Stable homotopy theory and geometry

Paul VanKoughnett

October 24, 2014

Paul VanKoughnett Stable homotopy theory and geometry ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ のへで

• **Problem:** How to combinatorially describe a topological space *X*?

Paul VanKoughnett Stable homotopy theory and geometry

Problem: How to combinatorially describe a topological space X? (always 'geometric' – Hausdorff, compactly generated, ...)

э

Building topological spaces

- Problem: How to combinatorially describe a topological space X? (always 'geometric' – Hausdorff, compactly generated, ...)
- **Solution:** Build it in stages, out of cells.

- Problem: How to combinatorially describe a topological space X? (always 'geometric' – Hausdorff, compactly generated, ...)
- **Solution:** Build it in stages, out of cells.
- n-cell = D^n = unit n-disk, attached by its boundary S^{n-1} .

- Problem: How to combinatorially describe a topological space X? (always 'geometric' – Hausdorff, compactly generated, ...)
- Solution: Build it in stages, out of cells.
- n-cell = D^n = unit n-disk, attached by its boundary S^{n-1} .
- X is described entirely by **attaching maps** $S^{n-1} \to X^{(n-1)}$, where $X^{(n-1)}$ is the *n*-dimensional part of X.

Paul VanKoughnett

- Problem: How to combinatorially describe a topological space X? (always 'geometric' – Hausdorff, compactly generated, ...)
- Solution: Build it in stages, out of cells.
- n-cell = D^n = unit n-disk, attached by its boundary S^{n-1} .
- X is described entirely by **attaching maps** $S^{n-1} \to X^{(n-1)}$, where $X^{(n-1)}$ is the *n*-dimensional part of X.
- Even simpler: $S^{n-1} \rightarrow X^{(n-1)}/X^{(n-2)}$, a bouquet of (n-1)-spheres; or $S^{n-1} \rightarrow X^{(n-2)}/X^{(n-3)}$, a bouquet of (n-2)-spheres; or ...

Homotopy

Two of these spaces are equivalent if the attaching maps of one can be deformed into the attaching maps of the other.

Paul VanKoughnett Stable homotopy theory and geometry

3

Homotopy

Two of these spaces are equivalent if the attaching maps of one can be deformed into the attaching maps of the other.

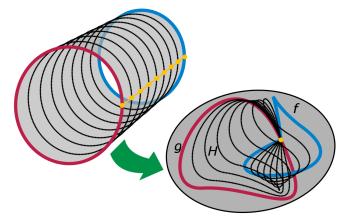
Definition

Given two maps $f, g : X \to Y$, a **homotopy** $f \sim g$ is map $H : X \times [0,1] \to Y$ with $H|_{X \times \{0\}} = f$, and $H|_{X \times \{1\}} = Y$.

 $[X, Y] = \{ maps \ X \to Y \} / homotopy \}$

Paul VanKoughnett

Homotopy



◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Paul VanKoughnett

Homotopy

Definition

Given two maps $f, g : X \to Y$, a **homotopy** $f \sim g$ is map $H : X \times [0,1] \to Y$ with $H|_{X \times \{0\}} = f$, and $H|_{X \times \{1\}} = Y$.

$$[X, Y] = \{ maps \ X \to Y \} / homotopy$$

Remark

Always take spaces to come equipped with a fixed basepoint; maps preserve basepoint; homotopies don't move basepoint.

Paul VanKoughnett Stable homotopy theory and geometry

• $\mathbb{C}P^2$ is constructed by attaching a 4-cell to $\mathbb{C}P^1 = S^2$.

Paul VanKoughnett Stable homotopy theory and geometry ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- $\mathbb{C}P^2$ is constructed by attaching a 4-cell to $\mathbb{C}P^1 = S^2$.
- Entirely described by an attaching map $S^3
 ightarrow S^2$.

