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1. Introduction

The primary source is chapter 6 of [?].
We’ve spent a long time learning generalities about abelian varieties. In this talk (or two),

we’ll assemble this knowledge into the spectrum TAF. To do this, we have to first construct a
stack on which to apply Lurie’s theorem, which is some sort of PEL Shimura variety X . To prove
representability, we’ll actually end up constructing several different stacks. Then we’ll need to check
that the map X → Mp(n) is formally étale, which is to say that deformations of whatever objects
X parametrizes are controlled by the deformations of the underlying p-divisible groups. We begin
by discussing level structures, in a very linear-algebraic sort of setting.

2. Level structures

The Drinfel’d level structures used in [?] to study elliptic curves are essentially bases for finite
subgroups of those elliptic curves. To make our lives easier, we’ll just consider bases for the whole
Tate module. Recall that this is defined as

T`(A) = lim←−A[`i].

The choice of ` being mostly irrelevant, we might as well consider

T p(A) =
∏
` 6=p

T`(A).

We also have the vector spaces

V`(A) = T`(A)⊗Q; V p(A) = V p(A)⊗Q.

Remark 2.1. This last object V p(A) is really a module over the “adèles away from p and ∞.” Since
we’re homotopy theorists, I’m going to gloss over this: it’s essentially just

∏
` 6=pQ`, with a certain

topology making it a locally compact topological ring, which will sort of come into play later on.

Abstractly, we know what all these things are:

T p(A) ∼= Lp :=
∏
` 6=p

Z2g
`

and

V p(A) ∼= V p := Lp ⊗Q.

Let Kp ⊆ Aut(V p). A good choice is Kp
0 , the subgroup of automorphisms that preserve the lattice

Lp.

Definition 2.2. An integral (resp. rational) uniformization of A is a choice of isomorphism
above. A integral (resp. rational) Kp-level structure is an integral (resp. rational) uniformiza-
tion, up to the action of Kp.
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3. The ground data

We now fix a quadratic imaginary number field F = Q(
√
−d) and a central simple F -algebra B,

of dimension g2, with a positive definite involution ∗ that restricts to complex conjugation on F .
We’ll assume that p splits as uu in F , and totally splits in B. F has its ring of integers OF ; we’ll
also fix a maximal order OB in B such that OB,(p) is preserved by the involution ∗. This is the
endomorphism data – that is, we’re going to look at abelian varieties with an action of OB (or at
least OB,(p)).

We also fix an skew-Hermitian (for ∗) form

〈·, ·〉 : B ×B → Q.
The maximality of the order OB means that this pairing must send it to Z. Some simple linear
algebra, here obfuscated by the notation, gives the following.

Lemma 3.1. There exists a unique β ∈ B such that β∗ = −β and 〈x, y〉 = TrB/Q(xβy∗).

Now, a polarization λ : A → A∨ on an abelian variety gives a nondegenerate, skew-symmetric
Weil pairing

eλ : T pA× T pA 1×Tpλ→ T pA× T pA∨ → Gm.
This extends to V pA in the obvious way. There’s also a Rosati involution on End0(A) given by

f† = λ−1f∨λ.

The endomorphisms of A act on V pA, and one can easily observe that the Rosati involution is the
adjunction for the Weil pairing:

eλ(x, f†y) = eλ(fx, y).

With the additional endomorphism structure described above, we’ll want our polarizations to be
compatible with B in the sense that the Rosati involution restricts to the involution ∗ of B. This
implies that the Weil pairing is skew-Hermitian for ∗. As part of the compatibility conditions, we’ll
require that the Weil pairing restricts to the given pairing on B.

Lemma 3.2. Given (B, ∗) as above, any B-linear abelian variety A admits a compatible polarization.

4. Unitary and similitude transformations

Once we have a Hermitian form, we can talk about unitary transformations, which is to say the
ones that preserve the form. In magical scheme land, it makes more sense to define this as a group
scheme than just a group. For a Q-algebra R, we define

U(R) = {f ∈ (B ⊗Q R)× : f∗f = 1},
which is equivalent to saying that f preserves the skew-Hermitian form on B. More generally, if V is
a free left B-module admitting an involution compatible with ∗ (V`(A) being the obvious example),
we define

UV (R) = {f ∈ (EndB(V )⊗Q R)× : f∗f = 1}.
When dealing with polarizations, it helps to be able to scale them as well. Thus, we define the

similitude group as

GUV (R) = {f ∈ (EndB(V )⊗Q R)× : f∗f ∈ R×}.
That is to say, f only scales the skew-Hermitian form.

