R. Kaufmann Math 598, Fall 2018

Problem Set 1

Problems

PROBLEM 1: Show that the formula

$$\partial[v_0, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, \dots, v_{i-1}, \widehat{v_i}, v_{i+1}, \dots, v_n]$$

is well defined on oriented simplices. First state what the problem is.

PROBLEM 2: Show that $\partial^2 = 0$.

PROBLEM 3: Give the matrix M representing ∂ for your choice of basis of $\bigoplus_i C_i(\mathscr{S}_{\Delta^2})$ and show that indeed $\partial^2 = 0$ by computing M^2 .

PROBLEM 4: Compute the homology of a square with one diagonal.

PROBLEM 5: In a simplicial graph, show that contracting a contractible edge on a graph does not change its homology groups.

(Note: a simplicial graph is a simplicial complex with only 0 and 1 simplices. A 1 simplex, aka. edge, is contractible if the vertex map identifying the two vertices of the one simple is bijection on the set of all other 1-simplices.)

PROBLEM 6: For a simplicial complex \mathscr{S} show that $H_p(\mathscr{S})$ only depends on the p+1 skeleton.