- $\mathbb{C}P^2$ is constructed by attaching a 4-cell to $\mathbb{C}P^1 = S^2$.
- Entirely described by an attaching map $S^3 \rightarrow S^2$.
- If this map is homotopic to a trivial one, then $\mathbb{C}P^2$ is equivalent to $S^4 \sqcup S^2$ /basepoints.

- $\mathbb{C}P^2$ is constructed by attaching a 4-cell to $\mathbb{C}P^1 = S^2$.
- Entirely described by an attaching map $S^3 \rightarrow S^2$.
- If this map is homotopic to a trivial one, then $\mathbb{C}P^2$ is equivalent to $S^4 \sqcup S^2$ /basepoints.
- Is it? How many other complexes like this are there?

2

Homotopy groups

Definition

The *n*th **homotopy group** of a space X is

$$\pi_n X := [S^n, X].$$

Paul VanKoughnett Stable homotopy theory and geometry

<ロ> <同> <同> < 回> < 回>

2

Homotopy groups

Definition

The *n*th **homotopy group** of a space X is

$$\pi_n X := [S^n, X].$$

Example

$$\pi_0 X = [S^0, X] = \{ \text{path components of } X \}$$

Paul VanKoughnett

Homotopy groups

Definition

The *n*th **homotopy group** of a space X is

$$\pi_n X := [S^n, X].$$

Example

$$\pi_0 X = [S^0, X] = \{ \text{path components of } X \}$$

 $\pi_1 X = [S^1, X] =$ fundamental group of X

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ の Q @

Paul VanKoughnett

Homotopy groups

Definition

The *n*th **homotopy group** of a space X is

$$\pi_n X := [S^n, X].$$

Example

$$\pi_0 X = [S^0, X] = \{ \text{path components of } X \}$$

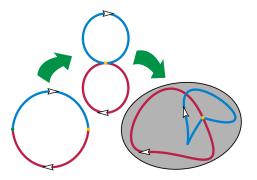
 $\pi_1 X = [S^1, X] =$ fundamental group of X

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ の Q @

Paul VanKoughnett

Why are they groups?

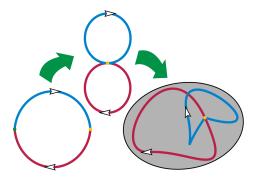
Because we can pinch a sphere:



Paul VanKoughnett

Why are they groups?

Because we can pinch a sphere:



 π_0 is just a set.

・ロト・西ト・モト・モト ヨー わえの

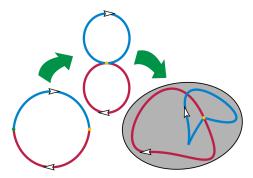
Paul VanKoughnett

▲ 同 → - ▲ 三

э

Why are they groups?

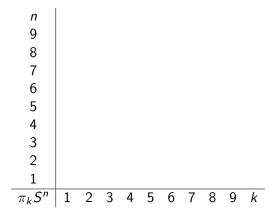
Because we can pinch a sphere:



 π_0 is just a set. π_n is abelian for $n \ge 2$ (why?).

Paul VanKoughnett

Homotopy groups of spheres



Paul VanKoughnett

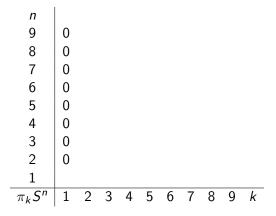
<ロ> <同> <同> <同> < 同>

Examples

ъ.

< ∃⇒

Homotopy groups of spheres



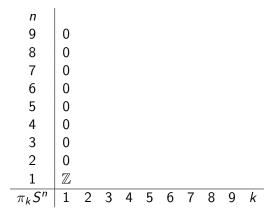
Paul VanKoughnett

<ロ> <同> <同> <同> < 同>

ъ.

