R. Kaufmann Math 598, Fall 2021

Problem Set 2

PROBLEMS

PROBLEM 1: Check that indeed a contravariant functor $F : \mathcal{C} \to \mathcal{D}$ is the same as a covariant functor $F : \mathcal{C} \to \mathcal{D}^{op}$.

PROBLEM 2: Show that $(\mathcal{C}^{op})^{op} = \mathcal{C}$.

PROBLEM 3: Write out the details that $Hom_{\mathcal{C}}(\cdot, \cdot)$ as a functor from $\mathcal{C} \times \mathcal{C} \to Set$ is contravariant in the first variable and covariant in the second variable. This means that for fixed X the functor given on objects Y as $Hom_{\mathcal{C}}(Y, X)$ is contravariant, and the functor given on objects Y as $Hom_{\mathcal{C}}(X, Y)$ is covariant. The first step is to give the definition of the functors on morphisms.

PROBLEM 4: Check the identities for $\delta_i^n : [n-1] \to [n]$ and $\sigma_i^n : [n+1] \to [n], i = 0, \dots, n$.

$$\begin{split} \delta_{i}^{n+1} \delta_{j}^{n} &= \delta_{j+1}^{n+1} \delta_{i}^{n} & i \leq j \\ \sigma_{j}^{n} \sigma_{i}^{n+1} &= \sigma_{i}^{n} \sigma_{j+1}^{n+1} & i \leq j \\ \sigma_{j}^{n} \delta_{i}^{n+1} &= \delta_{i}^{n} \sigma_{j-1}^{n-1} & i < j \\ \sigma_{j}^{n} \delta_{i}^{n+1} &= i d_{n} & i = j \text{ or } i = j+1 \\ \sigma_{i}^{n} \delta_{i}^{n+1} &= \delta_{i-1}^{n} \sigma_{i}^{n-1} & j+1 < i \end{split}$$

PROBLEM 5: Write the corresponding the identities for a simplicial set $X_{\bullet}: \Delta^{op} \to Set. \ d_i^n = X_{\bullet}(\delta_i^n), s_n^i := Y_{\bullet}(\sigma_i^n).$

PROBLEM 6: Using the first identity above show that for $d_n = \sum_{i=1}^n (-1)^i d_i^n$, $d^2 = 0$ as a map $Free_{\mathbb{Z}}(X_n) \to Free_{\mathbb{Z}}(X_{n-1})$