

Proof. First, we claim that P(A` ∪A−` ∪ O`) = 1, where O` is the event

O` = {Xn · ` changes sign infinitely many times}.
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If none of the events A`, A−` or O` are satisfied, then either

0 ≤ lim inf
n→∞

Xn · ` <∞ or −∞ < lim sup
n→∞

Xn · ` ≤ 0. (37)

Indeed, in the first case in (37) there must be some x > 0 such that |Xn · `−x| ≤ 1 infinitely many
times. However, by uniform ellipticity the probability of the random walk visiting {|z · `− x| ≤ 1}
infinitely many times without ever reaching the half-space {z · ` < 0} is zero.

Next, for ` ∈ Sd−1 let D` := inf{n ≥ 0 : Xn · ` < X0 · `} be the first time the random walk
“backtracks” in direction ` from its initial location (note that D` is a stopping time and that we
have stated the definition to account for starting locations other than X0 = 0). If P(D` =∞) = 0
then P xω (D` < ∞) = 1 for all x ∈ Zd and P -a.e. environment ω. By the strong Markov property
this implies that P(lim infn→∞Xn · ` < 0) = 1 and so P(A`) = 0. Taking the contrapositive of this
we obtain that

P(A`) > 0 =⇒ P(D` =∞) > 0.

To complete the proof of the lemma, we may assume that either P(A`) > 0 or P(A−`) > 0 since
otherwise the conclusion of the lemma is obvious. Without loss of generality we will assume that
P(A`) > 0. Since we showed above that P(A` ∪ A−` ∪ O`) = 1, it will be enough to show that
P(O`) = 0 whenever P(A`) > 0. To this end, first note that

P(O` ∩ {sup
n≥0

Xn · ` <∞}) = 0,

for by uniform ellipticity every time Xn · ` switches from negitive the probability that the random
walk reaches the halfspace {z ·` > x} before {z ·` < 0} is uniformly bounded below. Next, we claim
that P(O` ∩ {supn≥0Xn · ` = ∞}) = 0 as well. To see this, we introduce a sequence of stopping
times B1 ≤ F1 ≤ B2 ≤ F2 ≤ . . . defined as follows.

B1 = D`, Fk = inf{n > Bk : Xn · ` > max
i<n

Xi · `}, and Bk+1 = inf{n > Fk : Xn · ` < 0}.

(Note that if Bk =∞ for some k then Fj = Bj =∞ also for all j ≥ k.) The times Bk are certain
“backtracking” times where the random walk enters the halfspace to the left of the origin, and the
Fk are the first “fresh times” where the random walk reaches a new portion of the environment
farther to the right than it had previously reached. On the event O` ∩ {supn≥0Xn · ` < ∞} it is
clear that Bk < ∞ for all k < ∞. However, when Bk+1 < ∞ by decomposing according to the
location of the random walk at time Fk we obtain

P(Bk+1 <∞) =
∑
z

P(Fk <∞, XFk = z, Bk+1 <∞)

=
∑
z

EP

[
Pω(Fk <∞, XFk = z)P zω( inf

n≥0
Xn · ` < 0)

]
≤
∑
z

EP [Pω(Fk <∞, XFk = z)P zω(D` <∞)]

Note that the quenched probabilities inside the last expectation are independent since Pω(Fk <
∞, XFk = z) is σ(ωx : x · ` < z · `)-measureable and P zω(D` <∞) is σ(ωx : x · ` ≥ z · `)-measurable.
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Thus, we obtain that

P(Bk+1 <∞) ≤
∑
z

P(Fk <∞, XFk = z)Pz(D` <∞)

= P(Fk <∞)P(D` <∞)

≤ P(Bk <∞)P(D` <∞).

Since P(B1 < ∞) = P(D` < ∞) we obtain by induction that P(Bk < ∞) ≤ P(D` < ∞)k for any
k ≥ 1. Since P(D` <∞) < 1 whenever P(A`) > 0 we have that

P(O` ∩ {sup
n≥0

Xn · ` =∞}) ≤ P(Bk <∞, ∀k ≥ 1) ≤ lim
k→∞

P(D` <∞)k = 0.

Thus we have shown that P(O`) = 0 whenever P(A`) > 0 and so P(A` ∪ A−`) = 1 whenever
P(A`) > 0.

MORE YET TO BE ADDED....
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