-≣⇒

Homotopy groups of spheres

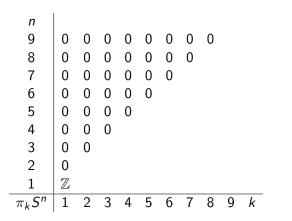


Paul VanKoughnett

-≣->

- **∢ ⊡ →** - **∢** ≣ →

Homotopy groups of spheres



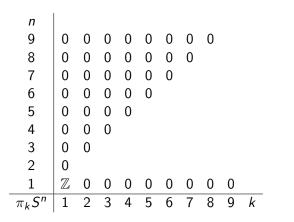
Paul VanKoughnett

<ロ> <同> <同> <同> < 同>

2

-≣->

Homotopy groups of spheres



Paul VanKoughnett

2

A tool: suspension

Definition

The **suspension** of a space X is

$$\Sigma X = X \times [0,1]/(X \times \{0\} \cup X \times \{1\} \cup * \times [0,1]).$$

Paul VanKoughnett

2

A tool: suspension

Definition

The **suspension** of a space X is

$$\Sigma X = X \times [0,1]/(X \times \{0\} \cup X \times \{1\} \cup * \times [0,1]).$$

There are suspension maps

$$E:[X,Y] \to [\Sigma X,\Sigma Y]$$

Paul VanKoughnett

2

A tool: suspension

Definition

The **suspension** of a space X is

$$\Sigma X = X \times [0,1]/(X \times \{0\} \cup X \times \{1\} \cup * \times [0,1]).$$

There are suspension maps

$$E:\pi_n Y\to\pi_{n+1}\Sigma Y$$

Paul VanKoughnett

A tool: suspension

Definition

The suspension of a space X is

 $\Sigma X = X \times [0,1]/(X \times \{0\} \cup X \times \{1\} \cup * \times [0,1]).$

Theorem (Freudenthal suspension theorem)

The suspension map

$$E:\pi_kS^n\to\pi_{k+1}S^{n+1}$$

is a surjection for k = 2n - 1 and an isomorphism for k < 2n - 1.

Paul VanKoughnett

Using the suspension theorem

Theorem (Freudenthal suspension theorem)

The suspension map

$$E:\pi_kS^n\to\pi_{k+1}S^{n+1}$$

is a surjection for k = 2n - 1 and an isomorphism for k < 2n - 1.

Paul VanKoughnett Stable homotopy theory and geometry

Using the suspension theorem

Theorem (Freudenthal suspension theorem)

The suspension map

$$E:\pi_kS^n\to\pi_{k+1}S^{n+1}$$

is a surjection for k = 2n - 1 and an isomorphism for k < 2n - 1.

$$\mathbb{Z} = \pi_1 S^1 \twoheadrightarrow \pi_2 S^2 \xrightarrow{\sim} \pi_3 S^3 \xrightarrow{\sim} \cdots$$

▲口 ▶ ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ ▲臣 ● のへで

Paul VanKoughnett

э

Using the suspension theorem

Theorem (Freudenthal suspension theorem)

The suspension map

$$E:\pi_kS^n\to\pi_{k+1}S^{n+1}$$

is a surjection for k = 2n - 1 and an isomorphism for k < 2n - 1.

$$\mathbb{Z} = \pi_1 S^1 \twoheadrightarrow \pi_2 S^2 \xrightarrow{\sim} \pi_3 S^3 \xrightarrow{\sim} \cdots$$

 $\pi_n S^n$ is cyclic...

Paul VanKoughnett

э

Using the suspension theorem

Theorem (Freudenthal suspension theorem)

The suspension map

$$E: \pi_k S^n \to \pi_{k+1} S^{n+1}$$

is a surjection for k = 2n - 1 and an isomorphism for k < 2n - 1.

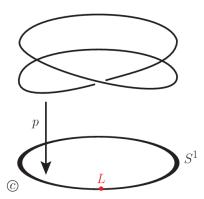
$$\mathbb{Z} = \pi_1 S^1 \twoheadrightarrow \pi_2 S^2 \stackrel{\sim}{\to} \pi_3 S^3 \stackrel{\sim}{\to} \cdots$$

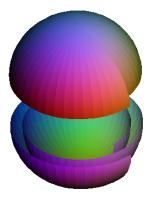
 $\pi_n S^n$ is cyclic... and must be \mathbb{Z} , because the *degree* of a map is homotopy invariant.

