
TRIANGULATIONS OF MONOTONE FAMILIES I:

TWO-DIMENSIONAL FAMILIES

SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV

Abstract. Let K ⊂ Rn be a compact definable set in an o-minimal structure

over R, e.g., a semi-algebraic or a subanalytic set. A definable family {Sδ| 0 <
δ ∈ R} of compact subsets of K, is called a monotone family if Sδ ⊂ Sη for all

sufficiently small δ > η > 0. The main result of the paper is that when dimK ≤
2 there exists a definable triangulation of K such that for each (open) simplex
Λ of the triangulation and each small enough δ > 0, the intersection Sδ ∩ Λ

is equivalent to one of the five standard families in the standard simplex (the

equivalence relation and a standard family will be formally defined). The set of
standard families is in a natural bijective correspondence with the set of all five

lex-monotone Boolean functions in two variables. As a consequence, we prove
the two-dimensional case of the topological conjecture in [6] on approximation

of definable sets by compact families. We introduce most technical tools and

prove statements for compact sets K of arbitrary dimensions, with the view
towards extending the main result and proving the topological conjecture in

the general case.

1. Introduction

Let K ⊂ Rn be a compact definable set in an o-minimal structure over R, for
example, it may be a semi-algebraic or a subanalytic set. Consider a one-parametric
definable family {Sδ}δ>0 of compact subsets of K, defined for all sufficiently small
positive δ ∈ R.

Definition 1.1. The family {Sδ}δ>0 is called monotone family if the sets Sδ are
monotone increasing as δ ↘ 0, i.e., Sδ ⊂ Sη for all sufficiently small δ > η > 0.

It is well known that there exists a definable triangulation of K (see [5, 11]).
In this paper we suggest a more general notion of a definable triangulation of K
compatible with the given monotone family {Sδ}δ>0. The intersection of each set
Sδ with each open simplex of such a triangulation is a topologically regular cell and
is topologically equivalent, in a precise sense, to one of the families in the finite list
of model families. Model families are in a natural bijective correspondence with all
lex-monotone Boolean functions in dimK Boolean variables (see Figure 1 for the
lists of model families and corresponding lex-monotone functions in dimensions 1
and 2). We conjecture that such a triangulation always exist, and we prove the
conjecture in the case when dimK ≤ 2 (Theorem 9.12).

In the course of achieving this goal, we study a problem that is important on
its own, of the existence of a definable cylindrical decomposition of Rn compatible
with K such that each cylindrical cell of the decomposition is topologically regular.
Cylindrical decomposition is a fundamental construction in o-minimal geometry
[5, 11], as well as in semi-algebraic geometry [4]. The elements of a decomposition
are called cylindrical cells and are definably homeomorphic to open balls of the
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corresponding dimensions. By definition, a cylindrical decomposition depends on a
chosen linear order of coordinates in Rn. It is implicitly proved in [5, 11] that for
a given finite collection of definable sets in Rn there is a linear change of coordi-
nates in Rn and a cylindrical decomposition compatible with these sets, such that
each cylindrical cell is a topologically regular cell. Without a suitable change of
coordinates, the cylindrical cells defined in various proofs of existence of cylindrical
decomposition (e.g., in [5, 11]) can fail to be topologically regular (see Example 4.3
in [2]).

It remains an open problem, even in the category of semi-algebraic sets, whether
there always exists a cylindrical decomposition, with respect to a given order of
coordinates, such that the cells in the decomposition are topologically regular. We
conjecture that such regular cylindrical decompositions always exist, and prove this
conjecture in the case when dimK ≤ 2 (in this case a weaker result was obtained
in [8]).

Topological regularity is a difficult property to verify in general. An important
tool that we use to prove it for cylindrical cells is the concept of a monotone cell
introduced in [1] (see Definition 2.5 below). It is proved in [1] that every non-empty
monotone cell is a topologically regular cell. In fact, everywhere in this paper when
we prove that a certain cylindrical cell is topologically regular, we actually prove
the stronger property that it is a monotone cell.

History and Motivation. An important recurring problem in semi-algebraic ge-
ometry is to find tight uniform bounds on the topological complexity of various
classes of semi-algebraic sets. Naturally, in o-minimal geometry, definable sets that
are locally closed are easier to handle than arbitrary ones. A typical example of
this phenomenon can be seen in the well-studied problem of obtaining tight up-
per bounds on Betti numbers of semi-algebraic or sub-Pfaffian sets in terms of
the complexity of formulae defining them. Certain standard techniques from alge-
braic topology (for example, inequalities stemming from the Mayer-Vietoris exact
sequence) are directly applicable only in the case of locally closed definable sets.
Definable sets which are not locally closed are comparatively more difficult to ana-
lyze. In order to overcome this difficulty, Gabrielov and Vorobjov proved in [6] the
following result.

Suppose that for a bounded definable set S ⊂ K ⊂ Rn in an o-minimal structure
over R there is a definable monotone family {Sδ}δ>0 of compact subsets of S such
that S =

⋃
δ Sδ. Suppose also that for each sufficiently small δ > 0 there is a

definable family {Sδ,ε}ε>0 of compact subsets of K such that for all ε, ε′ ∈ (0, 1),
if ε′ > ε then Sδ,ε ⊂ Sδ,ε′ , and Sδ =

⋂
ε Sδ,ε. Finally, assume that for all δ′ > 0

sufficiently smaller than δ, and all ε′ > 0 there exists an open in K set U ⊂ K
such that Sδ ⊂ U ⊂ Sδ′,ε′ . The main theorem in [6] states that under a certain
technical condition on the family {Sδ}δ>0 (called “separability” which will be made
precise later), for all ε0 � δ0 � ε1 � δ1 � · · · � εn � δn (where “�” stands
for “sufficiently smaller than”) the compact definable set Sδ0,ε0 ∪ · · · ∪ Sδn,εn is
homotopy equivalent to S.

The separability condition is automatically satisfied in many cases of interest,
such as when S is described by equalities and inequalities involving continuous de-
finable functions, and the family Sδ is defined by replacing each inequality of the
kind P > 0 or P < 0 in the definition of S, by P ≥ δ or P ≤ −δ respectively. How-
ever, the property of separability is not preserved under taking images of definable
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maps (in particular, under blow-down maps) which restricts the applicability of
this construction.

The following conjecture was made in [6].

Conjecture 1.2. The property that the approximating set Sδ0,ε0 ∪ · · · ∪ Sδn,εn is
homotopy equivalent to S remains true even without the separability hypothesis.

Conjecture 1.2 would be resolved if one could replace Sδ0,ε0 ∪ · · · ∪ Sδn,εn by
a homotopy equivalent union Vδ0,ε0 ∪ · · · ∪ Vδn,εn for another, sparable, family
{Vδ,ε}δ,ε>0, satisfying the same properties as the family Sδ,ε with respect to S.

This motivates the problem of trying to find a finite list of model families inside
the standard simplex ∆ such that for each simplex Λ of the triangulation of K,
the family {Sδ ∩ Λ}δ>0 is topologically equivalent to one of the (separable or non-
separable) model families. Such families {Sδ ∩ Λ}δ>0 are called standard. The
main result of this paper is the proof of the existence of a triangulation yielding
standard families in the two-dimensional case. As a consequence we obtain a proof
of Conjecture 1.2 in the case when dimK ≤ 2.

This triangulation presents an independent interest. We will show in Section 4
that there is a bijective correspondence between monotone families {Sδ}δ>0 and
non-negative upper semi-continuous definable functions f : K → R, with Sδ =
{x ∈ K| f(x) ≥ δ}. Then, for a given f , a triangulation into simplices Λ yielding
standard families {Λ ∩ Sδ}δ>0 can be interpreted as a topological resolution of
singularities of the continuous map graph(f) → K induced by f , in the sense
that we obtain a partition of the domain into a finite number of simplices on each
of which the function f behaves in a canonical way up to a certain topological
equivalence relation. A somewhat loose analogy in the analytic setting is provided
by the “Local Flattening Theorem” [7, Theorem 4.4.].

Relation to triangulations of functions and maps. It is well known [5, 11] that con-
tinuous definable functions f : K → R, where K is a compact definable subset
of Rn, can be triangulated. A simple example (that of the blow-down map corre-
sponding to the plane R2 blown up at a point) shows that definable maps which are
not functions (i.e., maps of the form f : K → Rm, m ≥ 2) need not be triangulable,
and this leads to various difficulties in studying topological properties of definable
maps. For example, the question whether a definable map admitting a continuous
section, also admits a definable one would have an immediate positive answer if the
map was definably triangulable. However, at present this remains a difficult open
problem in o-minimal geometry.

The version of the topological resolution of singularities described above can
be viewed as an alternative to the traditional notion of triangulations compatible
with a map. Towards this end, we have identified a special class of definable sets
and maps, which we call semi-monotone sets and monotone maps respectively (see
below for definitions), such that general definable maps could be obtained from
these simple ones via appropriate gluing.

Relation to preparation theorems. An important line of research in o-minimal ge-
ometry has been concentrated around preparation theorems. Given a definable
function f : Rn+1 → R, the goal of a preparation theorem (along the lines of clas-
sical preparation theorems in algebra and analysis, due to Weierstrass, Malgrange,
etc.) is to separate the dependence on the last variable, as a power function with
real exponent, from the dependence on the remaining variables. For example, van



4 SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV

den Dries and Speissegger [13], following earlier work by Macintyre, Marker and
Van den Dries [12], Lion and Rolin [9], proved that in a polynomially bounded o-
minimal structure there exists a definable decomposition of Rn into definable cells
such that over each cell C the function f can be written as

f(x, y) = |(y − θC(x))|λCgC(x)uC(x, y).

where λC ∈ R, while θC , gC , uC are definable functions with uC being a unit. From
this viewpoint, the triangulation yielding standard families, could be seen as a
topological analogue of a preparation theorem such as the one mentioned above.
Allowing the unit uC in the preparation theorem gives additional flexibility which
is not available in the situation considered in this paper.

Organization of the paper. Although the main results of the paper are proved
in the case when dimK ≤ 2, most of the definitions and many technical statements
are formulated and proved in the general case. We consider this paper as the first
in the series, and will be using these general definitions and statements in future
work.

The rest of the paper is organized as follows. In Section 2, we recall the definition
of monotone cells and some of their key properties needed in this paper. In Section 3,
we recall the definition of definable cylindrical decomposition compatible with a
finite family of definable subsets of Rn. The notions of “top”, “bottom” and “side
wall” of a cylindrical cell that are going to play an important role later are also
defined in this section. We prove the existence of a cylindrical cell decomposition
with monotone cylindrical cells in the case when dimK ≤ 2 (Theorem 3.20).

In Section 4, we establish a connection between monotone definable families of
compact sets, and super-level sets of definable upper semi-continuous functions.
This allows us to include monotone families in the context of cylindrical decompo-
sitions.

In Section 5, we recall the notion of “separability” introduced in [6], and discuss
certain topological properties of monotone families inside regular cells which will
serve as a preparation for later results on triangulation.

In Section 6 we define the combinatorially standard families and model families.
A combinatorially standard family is a combinatorial equivalence class of monotone
families inside the standard simplex ∆n. There is a bijective correspondence be-
tween the set of all combinatorially standard families and all lex-monotone Boolean
functions on {0, 1}n (Definition 6.12). The model families are particular piece-wise
linear representatives of the combinatorially standard families (Definition 6.14).
After applying a barycentric subdivision to any model family, the monotone family
inside each of the sub-simplices of the barycentric sub-division is guaranteed to be
separable (Lemma 6.24).

In Section 7, we define the notion of topological equivalence and prove the exis-
tence of certain “interlacing” homeomorphisms in the two dimensional case. This
allows us to prove that in two dimensional case the combinatorial equivalence is
the same as topological equivalence.

Section 8 is devoted to a technical problem of proving the existence of monotone
curves (and, more generally, families of monotone curves) connecting any two points
inside a monotone cell. Construction of such curves is an essential tool in obtaining a
stellar sub-division of a monotone cell into simplices with an additional requirement
that the simplices are monotone cells.
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In Section 9, we prove the existence of the triangulation of two-dimensional
compact K such that the restriction of the monotone family to each simplex is
standard.

In Section 10, we prove for any given monotone family {Sδ}δ>0 in two-dimensional
compact K the existence of a homotopy equivalent monotone family {Rδ}δ>0 in
K and a definable triangulation of K such that the restriction Λ ∩ Rδ to each its
simplex Λ is separable.

In Section 11, we prove the motivating conjecture of this paper, Conjecture 1.2,
in the case when the dimension of the set S is at most two (Theorem 11.4).

2. Monotone cells

In [2, 1] the authors introduced the concepts of a semi-monotone set and a
monotone map. Graphs of monotone maps are generalizations of semi-monotone
sets, and will be called monotone cells in this paper (see Definition 2.5 below).

Definition 2.1. Let Lj,c := {x = (x1, . . . , xn) ∈ Rn| xj = c} for j = 1, . . . , n, and
c ∈ R. Each intersection of the kind

S := Lj1,c1 ∩ · · · ∩ Ljm,cm ⊂ Rn,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, and c1, . . . , cm ∈ R, is called an affine
coordinate subspace in Rn.