Finally, moving back from linear algebra and Tate modules to abelian varieties themselves, we
define

GU(A,i,λ)(R) = {f ∈ (End0
B(A)⊗Q R)× : f†f ∈ R×}

where † is the λ-Rosati involution. We’ll typically consider polarizations up to similitude. To make
this perfectly clear, λ and λ′ are similar if there are α ∈ End0

B(A) and c ∈ Q× such that

λ = cα∗(λ′) = cα∨λα.
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Remark 4.1. Behrens and Lawson quote some results from [1] parametrizing similitude classes of
polarizations by Galois cohomology groups, which I am having a really hard time understanding,
perhaps because I gave up on Hilbert around Theorem 89. If you’d like to talk about this, let me
know.

As a final piece of our list of standing assumptions, note that F ⊗Q R ∼= C and B⊗Q R ∼= Mg(C).
Fixing one of the two complex embeddings of F , we’ll require that this isomorphism makes

β =


e1i 0 . . . 0
0 −e2i 0
...

. . .
...

0 0 . . . −egi


with ei > 0. In pithier terms, U(R) ∼= U(1, g − 1).

If we instead complete at the prime u of F lying over p, we get OB,u ∼= Mn(OF,u) ∼= Mn(Zp), by
the assumption that p totally splits in B. Define

ε =


1 0 . . . 0
0 0 0
...

. . .
...

0 0 . . . 0

 .

This is an idempotent in OB,p that will play the same role that u did.

5. The moduli problems

Fix a compact open subgroup Kp ⊆ Kp
0 ⊆ Aut(V p). We’ll define two functors from formal Zp-

schemes to groupoids. It suffices to define them on connected locally noetherian schemes S on which
p is locally nilpotent, and take colimits.

First, XKp(S) is defined to be the groupoid of triples (A, i, λ) where

• A a g2-dimensional abelian scheme over S,
• i : OB,(p) → End(A)(p) is an inclusion such that εA(u) is a 1-dimensional p-divisible OF -

module,
• λ ∈ Hom(A,A∨)⊗ Z(p) is a polarization compatible with the involution ∗,
• and for every geometric point s ∈ S, there exists an OB-linear integral Kp-level structure

on T p(As) inducing eλ, up to similitude. A choice of level structure is not part of the data.
(It suffices to check this condition at just one geometric point, by some Galois cohomology
computations I omitted.)

An isomorphism in this groupoid is a B-linear isomorphism of abelian schemes over S that induces
a similitude on their polarizations (scaling by some element of Z×(p)).

Second, X ′(S) is defined to be the groupoid of quadruples (A, i, λ, [η]) where

• A, i, λ are as above,
• and for some (and thus any) geometric point s, [η] is a π1(S, s)-invariant rational OB,(p)-

linear Kp-level structure on V p(As) that induces eλ, up to similitude.

An isomorphism in this groupoid is a B-linear isogeny of abelian schemes that preserves the level
structure and inducing a Z×(p)-similitude on their polarizations.

Any object in X (S) can be given an integral uniformization, by hypothesis, and this is automat-
ically π1(S)-invariant; the similitude requirement uniquely determines this, up to an action by Kp;
tensoring with Q gives a rational uniformization, whose Kp-orbit is well-defined; so we get a level
structure on (A, i, λ). This whole process is a natural transformation F : X → X ′.

Theorem 5.1 (Equivalence theorem). The functor F is a natural equivalence.
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The beauty of this is that, while X is arguably the moduli problem we’re interested in, integral
level structures only make sense for Kp ⊆ Kp

0 . But rational level structures can be defined with
respect to any compact open subgroup. Moreover, as we’re about to see, being able to vary the
subgroup makes it easy to prove that these moduli problems are representable by Deligne-Mumford
stacks.

Proof. I’m going to restrict to the case where Kp = Kp
0 , but the general case is no harder. Suppose

we’re given an object (A, i, λ, [η]) ∈ X ′(S), and choose a representative uniformization η for As. The
image of Lp ⊆ V p under η is some lattice Ls in V p(As), with the property that it contains some
integral multiple of T p(As). Such a lattice is called a prime-to-p virtual subgroup of As, since
if it actually contains T p(As), it will correspond to some finite prime-to-p subgroup via the map

V p(As) � V p(As)/T
p(As) ∼= {prime-to-p torsion of As}.