Paul VanKoughnett

$$\pi_n S^n = \mathbb{Z}$$

Degree two maps:





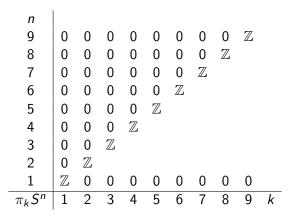
Paul VanKoughnett

2

-≣->

<ロ> <同> <同> <同> < 同>

Homotopy groups of spheres



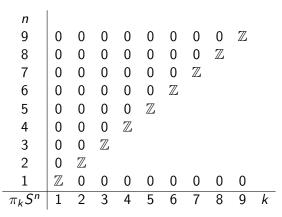
< 🗗 >

2

э

Ξ.

Homotopy groups of spheres



Is everything else zero? NO!

The Hopf fibration

• S^3 is the unit sphere in \mathbb{C}^2 , with coordinates z, w.

Paul VanKoughnett Stable homotopy theory and geometry

- S^3 is the unit sphere in \mathbb{C}^2 , with coordinates z, w.
- S^2 is the Riemann sphere $\mathbb{C} \cup \{\infty\}$, with coordinate λ .

< (17) > <

∃ >

э

- S^3 is the unit sphere in \mathbb{C}^2 , with coordinates z, w.
- S^2 is the Riemann sphere $\mathbb{C} \cup \{\infty\}$, with coordinate λ .

•
$$\eta: S^3 \to S^2$$
 sends $(z, w) \mapsto z/w$.

• • • • • • • • • • • • •

э

- S^3 is the unit sphere in \mathbb{C}^2 , with coordinates z, w.
- S^2 is the Riemann sphere $\mathbb{C} \cup \{\infty\}$, with coordinate λ .
- $\eta: S^3 \to S^2$ sends $(z, w) \mapsto z/w$.
- The fiber over any point is a circle.

- S^3 is the unit sphere in \mathbb{C}^2 , with coordinates z, w.
- S^2 is the Riemann sphere $\mathbb{C} \cup \{\infty\}$, with coordinate λ .
- $\eta: S^3 \to S^2$ sends $(z, w) \mapsto z/w$.
- The fiber over any point is a circle.
- The fiber over two points are two linked circles.

2

Homotopy groups of spheres

п										
9	0	0	0	0	0	0	0	0	\mathbb{Z}	
8	0	0	0	0	0	0	0	\mathbb{Z}	2	
7	0	0	0	0	0	0	\mathbb{Z}	2	2	
6	0	0	0	0	0	\mathbb{Z}	2	2	24	
5	0	0	0	0	\mathbb{Z}	2	2	24	2	
4	0	0	0	\mathbb{Z}	2	2	$\mathbb{Z} \oplus 12$	$2\oplus 2$	2	
3	0	0	\mathbb{Z}	2	2	12	2	2	3	
2	0	\mathbb{Z}	\mathbb{Z}	2	2	12	2	2	3	
1	\mathbb{Z}	0	0	0	0	0	0	0	0	
$\pi_k S^n$	1	2	3	4	5	6	7	8	9	k

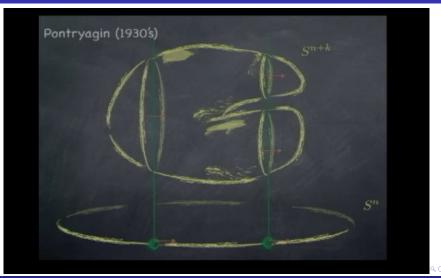
Paul VanKoughnett

Stable homotopy theory and geometry,

 We want a more geometric characterization of these homotopy elements.