In particular, the space Rn itself is an affine coordinate subspace in Rn.

We now define monotone maps. The definition below is not the one given in [1],
but equivalent to it as shown in [1, Theorem 9].

We first need a preliminary definition. For a coordinate subspace L of Rn we
denote by ρL : Rn → L the projection map.

Definition 2.2. Let a bounded continuous map f = (f1, . . . , fk) defined on an
open bounded non-empty set X ⊂ Rn have the graph Y ⊂ Rn+k. We say that f
is quasi-affine if for any coordinate subspace L of Rn+k, the restriction ρL|Y of the
projection is injective if and only if the image ρL(Y ) is n-dimensional.

Definition 2.3. Let a bounded continuous quasi-affine map f = (f1, . . . , fk) de-
fined on an open bounded non-empty set X ⊂ Rn have the graph Y ⊂ Rn+k. We
say that the map f is monotone if for each affine coordinate subspace S in Rn+k

the intersection Y ∩ S is connected.

Notation 2.4. Let the space Rn have coordinate functions x1, . . . , xn. Given a subset
I = {xj1 , . . . , xjm} ⊂ {x1, . . . , xn}, let W be the linear subspace of Rn where all
coordinates in I are equal to zero. By a slight abuse of notation we will denote by
span{xj1 , . . . , xjm} the quotient space Rn/W . Similarly, for any affine coordinate
subspace S ⊂ Rn on which all the functions xj ∈ I are constant, we will identify S
with its image under the canonical surjection to Rn/W . Again, by a slight abuse
of notation, span{x1, . . . xi}, where i ≤ n, will be denoted by Ri.

Definition 2.5 ([2, 1]). A set Y ⊂ Rn = span {x1, . . . , xn} is called a monotone
cell if it is the graph of a monotone map f : X → spanH, where H ⊂ {x1, . . . , xn}.
In a particular case, when f is an identically constant function, such a graph is
called a semi-monotone set.
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We refer the reader to [2], Figure 1, for some examples of monotone cells in R2

(actually, semi-monotone sets), as well as some counter-examples. In particular, it
is clear from the examples that the intersection of two monotone cells in the plane
is not necessarily connected and hence not a monotone cell.

Notice that any bounded convex open subset X of Rn is a semi-monotone set,
while the graph of any linear function on X is a monotone cell in Rn+1.

The following statements were proved in [1].

Proposition 2.6 ([1], Theorem 1). Every monotone cell is a topologically regular
cell.

Proposition 2.7 ([1], Corollary 7, Theorem 11). Let X ⊂ Rn be a monotone cell.
Then

(i) for every coordinate xi in Rn and every c ∈ R, each of the intersections
X ∩{xi = c}, X ∩{xi < c}, X ∩{xi > c} is either empty or a monotone cell;

(ii) Let Y ⊂ X be a monotone cell such that dimY = dimX − 1 and ∂Y ⊂ ∂X.
Then X \ Y is a disjoint union of two monotone cells.

Proposition 2.8 ([1], Theorem 10). Let X ⊂ Rn be a monotone cell. Then for
any coordinate subspace L in Rn the image ρL(X) is a monotone cell.

Let Rn>0 := {x = (x1, . . . , xn) ∈ Rn| xi > 0 for all i = 1, . . . , n}, and X ⊂ Rn>0.
Consider the following two properties, which are obviously equivalent.

(i) For each x ∈ X, the box

Bx := {(y1, . . . , yn) ∈ Rn| 0 < y1 < x1, . . . , 0 < yn < xn}

is a subset of X.
(ii) For each x ∈ X and each j = 1, . . . , n, the interval

Ix,j := {(y1, . . . , yn) ∈ Rn| 0 < yj < xj , yi = xi for i 6= j}

is a subset of X.

Lemma 2.9. If X is open and bounded, then either of the conditions (i) or (ii)
implies that X is semi-monotone. If an open and bounded subset Y ⊂ Rn>0 also
satisfies the conditions (i) or (ii), then both X ∪ Y and X ∩ Y are semi-monotone.

Proof. The proof of semi-monotonicity of X is by induction on n, the base for
n = 0 being obvious. According to Corollary 1 in [1], it is sufficient to prove that
X is connected, and that for every k, 1 ≤ k ≤ n and every c ∈ R the intersection
X ∩ {xk = c} is semi-monotone. The set X is connected because for every two
points x, z ∈ X the boxes Bx and Bz are connected and Bx ∩ Bz 6= ∅. Since the
property (ii) is true for the intersection X ∩ {xk = c}, by the inductive hypothesis
this intersection is semi-monotone, and we proved semi-monotonicity of X.

If an open and bounded Y ⊂ Rn>0 satisfies the conditions (i) or (ii), then both
sets X ∪ Y and X ∩ Y obviously also satisfy these conditions, hence are semi-
monotone. �

Definition 2.10. Let Y ⊂ span {x1, . . . , xn} be a monotone cell and f : Y →
span {y1, . . . , yk} a continuous map. The map f is called monotone on Y if its
graph Z ⊂ span {x1, . . . , xn, y1, . . . , yk} is a monotone cell. In the case k = 1, the
map f is called a monotone function on Y .
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Remark 2.11. Let Y be a monotone cell and L a coordinate subspace such that
ρL|Y is injective. Then, according to Theorem 7 and Corollary 5 in [1], Y is the
graph of a monotone map defined on ρL(Y ).

3. Cylindrical decomposition

We now define, closely following [11], a cylindrical cell and a cylindrical cell
decomposition.

Definition 3.1. When n = 0, there is a unique cylindrical cell, 0, in Rn. Let
n ≥ 1 and (i1, . . . , in) ∈ {0, 1}n. A cylindrical (i1, . . . , in)-cell is a definable set in
Rn obtained by induction on n as follows.

A (0)-cell is a single point x ∈ R, a (1)-cell is one of the intervals (x, y) or (−∞, y)
or (x,∞) or (−∞,∞) in R.

Suppose that (i1, . . . , in−1)-cells, where n > 1, are defined. An (i1, . . . , in−1, 0)-
cell (or a section cell) is the graph in Rn of a continuous definable function f : C →
R, where C is a (i1, . . . , in−1)-cell. Further, an (i1, . . . , in−1, 1)-cell (or a sector
cell) is either a set C × R, or a set {(x, t) ∈ C × R| f(x) < t < g(x)}, or a set
{(x, t) ∈ C × R| f(x) < t}, or a set {(x, t) ∈ C × R| t < g(x)}, where C is a
(i1, . . . , in−1)-cell and f, g : C → R are continuous definable functions such that
f(x) < g(x) for all x ∈ C. In the case of a sector cell C, the graph of f is called
the bottom of C, and the graph of g is called the top of C. In the case of a section
(i1, . . . , in−1, 0)-cell C, let k be the largest number in {1, . . . , n − 1} with ik = 1.
Then C is the graph of a map C ′ → Rn−k, where C ′ is a sector (i1, . . . , ik)-cell.
The pre-image of the bottom of C ′ by ρRk |C is called the bottom of C, and the
pre-image of the top of C ′ by ρRk |C is called the top of C. Let CT be the top and

CB be the bottom of a cell C. The difference C \ (C ∪ CT ∪ CB) is called the side
wall of C.

In some literature (e.g., in [5]) section cells are called graphs, while sector cells –
bands.

Note that in the case of a sector cell, the top and the bottom are cylindrical
section cells. On the other hand, the top or the bottom of a section cell C is not
necessarily a graph of a continuous function since it may contain blow-ups of the
function ϕ of which C is the graph. Consider the following example.

Example 3.2. Let n = 3, C ′ = {(x, y)| x ∈ (−1, 1), |x| < y < 1}, and ϕ(x, y) =
|x/y|. In this example, the bottom of the cell C, defined as the graph of ϕ|C′ , is
not the graph of a continuous function.

Lemma 3.14 below provides a condition under which the top and the bottom of
a cylindrical section cell are cylindrical section cells.

When it does not lead to a confusion, we will sometimes drop the multi-index
(i1, . . . , in) when referring to a cylindrical cell.

Lemma 3.3. Let C ⊂ Rn be a cylindrical (i1, . . . , ik−1, 0, ik+1, . . . , in)-cell. Then

C ′ := ρspan{x1,...,xk−1,xk+1,...,xn}(C)

is a cylindrical (i1, . . . , ik−1, ik+1, . . . , in)-cell, and C is the graph of a continuous
definable function on C ′.

Proof. Proof is by induction on n with the base case n = 1 being trivial.
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By the definition of a cylindrical (i1, . . . , ik−1, 0, ik+1, . . . , in)-cell, the image
ρRk(C) is the graph of a continuous function ϕ : ρRk−1(C)→ span{xk}.

If C is a section cell, then it is the graph of a continuous function f : ρRn−1(C)→
span{xn}. Thus C ′ is the graph of the continuous function

f ◦ (x1, . . . , xk−1, ϕ(x1, . . . , xk−1), xk+1, . . . , xn−1)

on ρspan{x1,...,xk−1,xk+1,...,xn−1}(C). The latter is a cylindrical cell by the induc-
tive hypothesis, since ρRn−1(C) is a cylindrical (i1, . . . , ik−1, 0, ik+1, . . . , in−1)-cell.
Hence C ′ is a cylindrical cell, being the graph of a continuous function on a cylin-
drical cell. By the inductive hypothesis, ρRn−1(C) is the graph of a continuous
function h on ρspan{x1,...,xk−1,xk+1,...,xn−1}(C). The cell C is the graph of the con-
tinuous function f ◦ h ◦ ρRn−1 |C′ on C ′.

If C is a sector cell, then let f, g : ρRn−1(C)→ span{xn} be its bottom and its
top functions. Thus, C ′ is a sector between graphs of functions

f ◦ (x1, . . . , xk−1, ϕ, xk+1, . . . , xn−1) and g ◦ (x1, . . . , xk−1, ϕ, xk+1, . . . , xn−1)

on the cylindrical cell ρspan{x1,...,xk−1,xk+1,...,xn−1}(C). Hence C ′ is a cylindrical cell.
Let C ′B be its bottom and C ′T its top. The cell C is the graph of the continuous
function on C ′ since the bottom of C is the graph of the continuous function
f ◦ h ◦ ρRn−1 |C′B on C ′B , while the top of C is the graph of the continuous function

g ◦ h ◦ρRn−1 |C′B on C ′T . Hence each intersection of C with the straight line parallel
to xn-axis projects bijectively by ρspan{x1,...,xk−1,xk+1,...,xn} onto an intersection of
C ′ with the straight line parallel to xn-axis. �

Lemma 3.4. Let C be a two-dimensional cylindrical cell in Rn such that C is the
graph of a quasi-affine map (see Definition 2.2). Then the side wall W of C has
exactly two connected components each of which is either a single point or a closed
curve interval.

Proof. Let C be a cylindrical (i1, . . . , in)-cell and ij the first 1 in the list i1, . . . , in.
The image of the projection, ρspan{xj}(C) is an interval (a, b). Consider the disjoint

sets A := (ρspan{xj}|C)−1(a) and B := (ρspan{xj}|C)−1(b). Then W = A ∪ B, and
A (respectively, B) is the Hausdorff limit of the intersections C ∩{xj = c} as c↘ a
(respectively, c↗ b). Since C is the graph of a quasi-affine map, for every c ∈ (a, b)
the intersection C ∩ {xj = c} is a curve interval which is also the graph of a quasi-
affine map. Hence each of the Hausdorff limits A,B is either a single point or a
closed curve interval. �

Definition 3.5. A cylindrical cell decomposition of Rn is a finite partition of Rn
into cylindrical cells defined by induction on n as follows.

When n = 0 the cylindrical cell decomposition of Rn consists of a single point.
Let n > 0. For a partition D of Rn into cylindrical cells, let D′ be the set of

all cells C ′ ⊂ Rn−1 such that C ′ = ρRn−1(C) for some cell C of D. Then D is
a cylindrical cell decomposition of Rn if D′ is a cylindrical cell decomposition of
Rn−1. In this case we call D′ the cylindrical cell decomposition of Rn−1 induced by
D.

Definition 3.6. (i) A cylindrical cell decomposition D of Rn is compatible with
a definable set X ⊂ Rn if for every cell C of D either C ⊂ X or C ∩X = ∅.

(ii) A cylindrical cell decomposition D′ of Rn is a refinement of a decomposition
D of Rn if D′ is compatible with every cell of D.
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Remark 3.7. It is easy to prove that for a cylindrical cell decomposition D of Rn
compatible with X ⊂ Rn, the cylindrical cell decomposition D′ of Rn−1 induced by
D is compatible with ρRn−1(X).

Remark 3.8. Let D be a cylindrical cell decomposition of Rn and C be a cylindrical
cell in D such that the dimension of C ′ := ρR1(C) equals 0, i.e., C ′ = {c} ⊂ R1

for some c ∈ R. It follows immediately from the definitions that D is compatible
with the hyperplane {x1 = c} in Rn, and the set of all cells of D, contained in
{x1 = c}, forms a cylindrical cell decomposition D′ of the hyperplane {x1 = c}
when the latter is identified with Rn−1. Moreover, any refinement of D′ leads to a
refinement of D.