An honest subgroup is the kernel of a unique isogeny, and likewise virtual subgroups are the right
notions of kernels for Z(p)-isogenies. In particular, the virtual subgroup Ls here induces a Z(p)-
isogeny As → A′s sending Ls to T p(A′s). In particular, the rational uniformization η passes to an
integral uniformization η′ of A′s. One likewise observes that A′s carries an induced polarization and
complex mutiplication by OB,(p). We lastly need to check that the integral uniformization η′ is
OB-linear, which is equivalent to saying that we have a lifting

OB //

��

End(A′s)

��
OB,(p) // End(A′s)(p).

But OB maps into both End(T pA′s) and End(A′s)(p), whose intersection is precisely End(A′s). Ev-
erything we’ve done is π1(S, s)-invariant, so we can indeed lift the object (A, i, λ, [η]) to an object
(A, i, λ) ∈ X (S), at least up to isogeny in X ′(S).

This proves that FS is essentially surjective. Faithfulness is obvious. For fullness, we’re given a
map f : (A, λ, i, [η])→ (A′, λ′, i′, [η′]) in X ′(S), and we can assume that η and η′ lift to integral level
structures. This means that the induced isomorphism f∗ : V p(A)→ V p(A′) lifts to an isomorphism
of Tate modules. Thus the map f : A→ A′ is a prime-to-p quasi-isogeny that induces an isomorphism
of Tate modules, so it’s an isomorphism. �

6. The representability theorem

Theorem 6.1 (Representability theorem). (1) X ′Kp is representable by a Deligne-Mumford stack
Sh(Kp) over Zp.

(2) For Kp sufficiently small, Sh(Kp) is a quasi-projective scheme (and projective if B is a
division algebra).

(3) For K ′p ⊆ Kp of finite index, the map

fK′p,Kp : Sh(K ′p)→ Sh(Kp)

given on points by further quotienting the set of level structures by Kp is étale of degree
[Kp : K ′p].

Sketch of proof. Obviously, (2) and (3) (and checking some sheaf conditions will imply the hard part
of (1): Sh(Kp) has an étale cover by a scheme, so it’s automatically a DM stack. We thus start by
proving (2). Forgetting the complex multiplication gives a functor G : X ′Kp → YKp , the latter being
the moduli of polarized abelian varieties with Kp-level structure. By the ‘classical’ Drinfel’dian
theory of level structures, which we only briefly covered and might want to visit later in more detail,
YKp is representable by a quasi-projective scheme for sufficiently small Kp. This can be found in
[3] though I haven’t had time to look.
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In any case, (2) reduces to showing that the functor G is representable, which is to say that
there are ‘a scheme’s worth’ of ways to attach OB,(p)-complex multiplication to a polarized abelian
variety with level structure. The fiber over a point (A, λ, [η]) ∈ YKp(S) will be the groupoid of maps
i : OB,(p) → EndS(A)(p) for which the polarization and level structure are B-linear. For Kp small,
the endomorphism structure will be determined by how it interacts with the level structure, so that
this is equivalent to a set. An element of this set is given by a section over S of the sheaf

T 7→ {i : OB,(p) ×S T → End(AT )(p).

But B splits completely at p, so for small T this will split as a disjoint union of the sheaves
End(AT )(p); Grothendieck’s theory of Hilbert schemes then tells us that these are in fact projective
schemes over S.

To prove that this is projective when B is a division algebra, one essentially uses the valuative
criterion of properness and the theory of Néron models, which allows one to push forward abelian
varieties from fraction fields of DVRs to the DVRs themselves. One then has to show that PEL
structure all pushes forward as well, which requires some cohomology computations. See [2].

For (3), when K ′p ⊆ Kp is a normal subgroup, it’s fairly clear that the map fK′p,Kp is Galois
with Galois group Kp/K ′p. In the general case, one could content oneself with this observation, or
think about deformation theory: the level structures are only defined at the geometric points, so
it stands to reason that an infinitesimal thickening of an abelian variety would introduce neither
new Kp-level structures nor new K ′p-level structures. Moreover, a Kp-level structure can only be
induced by a finite number of K ′p-level structures, which are of course parametrized by the cosets
Kp/K ′p. �
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