- We want a more geometric characterization of these homotopy elements.
- The degree of a map $S^n \rightarrow S^n$ is an integer, because its fibers are signed 0-manifolds.

- We want a more geometric characterization of these homotopy elements.
- The degree of a map $S^n \rightarrow S^n$ is an integer, because its fibers are signed 0-manifolds.
- The 'degree' of a map S^k → Sⁿ should just be its fiber a stably framed (n − k)-manifold.



Stably framed manifolds

Definition

A stably framed manifold is a manifold M^n with an embedding $i: M^n \hookrightarrow \mathbb{R}^{n+k}$, $k \gg 0$, and a trivialization of the normal bundle $N_i M \cong M \times \mathbb{R}^k$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

(日) (同) (三) (三)

э

Stably framed manifolds

Definition

A stably framed manifold is a manifold M^n with an embedding $i: M^n \hookrightarrow \mathbb{R}^{n+k}$, $k \gg 0$, and a trivialization of the normal bundle $N_i M \cong M \times \mathbb{R}^k$. We identify $M \hookrightarrow \mathbb{R}^{n+k}$ with $M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ the inclusion into the first n + k coordinates, together with the larger framing given by adding an upward-pointing normal vector everywhere.

Stably framed manifolds

Definition

A stably framed manifold is a manifold M^n with an embedding $i: M^n \hookrightarrow \mathbb{R}^{n+k}$, $k \gg 0$, and a trivialization of the normal bundle $N_i M \cong M \times \mathbb{R}^k$. We identify $M \hookrightarrow \mathbb{R}^{n+k}$ with $M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ the inclusion into the first n + k coordinates, together with the larger framing given by adding an upward-pointing normal vector everywhere.

Definition

A **framed cobordism** of *n*-dimensional stably framed manifolds M, N is an (n + 1)-manifold W with $\partial W \cong M \sqcup N$, together with a stable framing on W extending those on M and N.

Paul VanKoughnett

Pontryagin-Thom

The Pontryagin-Thom isomorphism

 $\Omega_n^{\text{fr}} := \{\text{stably framed } n\text{-manifolds}\}/\text{framed cobordism}$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 二臣 - わへの

Pontryagin-Thom

<ロ> <同> <同> < 回> < 回>

2

The Pontryagin-Thom isomorphism

$\Omega^{\mathrm{fr}}_n := \{ \mathsf{stably framed } n \text{-manifolds} \} / \mathsf{framed cobordism}$

Theorem

There is a canonical isomorphism

$$\Omega_n^{\rm fr} \cong \pi_{n+k} S^k, \quad k \gg 0.$$

Paul VanKoughnett

Stable homotopy theory and geometry

Pontryagin-Thom

The Pontryagin-Thom isomorphism

$\Omega^{\mathrm{fr}}_n := \{ \mathsf{stably framed } n \text{-manifolds} \} / \mathsf{framed cobordism}$

Theorem

There is a canonical isomorphism

$$\Omega_n^{\rm fr} \cong \pi_{n+k} S^k, \quad k \gg 0.$$

Homotopy elements can be described as framed *n*-manifolds!

Paul VanKoughnett

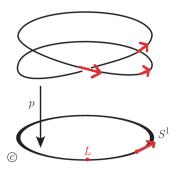
Stable homotopy theory and geometry

0-manifolds: $\pi_n S^n$

A 0-manifold in \mathbb{R}^n is a set of points. A framing is a sign attached to each point: orient their normal bundles either with or against the orientation of \mathbb{R}^n .

0-manifolds: $\pi_n S^n$

A 0-manifold in \mathbb{R}^n is a set of points. A framing is a sign attached to each point: orient their normal bundles either with or against the orientation of \mathbb{R}^n .



Paul VanKoughnett

Stable homotopy theory and geometry

1-manifolds: $\pi_{n+1}S^n$

A 1-manifold is just a circle. A framing on S¹ → ℝⁿ⁺¹ is determined by how a basis for ℝⁿ rotates as you go around the circle.