Proposition 3.9 ([11], Theorem 2.11). Let A1, . . . , Am ⊂ Rn be definable sets.
There is a cylindrical cell decomposition of Rn compatible with each of the sets Ai.

Definition 3.10. Let A1, . . . , Am ⊂ Rn be definable bounded sets. We say that a
cylindrical cell decomposition D of Rn is monotone with respect to A1, . . . , Am if D
is compatible with A1, . . . , Am, and each cell contained in

⋃
iAi is a monotone cell.

Lemma 3.11. Let D be a cylindrical cell decomposition of Rn, and c ∈ R. Then
the collection of sets

C ∩ {x1 = c}, C ∩ {x1 < c} and C ∩ {x1 > c}
for all cylindrical cells C of D forms a refinement D′ of D. Moreover, for any
cylindrical cell C of D which is a monotone cell, all cells of D′ contained in C are
monotone cells.

Proof. A straightforward induction on n, taking into account that intersections of
a monotone cell with a hyperplane or a half-space are monotone cells (Proposi-
tion 2.7). �

Definition 3.12. A cylindrical cell decomposition D of Rn satisfies the frontier
condition if for each cylindrical cell C its frontier C \ C is a union of cells of D.

It is clear that if a cylindrical cell decomposition D of Rn satisfies the frontier
condition, then the induced decomposition (see Definition 3.5) also satisfies the
frontier condition. It is also clear that the side wall of each cell is a union of some
cells in D of smaller dimensions. We next prove that the tops and the bottoms of
cells in a cylindrical decomposition satisfying the frontier condition are each cells of
the same decomposition. Before proving this claim, we first consider an example.

Example 3.13. One can easily check that there is a cylindrical cell decomposition
of R3 containing the cell C from Example 3.2 and the cells {−1 < x < 1, y = |x|}×R
and {−1 < x < 1, y = 1} × R. This decomposition does not satisfy frontier
condition. The following lemma implies that in fact C cannot be a cell in any
cylindrical decomposition that satisfies the frontier condition.

Lemma 3.14. Let D be a cylindrical decomposition of Rn satisfying the frontier
condition. Then, the top and the bottom of each cell of D of Rn are cells of D.

Proof. Let CT be the top of a cylindrical cell C of D. Suppose C is a sector cell of D.
By the definition of a cylindrical cell decomposition, ρRn−1(C) is a cylindrical cell.
Since CT is contained in a union of some cells of D, and ρRn−1(C) = ρRn−1(CT ), it
is a cylindrical cell of D.
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Suppose now C is a section cell. Then C is the graph of a map C ′ → Rn−k, where
C ′ is a sector cell in the induced cylindrical cell decomposition D′ of Rk. Applying
the above argument to C ′ we conclude that its top C ′T is a cylindrical cell of D′. By
the frontier condition, CT is a union of some (k− 1)-dimensional cells of D. This is
because the pre-image of a cell in a cylindrical cell decomposition is always a union
of cells, and CT consists of the cylindrical cells in the pre-image ρ−1

Rk (C ′T ) which are

contained in C̄, due to the frontier condition. As C \ C is (k − 1)-dimensional, all
cells in CT are (k− 1)-dimensional and project surjectively onto C ′T , and thus they
are disjoint graphs of continuous functions over C ′T .

Finally, the closure of a graph of a definable function is a graph of a definable
function everywhere except, possibly a subset of codimension at least 2. Thus C
cannot contain two disjoint graphs over the (k − 1)-dimensional cell C ′T .

The proof for the bottom of C is similar. �

Definition 3.15. Let D be a cylindrical decomposition of Rn satisfying the frontier
condition. By Lemma 3.14, the top and the bottom of each cell of D are cells of D.
For a cell C of D define vertices of C by induction as follows. If dimC = 0 then C
itself is its only vertex. Otherwise, the set of vertices of C is the union of the sets
of vertices of its top and of its bottom.

Lemma 3.16. Let X be an open subset in R2, and f = (f1, . . . , fk) : X → Rk
a quasi-affine map. If each component f` is monotone, then the map f itself is
monotone.

Proof. Without loss of generality, assume that none of the functions f1, . . . , fk is
constant. Let X ⊂ span{x1, x2} and let F ⊂ span{x1, x2, y1, . . . , yk} be the graph
of f . Note that for each i = 1, . . . , k the graph Fi ⊂ span{x1, x2, yi} of the function
fi coincides with the image of the projection of F to span{x1, x2, yi}, and this
projection is a homeomorphism. By Theorem 9 in [1], it is sufficient to prove that
the intersection of F with any affine coordinate subspace of codimension 1 or 2 is
connected.

First consider the case of codimension 1. For every i = 1, . . . , k and every
b ∈ R the image of the projection of F∩ {yi = b} to span{x1, x2, yi} coincides with
Fi ∩ {yi = b}, and this projection is a homeomorphism. Since fi is monotone, the
intersection Fi ∩ {yi = b} is connected, hence the intersection F ∩ {yi = b} is also
connected. For every i = 1, . . . , k, every j = 1, 2, and every c ∈ R the image of the
projection of F ∩ {xj = c} to span{x1, x2, yi} coincides with Fi ∩ {xj = c}, thus
F ∩ {xj = c} is connected since Fi ∩ {xj = c} is connected.

Now consider the case of codimension 2. The intersection F∩{x1 = c1, x2 = c2},
for any c1, c2 ∈ R is obviously a single point. The intersection F ∩ {xj = c}, for
any j = 1, 2 and c ∈ R is the graph of a continuous map on an interval X ∩ {xj =
c}, taking values in span{y1, . . . , yk} and this map is quasi-affine. Hence each
component of this map is a monotone function. It follows that the intersection
F∩{xj = c, yi = b} for every i = 1, . . . k and every b ∈ R is either empty, or a single
point, or an interval. Finally, the intersection F∩{yi = bi}, for any i = 1, . . . , k and
bi ∈ R is the graph of a continuous map on the curve X ∩ {fi = bi} (this curve is
the graph of a monotone function), taking values in span{y1, . . . , yi−1, yi+1, . . . , yk},
and this map is quasi-affine. Hence each component of this map is a monotone
function. It follows that the intersection F ∩ {yi = bi, y` = b`} for every ` =
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1, . . . , i − 1, i + 1, . . . , k and every b` ∈ R is either empty, or a single point, or an
interval. �

Remark 3.17. Let V1, . . . , Vk be bounded definable subsets in Rn. According to
Section (2.19) of [11] (see also Section 4 of [2]), there is a cylindrical cell decompo-
sition of Rn compatible with each of V1, . . . , Vk, with cylindrical cells being van den
Dries regular. One can prove that one- and two-dimensional van den Dries regular
cells are topologically regular cells. Hence, in case dim(V1 ∪ · · · ∪ Vk) ≤ 2, there
exists a cylindrical cell decomposition of Rn, compatible with each of Vi, such that
cylindrical cells contained in V1 ∪ · · · ∪Vk are topologically regular. This covers the
greater part of the later work [8]. Our first goal will be to generalize these results
by proving the existence of a cylindrical cell decomposition of Rn, monotone with
respect to V1, . . . , Vk.

Lemma 3.18. Let f : X → R be a quasi-affine function on an open bounded
domain X ⊂ R2. Then there is a cylindrical cell decomposition of R2 compatible
with X, obtained by intersecting X with straight lines of the kind {x1 = c} ⊂ R2,
and half-planes of the kind {x1 ≶ c} ⊂ R2, where c ∈ R, such that the restriction
f |B to each cell B ⊂ X is a monotone function.

Proof. Every non-empty intersection of the kind X ∩ {x1 = c}, where c ∈ R, is a
finite union of pair-wise disjoint intervals. Let I(c) be family of such intervals. Let

γ := {(x1, x2) ∈ X| x2 is an endpoint of an interval in I(x1)}.
Let the real numbers c1, . . . , ct be such that the intersection γ ∩ {ci < x1 < ci+1},
for each 1 ≤ i < t, is a disjoint union of monotone 1-dimensional cells with the
images under ρR1 coinciding with (ci, ci+1). By Theorem 1.7 in [2], the intersection
X ∩ {ci < x1 < ci+1} for every 1 ≤ i < t is a disjoint union of one- and two-
dimensional semi-monotone sets. By the definition of γ, the intersection X ∩{x1 =
ci} for every 1 ≤ i < t is a disjoint union of intervals. We have constructed a
cylindrical decomposition D of R2 compatible with X and having semi-monotone
cylindrical cells.

Take any two-dimensional cylindrical cell C in D with ρR1(C) = (ci, ci+1). Since
f is quasi-affine, its restriction fC is also quasi-affine, hence (cf. the second part
of Remark 7 in [1]) fC is either strictly increasing in or strictly decreasing in or
independent of each of the variables x1, x2. This also implies that the restriction
of fC to any non-empty C ∩ {x2 = c}, where c ∈ R, is a monotone function. Let
real numbers b1, . . . , br be such that the restrictions of both functions infx2

f and
supx2

f to the interval (bi, bi+1) ⊂ R1 for each 1 ≤ i < r are monotone functions.
Note that the intersection of {bi < x1 < bi+1} with any two-dimensional cylindrical
cell in D is also a cylindrical (and semi-monotone) cell, in particular the intersection
B := C ∩ {bi < x1 < bi+1} is such a cell. By Theorem 3 in [1], the restriction fB is
a monotone function. We have proved that there exists a cylindrical decomposition
D of R2 monotone with respect to X (in particular, the two-dimensional cells of D
contained in X are semi-monotone), and such that the restrictions of f to each cell
is a monotone function. �

Lemma 3.19. Let V1, . . . , Vk be bounded definable subsets in Rn with dimVi ≤ 2 for
each i = 1, . . . , k. Then there is a cylindrical cell decomposition of Rn, compatible
with every Vi, such that every cylindrical cell contained in V :=

⋃
1≤i≤k Vi is the

graph of a quasi-affine map.
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Proof. Let W be the smooth two-dimensional locus of V . Stratify W with respect
to critical points of its projections to 2- and 1-dimensional coordinate subspaces.

More precisely, let Wi,j ⊂ W , for 1 ≤ i < j ≤ n, be the set of all critical points
of the projection map ρi,j : W → span{xi, xj}, and Wi, for 1 ≤ i ≤ n, be the set
of all critical points of the projection map ρi : W → span{xi}. Let

W ′ := W \
⋃

1≤i<j≤n

Wi,j ,

the set W ′′ be the locally two-dimensional part of⋃
1≤i<j≤n

Wi,j \
⋃

1≤i≤n

Wi,

and the set W ′′′ be the locally two-dimensional part of⋃
1≤i≤n

Wi.

Consider a cylindrical decomposition D of Rn compatible with each of V1, . . . , Vk,
W ′, W ′′\∂W ′′, and W ′′′\∂W ′′′. Let C be a two-dimensional cylindrical (i1, . . . , in)-
cell in this decomposition. There are exactly two numbers, j1 < j2, in {i1, . . . , in}
equal to 1. Then C is the graph of a continuous quasi-affine map

f : C ′ → span{xi1 , . . . , xj1−1, xj1+1, . . . , xj2−1, xj2+1, . . . , xin}
on a cylindrical cell C ′ in span{xj1 , xj2}.

Finally, D can be refined so that any 1-dimensional cylindrical cell C of the
of the refinement is monotone (hence quasi-affine) 1-dimensional cells. Indeed,
if dim ρR1(C) = 1, then a refinement exists by Lemma 3.11. Otherwise, C is
contained in an affine subspace {x1 = c} for some c ∈ R and a refinement exists by
Remark 3.8. �

Theorem 3.20. Let V1, . . . , Vk be bounded definable subsets in Rn with dimVi ≤ 2
for each i = 1, . . . , k. Then there is a cylindrical cell decomposition of Rn satisfying
the frontier condition, and monotone with respect to V1, . . . , Vk.

Proof. First, using Lemma 3.19, construct a cylindrical cell decomposition D of
Rn, compatible with every Vi, such that each cylindrical cell contained in V is the
graph of a quasi-affine map.

We now construct, inductively on n, a refinement of D, which is a cylindrical
cell decomposition with every cell contained in V :=

⋃
1≤i≤k Vi being a monotone

cell. The base case n = 1 is straightforward. Suppose the construction exists for
all dimensions less than n. Each cylindrical cell X in D such that dim ρR1(X) = 0
belongs to a cylindrical cell decomposition in the (n−1)-dimensional affine subspace
{x1 = c} for some c ∈ R, and in this subspace the refinement can be carried out
by the inductive hypothesis. According to Remark 3.8, this refinement is also
a refinement of D. Now let X be a cylindrical cell in D, contained in V , with
dim ρR1(X) = 1. If dimX = 1, then X, being quasi-affine, is already a monotone
cell.

Suppose dimX = 2. Let α be the smallest number among {1, . . . , n} such that
X ′ := ρspan{x1,xα}(X) is two-dimensional. Then X is a graph of a quasi-affine map
f = (f1, . . . , fn−2) defined on X ′. Since f is quasi-affine, each fj is quasi-affine too.
By Lemma 3.18, for each fj there exists a cylindrical decomposition of span{x1, xα},
compatible with X ′, obtained by intersecting X ′ with straight lines of the kind
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{x1 = c} ⊂ span{x1, xα}, and half-planes of the kind {x1 ≶ c} ⊂ span{x1, xα},
where c ∈ R, such that the restriction fj |Y ′ for each cylindrical semi-monotone
cell Y ′ ⊂ X ′ is a monotone function. According to Lemma 3.11, the intersections
of all cylindrical cells in D with {x1 = c} or {x1 ≶ c} form a cylindrical cell
decomposition. Performing such a refinement for each fj we obtain a cylindrical
cell decomposition of X ′ into cylindrical cells Y ′′, such that the restriction f |Y ′′ is a
monotone map by Lemma 3.16. Therefore all elements of the resulting cylindrical
cell decomposition, contained in X, are monotone cells.

Decomposing in this way each two-dimensional set X of D we obtain a refinement
D′ of D which is a cylindrical cell decomposition with monotone cylindrical cells.

It remains to construct a refinement of the cylindrical cell decomposition D′
satisfying the frontier condition. Let X be a two-dimensional cylindrical cell in D′.
Since X is a monotone cell, its boundary ∂X is homeomorphic to a circle. Let U
be a partition of ∂X into points and curve intervals so that U is compatible with
all 1-dimensional cylindrical cells of D′, and each curve interval in U is a monotone
cell.

Let c = (c1, . . . , cn) be point (0-dimensional element) in U such that c1 is not
a 0-dimensional cell in the cylindrical decomposition induced by D′ on R1. By
Lemma 3.11, intersections of the cylindrical cells of D′ with {x1 = c1} or {x1 ≶ c1}
form the refinement of D′ with cylindrical cells remaining to be monotone cells.
Let T ∈ U be one of monotone curve intervals having c as an endpoint. If T
is a subset of a two-dimensional cylindrical cell Z of D′, then T divides Z into
two two-dimensional cylindrical cells, hence by Theorem 11 in [1], these two cells
are monotone cells. Obviously, adding T to the decomposition, and replacing one
two-dimensional cell Z (if it exists) by two cells, we obtain a refinement of D′.

Let c = (c1, . . . , cn) be point in U such that (c1, . . . , ci−1), where i < n, is a
0-dimensional cell in the cylindrical decomposition induced by D′ on Ri−1, while
(c1, . . . , ci) is not a 0-dimensional cell in the cylindrical decomposition induced by
D′ on Ri. In this case we apply the same construction as in the previous case,
replacing Rn by {x1 = c1, . . . , xi−1 = ci−1}. By the Remark 3.8, the refinement in
{x1 = c1, . . . , xi−1 = ci−1} is also a refinement of D′.

Application of this procedure to all two-dimensional cells X of D′, all c and
all T completes the construction of a refinement of D′ which satisfies the frontier
condition. �

Corollary 3.21. Let U1, . . . , Um be bounded definable subsets in Rn with dimUi ≤ 2
for each i = 1, . . . ,m and let A be a a cylindrical decomposition of Rn. Then there
is a refinement of A, satisfying the frontier condition, and monotone with respect
to U1, . . . , Um.

Proof. Apply Theorem 3.20 to the family V1, . . . , Vk consisting of sets U1, . . . , Um
and all cylindrical cells of the decomposition A. �

The following example shows that there may not exist a cylindrical cell decom-
position of R3 compatible with a two-dimensional definable subset, such that each
component of the side wall of each two-dimensional cell is a one-dimensional cell of
this decomposition. We will call the latter requirement the strong frontier condition.

Example 3.22. Let V = {x > y > 0, z > 0, y = xz} and V ′ = {x > y > 0, z >
0, y = 2xz} be two cylindrical cells in R3. Then any cylindrical decomposition of
R3 compatible with V and V ′ and satisfying the strong frontier condition, must be
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compatible with two intervals I1 := {x = y = 0, 0 ≤ z ≤ 1/2} and I2 := {x = y =
0, 1/2 ≤ z ≤ 1} on the z-axis, and the point v = (0, 0, 1/2). Observe that the
interval I := {x = y = 0, 0 ≤ z ≤ 1} is the (only) 1-dimensional component of the
side wall of V , while I1 is the (only) 1-dimensional component of the side wall of
V ′.

In order to satisfy the strong frontier condition, we have to partition V into
cylindrical cells so that there is a 1-dimensional cell γ ⊂ V such that v = γ ∩ I.
Then the tangent at the origin of the projection β := ρR2(γ) would have slope 1/2.
The lifting γ′ of β to V ′ (i.e., γ′ := (ρR2 |V ′)−1(β)) would satisfy the condition
v′ = γ′ ∩ I, where v′ = (0, 0, 1/4). (Note that the tangent to γ at v or the tangent
to γ′ at v′ may coincide with the z-axis.)

The point v′ must be a 0-dimensional cell of the required cell decomposition.
Iterating this process, we obtain an infinite sequence of points (0, 0, 2−k), for all
k > 0, on I, all being 0-dimensional cells of a cylindrical cell decomposition. This
is a contradiction.

Lemma 3.23. Let X be a cylindrical sector cell in Rn with respect to the ordering
x1, . . . xn of coordinates. Suppose that the top and the bottom of X are monotone
cells. Then X itself is a monotone cell.

Proof. Let X ′ := ρRn−1(X). Then X = {(x1, . . . , xn) ∈ Rn| x := (x1, . . . , xn−1) ∈
X ′, f(x) < xn < g(x)}, where f, g : X ′ → R are monotone functions, having
graphs F and G respectively. Note that ρRn−1(F ) = ρRn−1(G) = X ′. According to
Theorem 10 in [1], X ′ is monotone cell. It easily follows from Theorem 9 in [1] that
for any a ∈ R the cylinder C := (X ′ × R) ∩ {−|a| < xn < |a|} is a monotone cell.
Choose a so that −|a| < infxn f and |a| > supxn g. Then we have the following
inclusions: F ⊂ C, G ⊂ C, ∂F ⊂ ∂C and ∂G ⊂ ∂C. By Theorem 11 in [1], the set
X is a monotone cell, being a connected component of C \ (F ∪G). �

The following statement is a generalization of the main result of [8].

Corollary 3.24. Let U1, . . . , Uk be bounded definable subsets in Rn, with dimUi ≤
3. Then there is a cylindrical decomposition of Rn, compatible with each Ui, such
that

(i) for p ≤ 2 each p-dimensional cell X ⊂ Rn of the decomposition, contained in
U :=

⋃
i Ui, is a monotone cell;

(ii) each 3-dimensional sector cell X ⊂ Rn of the decomposition, contained in U ,
is a monotone cell;

(iii) if n = 3, then each 3-dimensional cell, contained in U , is a semi-monotone
set and all cells of smaller dimensions, contained in U , are monotone cells.

Proof. Construct a cylindrical decomposition D of Rn compatible with each Ui,
and let V1, . . . , Vr be all 0-, 1- and 2-dimensional cells contained in U . Using
Theorem 3.20 obtain a cylindrical decomposition D′ of Rn monotone with respect
to V1, . . . , Vr.

Observe that the decomposition D′ is a refinement of D and hence is compatible
with each Ui. Therefore (i) is satisfied. Since for each 3-dimensional sector cell X,
contained in U , its top and its bottom are monotone cells, Lemma 3.23 implies that
X is itself a monotone cell, and thus (ii) is satisfied.

If n = 3, then every 3-dimensional cell in D is a sector cell, which implies (iii). �
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4. Monotone families as superlevel sets of definable functions

Convention 4.1. In what follows we will assume that for each monotone family
{Sδ} in a compact definable set K ⊂ Rn (see Definition 1.1) there is δ1 > 0 such
that Sδ = ∅ for all δ > δ1.

Lemma 4.2. Let K ⊂ Rn be a compact definable set, and {Sδ}δ>0 a monotone de-
finable family of compact subsets of K. There exists δ0 > 0, such that the monotone
definable family {S′δ}δ>0 defined by

S′δ =

{
Sδ for 0 < δ ≤ δ0
∅ for δ > δ0

has the following property. For each x ∈ K let Mx := {δ ∈ R>0| x ∈ S′δ}. Then,
either Mx = ∅, or Mx = (0, bx] for some bx > 0.

Proof. By Hardt’s theorem for definable families [5, Theorem 5.22], there exists
δ0 > 0, and a fiber-preserving homeomorphism H : (0, δ0] × Sδ0 → S(0,δ0], where

for any subset I ⊂ R, SI := {(δ,x)| δ ∈ I,x ∈ Sδ} ⊂ Rn+1. Let x ∈ K be such that
Mx is not empty. Then, there exists c, 0 < c ≤ δ0, such that x ∈ S′c. Then,

Mx = (0, c] ∪ {δ ∈ [c, δ0] | x ∈ S′δ} = (0, c] ∪
{
δ ∈ [c, δ0] | (δ,x) ∈ H−1

(
S′[c,δ0]

)}
.

Now S′[c,δ0] is compact, and hence H−1
(
S′[c,δ0]

)
is also compact, and since the

projection of a compact set is compact,
{
δ ∈ [c, δ0] | (δ,x) ∈ H−1

(
S′[c,δ0]

)}
is

compact as well. �

Convention 4.3. In what follows we identify two families {Sδ} and {Vδ} if Sδ = Vδ
for small δ > 0. In particular, the families {Sδ} and {S′δ} from Lemma 4.2 will be
identified.

With any monotone definable family {Sδ}δ>0 of compact sets contained in a
compact definable set K (see Definition 1.1), we associate a definable non-negative
upper semi-continuous function f : K → R as follows.

Definition 4.4. Associate with the given family {Sδ}δ>0 the family {S′δ}δ>0 sat-
isfying the conditions of Lemma 4.2. Define for each x ∈ K the value f(x) as
max{δ| x ∈ S′δ}, if there is δ > 0 with x ∈ S′δ, or as 0 otherwise (by Lemma 4.2,
the function f is well-defined). Note that, by Convention 4.1, the function f is
bounded.

Convention 4.5. We identify any two non-negative functions f, g : K → R if they
have the same level sets {x ∈ K| f(x) = δ} = {x ∈ K| g(x) = δ} for small δ > 0.

Lemma 4.6. For a compact definable set K ⊂ Rn, there is a bijective corre-
spondence between monotone definable families {Sδ}δ>0 of compact subsets of K
and non-negative upper semi-continuous definable functions f : K → R, with
Sδ = {x ∈ K| f(x) ≥ δ}.

Proof. The bijection is defined in Definition 4.4. The lemma follows from the fact
that a function ψ : X → R on a topological space X is upper semi-continuous if and
only if the set {x ∈ X| ψ(x) < b} is open for every b ∈ R, and the identifications
made in Conventions 4.3 and 4.5. �
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Remark 4.7. Observe that due to the correspondence in Lemma 4.6, the union
S :=

⋃
δ Sδ coincides with {x ∈ K|f(x) > 0}, the complement K \S coincides with

the 0-level set {x ∈ K| f(x) = 0} of the function f .

Lemma 4.8. For a compact definable set K ⊂ Rn, there is a bijective correspon-
dence between arbitrary non-negative definable functions h : K → R and monotone
definable families {Sδ}δ>0 of subsets of K, with Sδ = {x ∈ K|h(x) ≥ δ}, satisfying
the following property. There exists a cylindrical decomposition D of Rn, compatible
with K, such that for small δ > 0 and every cylindrical cell X in D, the intersection
Sδ ∩X is closed in X.

Proof. Let h : K → R be a non-negative definable function. Consider a cylindrical
decomposition D′ of Rn+1 compatible with K and the graph of h in Rn+1. Note that
D′ induces a cylindrical decomposition D of Rn compatible with K. Then the family
{{x ∈ K| h(x) ≥ δ}}δ>0 and the decomposition D satisfy the requirements, since
by Definition 3.5 (of a cylindrical decomposition), for every cell X the restriction
h|X is a continuous function.

Conversely, given a family {Sδ}δ>0 and a cylindrical decomposition D such that
for small δ > 0 and every cylindrical cell X in D, the intersection Sδ ∩ X is
closed in X, consider the family of compact sets {Sδ ∩X}δ>0 in X (note that
Sδ ∩X∩X = Sδ∩X, since Sδ is closed in X). Applying Lemma 4.6 to {Sδ ∩X}δ>0,
we obtain an upper semi-continuous function hX : X → R such that Sδ ∩X =
{x ∈ X| hX(x) ≥ δ}, and therefore, Sδ ∩X = {x ∈ X| hX(x) ≥ δ}. The function
h : K → R is now defined by the restrictions of hX on all cylindrical cells X of
D. �

Definition 4.9. Let K ⊂ Rn be a compact definable set, {Sδ}δ>0 a monotone
definable family of compact subsets of K, and f the corresponding non-negative
upper semi-continuous definable function. Let F be the graph of the function f .
We say that a cylindrical cell decomposition C of Rn+1 is monotone with respect to
the function f if C is monotone with respect to sets F and {xn+1 = 0}.