(日) (同) (三) (三)

3

1-manifolds: $\pi_{n+1}S^n$

- A 1-manifold is just a circle. A framing on S¹ → ℝⁿ⁺¹ is determined by how a basis for ℝⁿ rotates as you go around the circle.
- Framings are classified by π₁SO(n) = Z/2 for n ≥ 3 (and Z for n ≥ 2).

1-manifolds: $\pi_{n+1}S^n$

- A 1-manifold is just a circle. A framing on S¹ → ℝⁿ⁺¹ is determined by how a basis for ℝⁿ rotates as you go around the circle.
- Framings are classified by π₁SO(n) = Z/2 for n ≥ 3 (and Z for n ≥ 2).
- The Hopf map S³ → S² corresponds to S¹ → S³ together with a basis for its normal bundle that twists once.

• One way to make cobordisms is through surgery.

▲ロト ▲圖 ト ▲ 国ト ▲ 国 - つん(

2-manifolds: $\pi_{n+2}S^n$

One way to make cobordisms is through surgery. Framed cobordisms require framed surgery.

э

2-manifolds: $\pi_{n+2}S^n$

- One way to make cobordisms is through surgery. Framed cobordisms require framed surgery.
- On any surface, we can do surgery to decrease the genus...but not all surgeries can be made framed.

э

2-manifolds: $\pi_{n+2}S^n$

- One way to make cobordisms is through surgery. Framed cobordisms require framed surgery.
- On any surface, we can do surgery to decrease the genus...but not all surgeries can be made framed.
- Pontryagin: whether or not we can do framed surgery on a 1-cycle is determined by a map

$$\phi: H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2.$$

2-manifolds: $\pi_{n+2}S^n$

- One way to make cobordisms is through surgery. Framed cobordisms require framed surgery.
- On any surface, we can do surgery to decrease the genus... but not all surgeries can be made framed.
- Pontryagin: whether or not we can do framed surgery on a 1-cycle is determined by a map

$$\phi: H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2.$$

But H₁(M; Z/2) is positive-dimensional if M has genus ≥ 1, so ker φ is always nonzero, so any M is framed-cobordant to a sphere. ∴ π_{n+2}Sⁿ = 0, n ≫ 0.

Pontryagin's mistake

$\phi: H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2$

is not a linear map, but a *quadratic* map. Even if we can do surgery on two-cycles, we might not be able to on their sum.

Pontryagin's mistake

$\phi:H_1(M;\mathbb{Z}/2)\to\mathbb{Z}/2$

is not a linear map, but a *quadratic* map. Even if we can do surgery on two-cycles, we might not be able to on their sum.

Whether or not we can do framed surgery on *M* depends on the nature of this quadratic map. We can conclude that

$$\pi_{n+2}S^2\cong \mathbb{Z}/2, n\gg 0.$$

A representative for the nontrivial class is given by the product of two nontrivially framed circles.

2

Homotopy groups of spheres

п										
9	0	0	0	0	0	0	0	0	\mathbb{Z}	
8	0	0	0	0	0	0	0	\mathbb{Z}	2	
7	0	0	0	0	0	0	\mathbb{Z}	2	2	
6	0	0	0	0	0	\mathbb{Z}	2	2	24	
5	0	0	0	0	\mathbb{Z}	2	2	24	2	
4	0	0	0	\mathbb{Z}	2	2	$\mathbb{Z}\oplus 12$	$2\oplus 2$	2 \oplus 2	
3	0	0	\mathbb{Z}	2	2	12	2	2	3	
2	0	\mathbb{Z}	\mathbb{Z}	2	2	12	2	2	3	
1	\mathbb{Z}	0	0	0	0	0	0	0	0	
$\pi_k S^n$	1	2	3	4	5	6	7	8	9	k

Paul VanKoughnett

Stable homotopy theory and geometry