Remark 4.10. By Theorem 3.20, for each K and {Sδ}δ>0 there exists a cylindrical
cell decomposition of Rn+1 satisfying the frontier condition and monotone with
respect to f . Let D be the cylindrical decomposition induced by C on Rn. Then

(i) all cylindrical cells Z of C contained in the graph F and all cylindrical cells Y
of D contained in K are monotone cells;

(ii) for every Y of D contained in K, the restriction f |Y is a monotone function
on Y (see Definition 2.10), either positive or identically zero, and such that

Sδ ∩ Y = {x ∈ Y | f |Y (x) ≥ δ}
for small δ > 0.

Indeed, each cylindrical cell Z of C is a monotone cell hence, by Proposition 2.8,
each cylindrical cell Y in D is a monotone cell. Since the graph of the restriction
f |Y is a cylindrical cell in C, it is a monotone cell. The function f |Y is either
positive or identically zero due to Remark 4.7.

5. Separability and Basic Conditions

Definition 5.1. By the standard m-simplex in Rm we mean the set

∆m := {(t1, . . . , tm) ∈ Rm>0| t1 + · · ·+ tm < 1}.
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We will assume that the vertices of ∆m are labeled by numbers 0, . . . ,m so that
the vertex at the origin has the number 0, while the vertex with xi = 1 has the
number i. We will be dropping the upper index m for brevity, in cases when this
does not lead to a confusion.

Definition 5.2. An ordered m-simplex in Rn is a simplex with some total order on
its vertices. An ordered simplicial complex is a finite simplicial complex, such that
all its simplices are ordered and the orders are compatible on the faces of simplices.

Remark 5.3. For each ordered m-simplex Σ there is a canonical affine map from
∆m to a standard simplex Σ preserving the order of vertices.

Definition 5.4. An ordered definable triangulation of a compact definable set K ⊂
Rn compatible with subsets A1, . . . , Ar ⊂ K is a definable homeomorphism Φ :
|C| → K, where C is an ordered simplicial complex, such that each Ai is the union
of images by Φ of some simplices in C, and |C| is a geometric realization of C.

Proposition 5.5 ([5]). Let K be a compact definable subset in Rn and A1, . . . , Ar
be definable subsets in K. Then there exists an ordered definable triangulation of
K compatible with A1, . . . , Ar.

Definition 5.6. For m ≤ n, by an ordered definable m-simplex we mean a pair
(Λ,Φ) where Λ ⊂ Rn is a bounded definable set, and Φ : |C| → Λ is an ordered
definable triangulation of its closure Λ, where C is the complex consisting of a
standard m-simplex ∆ and all of its faces, such that Φ(∆) = Λ. The images by Φ
of the faces of ∆ are called faces of Λ. Zero-dimensional faces are called vertices of Λ.
If (Σ,Ψ) is another definable m-simplex in Rn, then a homeomorphism h : Λ→ Σ
is called face-preserving if Ψ−1 ◦ h ◦ Φ is a face-preserving homeomorphism of ∆
(i.e., sends each face to itself).

Convention 5.7. In what follows, whenever it does not lead to a confusion, we will
assume that for a given bounded definable set Λ the map Φ is fixed, and will refer
to a ordered definable simplex by just Λ.

Obviously, in the definable triangulation of any compact definable set the image
by Φ of any simplex of the simplicial complex is a definable simplex.

Let {Sδ}δ>0 be a monotone definable family of subsets of a compact definable
set K ⊂ Rn, and f : K → R the corresponding upper semi-continuous function, so
that Sδ = {x ∈ K| f(x) ≥ δ}.

Convention 5.8. In what follows, for a given definable simplex Λ we will write,
slightly abusing the notation, Sδ instead of Sδ ∩Λ, and will say that Sδ is a family
in Λ. A family Sδ is proper if neither Sδ = Λ, nor Sδ = ∅.

Notation 5.9. For a subset A ⊂ Λ of a definable simplex Λ we will use the following
terms and notations.

• The interior int(A) := {x ∈ A| a neighbourhood of x in Λ lies inA}.
• The boundary ∂A := A \ int(A).
• The boundary in Λ, ∂ΛA := ∂A ∩ Λ.

Definition 5.10. The set {f = δ} ∩ ∂ΛSδ is called the moving part of ∂ΛSδ, the
set {f > δ} ∩ ∂ΛSδ is called the stationary part of ∂ΛSδ.
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Remark 5.11. Obviously the moving part and the stationary part form a partition
of ∂ΛSδ. It is easy to see that the stationary part of ∂ΛSδ coincides with

{x ∈ Λ| lim inf
y∈Λ,y→x

f(y) ≤ δ < f(x)}.

At each point of stationary part of the boundary, the function f |Λ is discontinuous.
In particular, if f |Λ is continuous then the stationary part is empty.

Definition 5.12 ([6], Definition 5.7). A family Sδ in a definable n-simplex Λ is

called separable if for small δ > 0 and every face Λ′ of Λ, the inclusion Λ′ ⊂ Λ \ Sδ
is equivalent to Sδ ∩ Λ′ = ∅.

Remark 5.13. Observe that the implication

(Sδ ∩ Λ′ = ∅)⇒ (Λ′ ⊂ Λ \ Sδ)

is true regardless of separability, since Sδ ∩ Λ′ = ∅ is equivalent to Λ′ ⊂ Λ \ Sδ,
while Λ \ Sδ ⊂ Λ \ Sδ.

Notation 5.14. It will be convenient to label the face of an ordered definable simplex
Λ opposite to vertex j by Λj , and the face of Λ opposite to vertices j1, . . . , jk
by Λj1,...,jk . Clearly, Λj1,...,jk does not depend on the order of j1, . . . , jk. More

generally, for a subset A ⊂ Λ, let Aj := A∩Λj and Aj1,...,jk = Aj1,...,jk−1
∩Λj1,...,jk .

Note that the set Aj1,...,jk generally depends on the order of j1, . . . , jk. We call
Aj1,...,jk a restriction of A to Λj1,...,jk .

Definition 5.15. Given the ordered standard simplex ∆m, the canonical simplicial
map (identification) between a face ∆m

j1,...,jk
and the ordered standard simplex

∆m−k is the simplicial map preserving the order of vertex labels.

We still adhere to Convention 5.8, i.e., for a given (ordered) definable simplex Λ
we write, slightly abusing the notation, Sδ instead of Sδ ∩ Λ, and say that Sδ is a
family in Λ. Similarly, for an upper semi-continuous function f : K → R, defined
on a compact set K ⊂ Rn, and a definable simplex Λ ⊂ K we write f instead of
f |Λ.

Definition 5.16. Let f : Λ → R be an upper semi-continuous definable function
on a definable ordered m-simplex Λ. Define fj : (Λ ∪ Λj) → R, where 0 ≤ j ≤
m, as the unique extension, by semicontinuity, of f to the facet Λj . Define the
function fj1,...,jk : (Λ ∪ Λj1,...,jk)→ R, where (j1, . . . , jk) is a sequence of pair-wise
distinct numbers in {0, . . . ,m}, by induction on k, as the unique extension, by
semicontinuity, of fj1,...,jk−1

to the face Λj1,...,jk .

Consider a monotone family Sδ in a definable ordered n-simplex Λ. According
to Lemma 4.6, there is a non-negative upper semi-continuous definable function
f : Λ → R, with Sδ = {x ∈ Λ| f(x) ≥ δ}. Similarly, for any pair-wise distinct
numbers j1, . . . , jk in {0, . . . , n}, we have

(Sδ)j1,...,jk = {x ∈ Λj1,...,jk | fj1,...,jk(x) ≥ δ}.

Convention 5.17. The vertices of a face Λj1,...,jk of Λ inherit the labels of vertices
from Λ. When considering a family (Sδ)j1,...,jk in Λj1,...,jk we rename the vertices
so that they have labels 0, 1, . . . , n− k but the order of labels is the same as it was
in Λ.
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Definition 5.18. We say that a property of a family Sδ in Λ is hereditary if it
holds true for any face of Λ and any restriction of Sδ to this face (assuming the
Convention 5.17).

Consider the following Basic Conditions (A)–(D), satisfied for small δ > 0.

(A) If Sδ 6= ∅ then (Sδ)j 6= ∅ for any j > 0.
(B) If (Sδ)0 = Λ0 then Sδ = Λ.
(C) For every pair `,m such that 0 ≤ ` < m ≤ n and (`,m) 6= (0, 1) we have

(Sδ)`,m = (Sδ)m,`.
(D) Either Sδ = ∅ or

⋃
δ int(Sδ) = Λ.

Lemma 5.19. Let a family Sδ in a definable n-dimensional simplex Λ be separable,
satisfy the basic condition (D), and this condition is hereditary. Then for each n-
dimensional simplex Σ of any triangulation of Λ (in particular, of a barycentric
subdivision) the restriction Sδ ∩ Σ is separable in Σ.

Proof. By Remark 5.13, it is sufficient to prove that for small δ > 0 and every face
Σ′ of Σ, if Σ′ ⊂ Σ \ Sδ then Sδ ∩ Σ ∩ Σ′ = ∅. Take Σ′ such that Σ′ ⊂ Σ \ Sδ. By

the basic condition (D), if Σ′ ⊂ Λ then Σ′ 6⊂ Σ \ Sδ for small δ > 0, hence Σ′ ⊂ Λ′

for some face Λ′ of Λ. Again by (D), Λ′ ⊂ Λ \ Sδ, and therefore Sδ ∩ Λ′ = ∅. It
follows that the intersection Sδ ∩ Σ ∩ Σ′ = ∅ of smaller sets is also empty. �

6. Standard and model families

Convention 6.1. In this section we assume that all monotone definable families
satisfy the basic conditions (A)–(D), and these conditions are hereditary.

Definition 6.2. Let Sδ be a monotone family in a definable ordered n-simplex
Λ. We assign to Sδ a Boolean function ψ : {0, 1}n → {0, 1} using the following
inductive rule.

• If n = 0 (hence Λ is the single vertex 0), then there are two possible types
of Sδ. If Sδ = Λ, then ψ ≡ 1, otherwise Sδ = ∅ and ψ ≡ 0.

• If n > 0, then ψ|xj=0 is assigned to (Sδ)j for every j 6= 0, and ψ|x1=1 is
assigned to (Sδ)0 (here vertices of Λj are renamed i → i − 1 for all i > j,
cf. Definition 5.15).

Remark 6.3. (i) It is obvious that the function ψ is completely defined by its
restrictions ψ|x1=1 and ψ|x1=0, hence by the restrictions (Sδ)0 and (Sδ)1.

(ii) The basic condition (A) implies that if ψ(0, . . . , 0) = 0 then ψ ≡ 0 and Sδ = ∅.
The condition (B) implies that if ψ(1, . . . , 1) = 1 then ψ ≡ 1 and Sδ = Λ.

(iii) Because of the basic condition (C), for every pair 0 ≤ ` < m ≤ n such that
` < m and (`,m) 6= (0, 1) the restrictions (Sδ)`,m and (Sδ)m,` have the same
Boolean function assigned to them. It follows that under (C) Definition 6.2
is consistent. It is easy to give an example of a family Sδ where (C) is not
satisfied and Definition 6.2 becomes contradictory.

Definition 6.4. A Boolean function ψ is monotone (decreasing) if replacing 0 by
1 at any position of its argument (while keeping other positions unchanged) either
preserves the value of ψ or changes it from 1 to 0.

Lemma 6.5. The Boolean function ψ assigned to Sδ is monotone.
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Proof. If Sδ = Λ, then ψ ≡ 1, hence ψ is trivially monotone. Now assume that Sδ 6=
Λ, and continue the proof by induction on n. The base of the induction, for n = 0,
is obvious. Restriction of ψ to {xj = 0}, for any j, or to {x1 = 1}, is the Boolean
function assigned to a facet of Λ, which is monotone by the inductive hypothesis.
Hence, if Boolean values are assigned to n − 1 variables among x1, . . . , xn, except
x2 = . . . = xn = 1, the function ψ is monotone in the remaining variable. Suppose
ψ is not monotone in x1 with x2 = · · · = xn = 1, i.e., ψ(1, 1, . . . , 1) = 1 and
ψ(0, 1, . . . , 1) = 0. Then ψ is identically 1 on {x1 = 1}, i.e., (Sδ)0 = Λ0, while
Sδ 6= Λ. This contradicts the basic condition (B). �

Definition 6.6. Two monotone families Sδ and Vδ, in definable simplices Σ and
Λ respectively, are combinatorially equivalent if for every sequence (j1, . . . , jk),
where the numbers j1, . . . , jk ∈ {0, . . . , n} are pair-wise distinct, the restrictions
(Sδ)j1,...,jk ⊂ Σ and (Vδ)j1,...,jk ⊂ Λ are simultaneously either empty or non-empty.

Remark 6.7. Obviously, if two families Sδ and Vδ are combinatorially equiva-
lent, then for every sequence (j1, . . . , jk) of pair-wise distinct numbers the families
(Sδ)j1,...,jk and (Vδ)j1,...,jk are combinatorially equivalent.

Remark 6.8. Let Sδ and Vδ be two proper monotone families in a 2-simplex Λ,
such that ∂ΛSδ and ∂ΛVδ are curve intervals. Then Sδ and Vδ are combinatorially
equivalent if and only if the endpoints of ∂ΛSδ can be mapped onto endpoints of
∂ΛVδ so that the corresponding endpoints belong to the same faces of Λ for small
δ > 0.

Lemma 6.9. Two families Sδ and Vδ are assigned the same Boolean function if
and only if these families are combinatorially equivalent.

Proof. Suppose Sδ and Vδ are assigned the same Boolean function. According to
Definition 6.2, for any (j1, . . . , jk) the restrictions (Sδ)j0,...,jk and (Vδ)j0,...,jk are also
assigned the same Boolean function (after renaming the vertices whenever appro-
priate). In particular, this function is identical 0 or not identical 0 simultaneously
for both faces.

We prove the converse statement by induction on n, the base case n = 0, being
obvious. According to Remark 6.7, for every j the restrictions (Sδ)j and (Vδ)j
are combinatorially equivalent. By the inductive hypothesis these restrictions are
assigned the same (n − 1)-variate Boolean function. According to Definition 6.2,
for every j, the restrictions to xj = 0 of Boolean functions ψ and ϕ, assigned to Sδ
and Vδ respectively coincide, and also restrictions of ψ and ϕ to x1 = 1 coincide.
Hence, ψ = ϕ. �

Observe that when n = 1 (respectively, n = 2) there are exactly three (respec-
tively, six) distinct monotone Boolean functions. Therefore, Lemma 6.9 implies that
in this case there there are exactly three (respectively, six) distinct combinatorial
equivalence classes of monotone families.

Definition 6.10. A Boolean function ψ : {0, 1}n → {0, 1} is lex-monotone if it
is monotone with respect to the lexicographic order of its arguments, assuming
x1 < · · · < xn.

Note that when n = 1 all monotone functions are lex-monotone, whereas for
n = 2 all functions except one are lex-monotone. In general, for the number of
all monotone Boolean functions (Dedekind number) no closed-form expression is
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known on the moment of writing. On the other hand, the number of lex-monotone
functions is easy to obtain.

Lemma 6.11. (i) There are 2n+1 lex-monotone functions ψ : {0, 1}n → {0, 1}.
(ii) If ψ is lex-monotone then its restriction ψ|xi=α, for any i = 1, . . . , n and any

α ∈ {0, 1}, is a lex-monotone function in n− 1 variables.

Proof. (i) Every monotone function ψ : A → {0, 1}, where A is a totally ordered
finite set of cardinality k, can be represented as a k-sequence of the kind ψ =
(1, . . . , 1, 0, . . . , 0). There are k + 1 such sequences. In our case k = 2n.

(ii) Straightforward. �

Definition 6.12. A combinatorial equivalence class of a family Sδ is called combi-
natorially standard, and the family itself is called combinatorially standard, if the
corresponding Boolean function is lex-monotone.

The following picture shows representatives of all combinatorially standard fam-
ilies in cases n = 1 and n = 2.
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Figure 1. Standard families in dimensions one and two, with cor-
responding lex-monotone functions.

Lemma 6.13. If a family Sδ is combinatorially standard, then the family (Sδ)j0,...,jk
for each (j0, . . . , jk) is combinatorially standard.

Proof. Follows immediately from the definition of the combinatorial equivalence.
�

Definition 6.14. Let ψ(x1, . . . , xn) be a lex-monotone Boolean function. A family
Vδ in the ordered standard simplex ∆n is called the model family assigned to ψ, if
it is constructed inductively as follows.
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(1) The non-proper family Vδ = ∅ is assigned to ψ ≡ 1 when δ > 1, and to
ψ ≡ 0. The non-proper family Vδ = ∆n is assigned to ψ ≡ 1, when δ ≤ 1.
In case n = 0, there are no other families.

(2) If ψ 6≡ 0 while ψ|x1=1 ≡ 0, then let Vδ = ∆n ∩ {t1 + · · ·+ tn ≤ 1− δ}.
(3) If ψ|x1=0 = ψ|x1=1, then Vδ is the pre-image of the combinatorially standard

family in ∆n−1 assigned to ψ|x1=0 under the projection map ∆n → ∆n−1

gluing together vertices 0 and 1 of ∆n.
(4) Let ψ|x1=0 6= ψ|x1=1 6≡ 0. Define Uδ in ∆n as the family assigned as in (3),

to the Boolean function ϕ(x1, . . . , xn) such that ϕ|x1=0 = ϕ|x1=1 = ψ|x1=0.
Define Wδ in ∆n as the family assigned as in (3), to the Boolean function

ξ(x1, . . . , xn) such that ξ|x1=0 = ξ|x1=1 = ψ|x1=1. Let ∆̂ denote the closure

of ∆n∩{2t1 + t2 · · ·+ tn < 1}. Define the family Vδ in ∆n as (Uδ∩∆̂)∪Wδ.

Here are the lists of all model families in ordered ∆n in cases n = 1 and n = 2.
Case n = 1.

(0) ∅
(1) {t ≤ 1− δ} ∩∆1

(2) (0, 1) = ∆1

Case n = 2.

(0) ∅
(1) {t1 + t2 ≤ 1− δ} ∩∆2

(2) {t2 ≤ 1− δ} ∩∆2

(3) ({t2 ≤ 1− δ} ∪ {2t1 + t2 ≤ 1}) ∩∆2

(4) ∆2

In cases n ≤ 2, the Figure 1 actually shows all model families.
In the case n = 1, all monotone Boolean functions are lex-monotone, hence

families (0)–(2) represent all combinatorial classes of families satisfying the basic
conditions, and these classes are combinatorially standard.

In the case n = 2, there is only one monotone function which is not lex-monotone,
ψ|x1=0 ≡ 1, ψ|x1=1 ≡ 0, and we can define the non-standard model family for ψ as

(5) ({t1 + t2 ≤ 1− δ} ∪ {2t1 + t2 ≤ 1}) ∩∆2.

Remark 6.15. The non-standard model family (5) can be obtained as a result of
the procedure in item (4) of Definition 6.14. Also (5) is combinatorially equivalent
to {t1/(1 − δ) + t2 ≤ 1} ∩ ∆2 which corresponds to the standard blow-up at the
vertex labeled by 2 of ∆2.

Note that for large n most of the monotone Boolean functions are not lex-
monotone (Dedekind number grows superexponentially), hence most families are
not standard.

Lemma 6.16. There is a bijection between all combinatorially standard equivalence
classes and all lex-monotone Boolean functions.

Proof. According to Lemma 6.9, to any two combinatorially equivalent families
the same Boolean function is assigned. It is straightforward to show that the
model family, corresponding by Definition 6.14 to a given lex-monotone function,
is assigned this same function by Definition 6.2. By Lemma 6.9, any two families
having the same Boolean function belong to the same equivalence class. �
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Definition 6.17. A lex-monotone Boolean function ψ(x1, . . . , xn) is called separa-
ble if the set {(x1, . . . , xn)| ψ(x1, . . . , xn) = 1} consists of either 0 or 2k points, for
some k ∈ {0, . . . , n}.

Remark 6.18. The number of separable functions in n variables is n + 2, since for
each k ∈ {0, . . . , 2n} there is the unique lex-monotone function ψ with cardinality
of {ψ = 1} equal to k (cf. the proof of Lemma 6.11, (i)). It follows that all lex-
monotone functions are separable for n ≤ 1 and there is a single non-separable
lex-monotone function for n = 2.

Lemma 6.19. A lex-monotone Boolean function ψ(x1, . . . , xn), where n ≤ 0, is
separable if and only if either ψ|x1=1 ≡ 0, or ψ|x1=0 and ψ|x1=1 are separable and
equal.

Proof. Let ψ|x1=1 ≡ 0, or ψ|x1=0 and ψ|x1=1 be separable and equal. We prove by
induction on n that the function ψ is separable. By Remark 6.18, ψ is separable
when n = 0 (the base of induction). If ψ|x1=1 ≡ 0 then, by lex-monotonicity,
{ψ|x1=0 = 1} consists of the single point. If ψ|x1=1 6≡ 0 then the cardinality of
{ψ = 1} is twice the cardinality of {ψ|x1=0 = 1}, which by the inductive hypothesis
is a power of 2.

Conversely, there are exactly n+ 2 such distinct functions ψ, while the number
of different separable functions is also n+ 2, by Remark 6.18. �

Lemma 6.20. Let Vδ = {f ≥ 0} ∩∆ be a model family, and ψ its corresponding
lex-monotone Boolean function. The following properties are equivalent.

(i) Vδ is separable;
(ii) ψ is separable;

(iii) f is continuous in ∆.

Proof. We prove the lemma by induction on n, the basis for n = 0 being obvious.
Let ψ be separable, and n > 0. By Lemma 6.19, either ψ|x1=1 ≡ 0, or ψ|x1=0

and ψ|x1=1 are separable and equal. In the first case, by Definition 6.14, (2), the
family Vδ coincides with ∆n ∩ {t1 + · · ·+ tn ≤ 1− δ}, and hence is separable. It is
clear that the function f for this family is continuous.

In the second case, by Definition 6.14, (3), Vδ is the pre-image of the separable (by
the inductive hypothesis) family in ∆n−1, assigned to the separable function ψ|x1=0

and having the continuous defining function, under the projection map ∆n → ∆n−1

gluing together vertices 0 and 1 of ∆n, and hence is separable. It is clear that the
the function f for Vδ is also continuous.

Let ψ be not separable. Then, by Lemma 6.19, there are two possibilities.
First, ψ|x1=1 6≡ 0, and at least one of the restrictions ψ|x1=0 or ψ|x1=1 is not
separable. Let, for definiteness, it be ψ|x1=0, and let ∆′ be a face of ∆n−1

1 such

that ∆′ ⊂ ∆n−1
1 \ (Vδ)1. Note that ∆′ is also a face of ∆n, and ∆′ ⊂ ∆n−1 \ Vδ.

By the inductive hypothesis, (V δ)1 ∩∆′ 6= ∅, hence V δ ∩∆′ 6= ∅, and we conclude
that Vδ is not separable. Also by the inductive hypothesis, the defining function f1

of the family (Vδ)1 (see Definition 5.16) is not continuous, hence the function f is
not continuous.

The second possibility is that both restrictions, ψ|x1=0 and ψ|x1=1, are separable
but different functions. Then the faces ∆′ and ∆′′ of ∆n of the largest dimensions
such that ∆′ ⊂ ∆n

0 \ (Vδ)0 and ∆′′ ⊂ ∆n
1 \ (Vδ)1 are also different, one of them is a

face of another (say, ∆′′ ⊂ ∆′), and both lie in ∆n \ Vδ. It follows that V δ∩∆′ 6= ∅,
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hence Vδ is not separable. The values of the function f at points of ∆n
0 sufficiently

close to ∆′ and sufficiently far from ∆′′, are close to 0, while the values of f at
points of ∆n

1 with the same property are separated from 0. It follows that f is not
continuous. �

Lemma 6.21. For each model family Vδ in the ordered standard simplex ∆n its
interior int(Vδ) is a semi-monotone set.

Proof. We prove by induction on n, that the family int(Vδ) satisfies condition (ii) in
Lemma 2.9, this implies its semi-monotonicity. The base for n = 0 being obvious.
Consider cases (1)–(4) of Definition 6.14.

If Vδ is defined according to either (1) or (2), then int(Vδ) is obviously semi-
monotone.

Suppose Vδ is defined according to case (3), and let V ′δ be the family in ∆n−1

assigned to ψ|x1=0 under the projection ∆n → ∆n−1. Take any x = (x′, xn) ∈
int(Vδ) and j ∈ {1, . . . , n− 1}, then, by the inductive hypothesis, the interval

I ′x′,j := {(y1, . . . , yn−1) ∈ Rn| 0 < yj < xj , yi = xi for i 6= j}

lies in int(V ′δ ). Since ∆n is convex, it follows that (I ′x′,j × span{xn}) ∩ ∆n lies

in int(Vδ), therefore Ix,j ⊂ int(Vδ) and Ix,n ⊂ int(Vδ). By Lemma 2.9, int(Vδ) is
semi-monotone.

Now suppose that Vδ is defined according to case (4). By the same argument as
in the previous case, we show that families int(Uδ) and int(Wδ) satisfy the condition
(ii) in Lemma 2.9. Then Lemma 2.9 implies that the set

int(Vδ) = (int(Uδ) ∩ int(∆̂)) ∪ int(Wδ)

is semi-monotone. �

Remark 6.22. For a proper model family Vδ its boundary ∂∆nVδ in ∆n is not
necessarily a monotone cell. However, ∂∆nVδ is always a regular (n−1)-cell, because
its complement in the whole boundary ∂Vδ is a union of monotone (hence, regular)
(n − 1)-cells glued together with the same nerve as that of the complement of a
vertex in the boundary of the simplex ∆n (considered as a simplicial complex of all
of its faces). An exception is the family with ψ|x1=1 ≡ 0, for which the nerve is the
same as for the complement of an (n− 1)-face instead of a vertex.

Lemma 6.23. Every model family Vδ in the standard ordered simplex ∆n satisfies
the following properties.

(1) Vδ satisfies the basic conditions (A)–(D), and these conditions are heredi-
tary.

(2) For any (j1, . . . , jk) the restriction (Vδ)j1,...,jk is a model family.
(3) int(Vδ) is a regular n-cell while ∂∆Vδ is a regular (n− 1)-cell.

Proof. Properties (1) and (2) follow immediately from Definition 6.14.
The property (3) follows from Lemma 6.21, the fact that a semi-monotone set is

a regular cell, and Remark 6.22. �

Lemma 6.24. Let Vδ be a model family in the standard ordered simplex ∆n. Then
for each simplex Σ of the barycentric subdivision of ∆n the restriction Vδ ∩ Σ is a
separable family.
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Proof. We first describe, by induction on n, a triangulation of ∆ (which is coarser
than the barycentric subdivision) such that the restriction of Vδ to each its simplices
is separable.

If n = 0 then the family is already separable.
If Vδ is defined according to either (1) or (2) of Definition 6.14, then it is already

separable.
Suppose Vδ is defined according to case (3), and let V ′δ be the family in ∆n−1

assigned to ψ|x1=0 under the projection ∆n → ∆n−1. By the inductive hypothesis,
V ′δ can be partitioned into separable families. The pre-images of these families form
a partition of Vδ into separable families.

Now suppose that Vδ is defined according to case (4). Partition ∆n into two n-
simplices, ∆n

< := ∆n∩{2t1 +t2 · · ·+tn < 1} and ∆n
> := ∆n∩{2t1 +t2 · · ·+tn > 1},

and one (n − 1)-simplex ∆n−1
= := ∆n ∩ {2t1 + t2 · · · + tn = 1}, where the vertex

(1/2, 0, . . . , 0) on the edge ∆n
2,...,n has label 1 in ∆n

< and label 0 in ∆n
>.

Define U ′δ := Uδ ∩∆n
< and W ′δ := Wδ ∩∆n

<. Families U ′δ and W ′δ are partitioned
into separable families as in the case (3), while the (n−1)-dimensional model family

(U
′
δ ∪W

′
δ) ∩ ∆n−1

= (it corresponds to the Boolean function ψ|x1=0) is partitioned
into separable families, according to the inductive hypothesis.

There is a refinement of the described triangulation of ∆n which is the barycen-
tric subdivision of ∆n. By Lemma 5.19, the restriction of Vδ to each simplex of this
barycentric subdivision is separable. �

7. Topological equivalence

Definition 7.1. Consider two monotone families Sδ and Vδ in definable ordered
m-simplices (Σ,Φ) and (Λ,Ψ) in Rn respectively, where Φ : ∆ → Σ, Ψ : ∆ → Λ
are homeomorphisms, and ∆ is the closure of the standard ordered m-simplex in
Rm (see Definition 5.6).

Families Sδ and Vδ are topologically equivalent if there exist two face-preserving
homeomorphisms h1 : Λ → Σ and h2 : Σ → Λ, not depending on δ, such that for
small δ > 0 the inclusions Sδ ⊂ h1(Vδ) and Vδ ⊂ h2(Sδ) are satisfied.

Families Sδ and Vδ are strongly topologically equivalent if they are topologically
equivalent, and for small δ > 0 there is a face-preserving homeomorphism hδ : Σ→
Λ such that hδ(Sδ) = Vδ.

Remark 7.2. It is clear that if two families Sδ and Vδ are topologically equiva-
lent with homeomorphisms h1, h2, then there exist two face-preserving homeomor-
phisms, namely,

h′ := Φ−1 ◦ h1 ◦Ψ, h′′ := Ψ−1 ◦ h2 ◦ Φ : ∆→ ∆,

with the property that for small δ > 0 the inclusions Φ−1(Sδ) ⊂ h′(Ψ−1(Vδ))
and Ψ−1(Vδ) ⊂ h′′(Φ−1(Sδ)) are satisfied. Conversely, given two homeomorphisms
h′, h′′ : ∆→ ∆, satisfying these inclusion properties, there are homeomorphisms

h1 := Φ ◦ h′ ◦Ψ−1 : Λ→ Σ and h2 := Ψ ◦ h′′ ◦ Φ−1 : Σ→ Λ,

realizing the topological equivalence of Sδ and Vδ.

Introduce the following new basic condition on a monotone family Sδ in a defin-
able ordered m-dimensional simplex Λ.

(E) The interior int(Sδ) is either empty or a regular n-cell and the boundary
∂ΛSδ in Λ is either empty or a regular (n− 1)-cell.
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Convention 7.3. In this section we assume that all monotone definable families
satisfy the basic conditions (A)–(E), and these conditions are hereditary.

Remark 7.4. If Sδ contains a facet Λj , then Sδ contains a neighborhood of Λj in

Λ for all small positive δ. If, in addition, (Sδ)i contains a face Λi,j for every i 6= j,

then Sδ contains the neighborhood in Λ of the closed facet Λj .

Lemma 7.5. Given a proper family Sδ in a definable m-dimensional simplex Λ,
the Hausdorff limit L of ∂ΛSδ, as δ ↘ 0, is the closure of a face Λ0,1,...r of Λ for
some r ∈ {0, 1, . . . ,m− 1}.

Proof. According to the basic condition (E), the boundary ∂Sδ is an (m−1)-sphere
while ∂ΛSδ ⊂ ∂Sδ is a closed (m− 1)-ball, for small δ > 0, thus by the Newman’s
theorem (3.13 in [10]), the difference ∂Sδ \∂ΛSδ = Sδ ∩∂Λ is also a closed (m− 1)-
ball. Again, by the Newman’s theorem, ∂Λ \ Sδ is an open (m − 1)-ball. Notice
that L ∩ Λ = ∅, otherwise we get a contradiction with the basic condition (D). It
follows that L ⊂ ∂Λ, and hence L coincides with the Hausdorff limit of ∂Λ \ Sδ as
δ ↘ 0. All three balls, ∂Λ \ Sδ, ∂ΛSδ and Sδ ∩ ∂Λ have the common boundary,
the (m − 2)-sphere ∂(∂ΛSδ). Note that for a sequence (j1, . . . , jk) of pair-wise
distinct indices from {0, . . . ,m} the intersection ∂(∂ΛSδ) ∩ Λj1,...,jk coincides with
∂Λj1,...,jk

(Sδ)j1,...,jk .
We prove the lemma by an induction on n. The base case, n = 1, is obvious.
Let Lj1,...,jk be the Hausdorff limit of ∂Λj1,...,jk

(Sδ)j1,...,jk , as δ ↘ 0. By the

(hereditary) basic condition (A), we have (Sδ)j1,...,jk 6= ∅ for j1 > 0. Hence, either
(Sδ)j1,...,jk = Λj1,...,jk (then ∂Λj1,...,jk

(Sδ)j1,...,jk = ∅), or by the inductive hypothe-

sis, Lj1,...,jk ⊂ Λ0 for j1 > 0. It follows that if (Sδ)0 = ∅ for small δ > 0, then L = Λ0

and the lemma is proved. Otherwise, L is the union of Hausdorff limits of the sets
∂(∂ΛSδ)∩Λ0,j2,...,jk for all sequences (0, j2, . . . , jk) of pair-wise distinct indices, i.e.,
L coincides with the Hausdorff limit L0 of the set ∂Λ0

(Sδ)0 = ∂(∂ΛSδ) ∩ Λ0. By
the inductive hypothesis, L0, and hence L, is the closure of a face Λ0,1,...r of Λ for
some r ∈ {1, . . . ,m− 1}. �

Lemma 7.6. Let Sδ be a separable family in the standard simplex ∆, and Vδ the
combinatorially equivalent model family in ∆. Then for any δ > 0 there exists η > 0
such that Sδ ⊂ Vη and Vδ ⊂ Sη.

Proof. For non-proper families the statement is trivial. Let Sδ be proper. Let ∆′ be
the face of ∆ such that its closure is the Hausdorff limit of ∂∆Sδ as δ ↘ 0 (such ∆′

exists by Lemma 7.5). Then ∆′ is the unique face of ∆ of the maximal dimension

such that ∆′ ⊂ ∆ \ Sδ. Let

min(Sδ) = min
x∈Sδ

dist(x,∆′),

max(Sδ) = max
x∈Sδ

dist(x,∆′),

min(Vδ) = min
x∈Sδ

dist(x,∆′),

max(Vδ) = max
x∈Sδ

dist(x,∆′).

All functions max(·), min(·) are monotone decreasing with δ ↘ 0. The separability
of both families implies that the minima are positive. For a given δ, choosing η
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so that max(Vη) < min(Sδ), we get Sδ ⊂ Vη, while choosing η so that max(Sη) <
min(Vδ), we get Vδ ⊂ Sη. �

Definition 7.7. A combinatorial equivalence class of a family Sδ (satisfying the
basic conditions (A)–(E)) is called standard, and the family itself is called standard,
if the corresponding Boolean function is lex-monotone.

Remark 7.8. A combinatorially standard family, from Definition 6.12, does not need
to satisfy the condition (E). Consider, for example, Sδ = Λ2 \ Bδ, where Bδ ⊂ Λ2

is homeomorphic to an open disk, with Bδ intersecting the boundary of Λ2 at a
point x 6= Λ2

1,2, such that Bδ contracts to x as δ ↘ 0. The family Sδ satisfies

(A)–(D), is combinatorially standard (combinatorially equivalent to Vδ = Λ2) but
not standard.

Lemma 7.9. Let {T 1
δ , . . . T

r
δ } be a finite set of standard monotone families in

the standard ordered 1-simplex ∆1. There is a face-preserving homeomorphism
h1 : ∆1 → ∆1 not depending on δ, satisfying the following property. For every
i = 1, . . . , r there exists one of the model families, W i

δ , (among types (1), (2), (3))
of the same combinatorial type as T iδ , such that for small δ > 0 the inclusions
T iδ ⊂ h1(W i

δ) and W i
δ ⊂ h1(T iδ) hold.

Proof. Observe that for non-proper families any homeomorphism h1 is suitable.
The basic conditions (A)–(E) imply that every proper family T iδ coincides with
(0, ui(δ)] for some functions ui(δ) : (0, 1) → (0, 1), such that limδ→0 ui(δ) = 1 (in
particular, functions ui are monotone decreasing for small positive δ). In this case
homeomorphism h1 can be defined by any monotone function h1(t) satisfying the
conditions:

• h1(0) = 0,
• h1(1) = 1,
• h1(ui(δ)) > 1 − δ and h1(1 − δ) > ui(δ) for each i such that T iδ is proper,

and for small δ > 0.

To achieve the last property, the graph of h1|(0,1) should be situated above para-

metric curves (ui(δ), 1− δ), (1− δ, ui(δ)) ⊂ (0, 1)2 for small δ > 0. �

Theorem 7.10. Let {T 1
δ , . . . , T

r
δ } and {S1

δ , . . . S
k
δ } be finite sets of standard mono-

tone families in the standard ordered 1-simplex ∆1 and 2-simplex ∆2, respectively.
There exist face-preserving homeomorphisms h1 : ∆1 → ∆1 and h2 : ∆2 → ∆2 not
depending on δ, satisfying the following properties. Homeomorphism h1 satisfies
Lemma 7.9. The restriction of h2 to closures of all facets of ∆2 coincide with h1,
after canonical identification of each facet with the standard ordered 1-simplex (see
Definition 5.15). For every i = 1, . . . , k there is one of the model families, V iδ such
that for every small δ > 0 the inclusions Siδ ⊂ h2(V iδ ) and V iδ ⊂ h2(Siδ)) hold.

Proof. We may assume all families Siδ to be proper (of type (1), (2) or (3)).
We first define the homeomorphism h1. It will satisfy Lemma 7.9 for families

T 1
δ , . . . , T

r
δ and three other special families in ∆1. These special families are needed

for h1 to become the restriction to edges of ∆2 of the homeomorphism h2, required
in the theorem.

To construct the special families, we introduce four auxiliary functions s(δ), a(δ),
b(δ), c(δ). Each of these functions is defined and continuous for small δ > 0, has
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values in (0, 1) and tends to 1 as δ → 0. In particular, each function is monotone
decreasing for small positive δ.

Let s(δ) := maxi{si(δ)}, where si(δ) is the boundary of the monotone family Siδ
of the type (2) or (3), restricted to ∆2

0 (under the canonical affine map identifying
this edge with ∆1).

Let a(δ) be a function such that for all families Siδ with combinatorial types
either (2) or (3), the inclusion {t2 ≤ a(δ)}∩∆2 ⊂ Siδ holds for all small δ > 0. Such

a function exists, since by Remark 7.4, the closure Siδ contains the neighborhood

in ∆2 of the closed edge ∆2
2.

Let b(δ) be a function, such that s(δ) < b(δ) < 1. Then for any Siδ the difference

({t2 = b(δ)}∩∆2) \Siδ contains a neighborhood in the segment {t2 = b(δ)}∩∆2 of
its end (1− b(δ), b(δ)) on the edge ∆2

0 of ∆2.
Let Siδ be of the type either (1) or (2), and V iδ the combinatorially equivalent

model family. According to Lemma 7.6, for any δ > 0 there exists η(δ) > 0 such
that Sδ ⊂ Vη(δ) and Vδ ⊂ Sη(δ). Let ci(δ) be a monotone continuous function
defined for all small positive δ so that ci(δ) > 1− η(δ). Define the function c(δ) as
c(δ) := maxi{ci(δ)}.

We construct the homeomorphism h1, as in Lemma 7.9, for T 1
δ , . . . , T

r
δ and the

following three families: T r+1
δ = (0, b(δ)], T r+2

δ = (0, 1 − a−1(1 − δ)], and T r+3
δ =

(0, c(δ)], all defined on ∆1. It follows, in particular, that h1(1−δ) > b(δ), h1(a(δ)) >
1 − δ, and h1(1 − δ) > c(δ) for all small δ > 0. We will also assume, without loss
of generality, that h1(t) > t for all t ∈ ∆1.

To describe the homeomorphism h2, we need two more auxiliary monotone de-
creasing functions, p(t) and q(t).

Let p(t) be a function on [0, 1] satisfying the following properties.

(i) 0 < p(t)/(1− t) < 1/2 for all t ∈ (0, 1), and p(0) = 1/2;
(ii) p(t)/(1− t) is decreasing as a function in t;

(iii) there exists δ0 > 0 such that, for each Siδ with combinatorial type (3), the
inclusion ({t1 = p(t2)} ∩∆2) ⊂ Siδ0 holds.

Such a function exists. The property (iii) can be satisfied because, by Remark 7.4,
a family Siδ of the combinatorial type (3) contains a neighborhood of the open edge
∆2

1 in ∆2 for all small positive δ. By the curve selection lemma (Lemma 3.2 in
[5]) there exists δ0 and a function p(t) such that (p(t2), t2) ∈ Siδ0 for all t2 ∈ (0, 1).

Since Siδ is monotone, this implies the inclusion ({t1 = p(t2)} ∩ ∆2) ⊂ Siδ for all
positive δ < δ0.

Finally, there exists a function = q(t) on [0, 1] such that

(i) 1 > q(t)/(1− t) > 1/2 for all t ∈ (0, 1) and q(0) = 1/2;
(ii) the point (t1, b(δ)) /∈ Siδ for all small positive δ and all t1 ∈ [q(b(δ)), 1− b(δ)).

Since Siδ is a monotone family and b(δ) is monotone decreasing for small δ, it follows
that (t1, t2) /∈ Siδ for all small positive δ and all t2 ∈ [b(δ), 1), t1 ∈ [q(t2), 1− t2).

Now we describe the homeomorphism h2 : ∆2 → ∆2.
We set h2 := ψ ◦ ϕ, where ψ and ϕ are homeomorphisms ∆2 → ∆2 defined as

follows.
Let

ϕ(t1, t2) := ((1− h1(t2))h1(t1/(1− t2)), h1(t2)) when t2 < 1, and ϕ(t1, 1) = (0, 1).
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Then ϕ restricted to all edges of ∆2 equals to h1 (after identification of these edges
with ∆1).

Next, we define the homeomorphism ψ so that:

(1) ψ preserves the segments {t2 = const} ∩∆2,
(2) ψ(p(t2), t2) = ((1− t2)/2, t2) for all t2 close to 1,
(3) ψ((1− t2)/2, t2) = (q(t2), t2) for all t2 close to 1.

Observe that one can choose ψ to be piecewise linear on each segment {t2 = const}∩
∆2. Then ψ acts as identity on the boundary of ∆2.

We now prove that the homeomorphism h2 satisfies the property, required in the
theorem, for the case of a family Sδ combinatorially equivalent to the model family
Vδ = {t2 ≤ 1− δ}∪{2t1 + t2 ≤ 1} in the equivalence class (3). The proofs for other
combinatorial types are similar (and simpler).

Define

Aδ := ({t2 ≤ a(δ)} ∪ {t1 ≤ p(t2)}) ∩∆2

and

Bδ := ({t2 ≤ b(δ)} ∪ {t1 ≤ q(t2)}) ∩∆2.

Then Aδ and Bδ have the same combinatorial type as Sδ and Vδ, and Aδ ⊂ Sδ ⊂ Bδ
for all small δ > 0 (the inclusion Aδ ⊂ Sδ requires basic condition (E)). We now
prove that Vδ ⊂ h2(Aδ) and Bδ ⊂ h2(Vδ) for all small positive δ, which immediately
implies the theorem.

Let

A′δ := ({t2 ≤ 1− δ} ∪ {t1 ≤ p(t2)}) ∩∆2

and

V ′δ := ({t2 ≤ b(δ)} ∪ {2t1 + t2 ≤ 1}) ∩∆2.

Then it is easy to check, using the properties of functions p(t2), q(t2), a(δ), b(δ),
that, for all small δ > 0, the following inclusions hold.

(1) A′δ ⊂ ϕ(Aδ),
(2) V ′δ ⊂ ϕ(Vδ),
(3) Vδ ⊂ ψ(A′δ),
(4) Bδ ⊂ ψ(V ′δ ).

For example, let us prove (1). According to the construction of the homeomor-
phism h1, we have h1(a(δ)) > 1− δ, hence

({t2 ≤ 1− δ} ∩∆2) ⊂ ϕ({t2 ≤ a(δ)} ∩∆2).

Furthermore, ϕ maps each interval {t2 = const}∩∆2 parallel to itself along the rays
through the vertex 2. Condition that p(t2)/(1 − t2) is decreasing as a function of
t2, guarantees that the image of the curve (p(t2), t2) under ϕ is to the right (along
the coordinate t1) of that curve, hence

({t1 ≤ p(t2)} ∩∆2) ⊂ ϕ({t1 ≤ p(t2)} ∩∆2),

and (1) is proved. Proofs of the inclusions (2)–(4) are analogous.
Inclusions (1) and (3) imply Vδ ⊂ h2(Aδ), while (2) and (4) imply Bδ ⊂ h2(Vδ).

�

Remark 7.11. (i) The statement analogous to Lemma 7.9 or Theorem 7.10 for
families in ∆0 is trivial (the homeomorphism is the identity).
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(ii) The proof of Theorem 7.10 remains valid for the case when the families Siδ
satisfying basic conditions, are not necessarily standard, but we do not need
this fact in the sequel. For n = 2 there is only one non-standard model
family, of type (5). The only addition one has to make to accommodate type
(5), is in the description of the function p(t). More precisely, in item (iii) of
the description of this function and in the proof of its existence, the phrase
“combinatorial type (3)” should be replaced by “combinatorial type either (3)
or (5)”.

Accordingly, Corollary 7.12 and Lemma 7.13 below remain true for not
necessarily standard families satisfying basic conditions.

(iii) Theorem 7.10 can be generalized to standard monotone families in the stan-
dard ordered m-simplex ∆m for any m. The proof will appear elsewhere.

Corollary 7.12. Let m ∈ {0, 1, 2}. Given a finite set of standard monotone fam-
ilies {S1

δ , . . . , S
k
δ } in definable m-simplices (Σi, Φi) with Φi : ∆ → Σi, there is a

homeomorphism h : ∆→ ∆ such that the homeomorphisms

hi,j : Φj ◦ h ◦ Φ−1
i : Σi → Σj and hj,i : Φi ◦ h ◦ Φ−1

j : Σj → Σi

provide topological equivalence in pairs of combinatorially equivalent families in the
set.

In particular, if two families Siδ, S
j
δ are combinatorially equivalent, then they are

topologically equivalent.

Proof. Apply Theorem 7.10 to the set of standard monotone families Φ−1
i (Siδ),

i = 1, . . . , k in ∆. �

The following lemma shows, in particular, that for m ≤ 2, the property to be
topologically equivalent becomes unnecessary in the definition of the strong topolog-
ical equivalence (this is not true in the case m = 3).

Lemma 7.13. For two standard monotone families Sδ and Vδ in definable or-
dered simplices Σ and Λ respectively with dim Σ = dim Λ ≤ 2, the following three
statements are equivalent.

(1) The families are combinatorially equivalent.
(2) The families are topologically equivalent.
(3) The families are strongly topologically equivalent.
(4) For small δ > 0 there is a face-preserving homeomorphism hδ : Σ → Λ

mapping Sδ onto Vδ.

Proof. The statement (1) implies (2) by Corollary 7.12. The statement (2) implies
(1) since the homeomorphisms h, Φ and Ψ are face-preserving.

Let v0, v1, v2 be the vertices of Σ having labels 0, 1, 2 respectively, let w0, w1, w2

be the vertices of Λ having labels 0, 1, 2 respectively.
Due to the basic condition (E), the boundaries ∂ΣSδ of Sδ and ∂ΛVδ of Vδ in

Σ and Λ respectively, are homeomorphic to intervals, hence (a very special case of
the Schönflies theorem, Proposition 6.10 in [2]) the pairs (Σ, ∂ΣSδ) and (Λ, ∂ΛVδ)
are homeomorphic, in particular there is a homeomorphism h′δ : Σ→ Λ, mapping

Sδ onto Vδ. We prove that there is another homeomorphism, h′′δ : Λ → Λ, which
preserves Vδ and maps the images h′δ(v0), h′δ(v1), h′δ(v2) in Λ of vertices of Σ into
vertices w1, w2, w3 respectively of Λ.
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Indeed, consider the closed 2-ball Vδ, and the boundary ∂ΛVδ of Vδ in Λ. The
set ∂ΛVδ lies in the boundary of Vδ which is a 1-sphere. It is easy to construct a
homeomorphism g, of the boundary of Vδ onto itself such that the restriction g|∂ΛVδ

is the identity, and g(h′δ(vi)) = wi for each h′δ(vi) ∈ Vδ. The homeomorphism g

can be extended from the boundary to the homeomorphism g1 : Vδ → Vδ of the
whole 2-ball ([10], Lemma 1.10). Repeating the same argument for the closed 2-ball

Λ \ Vδ we obtain a homeomorphism g2 of this ball onto itself, such that g2|∂ΛVδ is

the identity and g2(h′δ(vi)) = wi for each h′δ(vi) ∈ Λ \ Vδ. Define h′′δ to coincide

with g1 on Vδ and with g2 on Λ \ Vδ.
Taking hδ := h′′δ ◦ h′δ, we conclude that the statement (1) implies (4).
By the Remark 6.8, the statement (4) implies (1). Since the statement (3),

according to the definition, is the conjunction of (2) and (4), all the statements
(1)–(4) are pair-wise equivalent. �

Corollary 7.14. A monotone family Sδ in a definable ordered simplex Σ with
dim Σ ≤ 2, satisfying the basic conditions (A)–(E) is standard if and only if it is
topologically equivalent to a standard family.

Proof. Follows directly from Definition 7.7 and Lemma 7.13. �

8. Constructing families of monotone curves

Let a1 < b1, . . . , an < bn, where n ≥ 2, be real numbers and consider an open
box

B := {(x1, . . . , xn) ∈ Rn| ai < xi < bi}.
Let X ⊂ B be a monotone cell, with dimX = 2, such that points

a := (a1, . . . , an), b := (b1, . . . , bn)

belong to X.

Theorem 8.1. There is a definable family {γt| 0 < t < 1} of disjoint open curve
intervals (“curves”) in X such that the following properties are satisfied.

(i) The curve γt for each t is a monotone cell, that is, each coordinate function
among x1, . . . , xn is monotone on γt.

(ii) The endpoints of each γt are a and b.
(iii) The union

⋃
0<t<1 γt coincides with X.

Proof. Since at a the minima of all coordinate functions x1, . . . , xn on X are at-
tained, on any germ of a smooth curve in X at a, all coordinate functions are
monotone increasing from a. Choose generically such a germ α and a point c ∈ α.
Consider all level curves through c of all coordinate functions (the same level curve
can correspond to different functions). Observe that the cyclic order (of coordinate
functions) in which the level curves pass through c is the same as the cyclic order in
which level curves pass through any other point in X, because X is a monotone cell.
The level curves through c divide X into open sectors, and there is a unique pair
of of neighbours in the ordered set of level curves such that α belongs to the union
of two of sectors bounded by these curves. Let this pair of neighbours correspond
to coordinate functions x`, xm (if a level curve corresponds to several coordinate
functions, choose any corresponding function).

Let X ′ := ρspan{x`,xm}(X), and

B′ := {(x`, xm)| a` < x` < b`, am < xm < bm} = ρspan{x`,xm}(B).
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Note that X ′ is a semi-monotone set and X ′ ⊂ B′.
It is clear, from the choice of coordinate functions x` and xm, that if on a curve

in X ′ both x` and xm are monotone, then all other coordinate functions are also
monotone. It follows that it is sufficient to construct a family {γ′t| 0 < t < 1} of
curves in X ′ with properties analogous to (i)–(iii), i.e.,

• each γ′t is the graph of a monotone function in either x` or xm;
• the endpoints of each γ′t are (a`, am) and (b`, bm);
• the union

⋃
0<t<1 γ

′
t coincides with X ′.

Then, for each t, define γt as (ρspan{x`,xm}|X)−1(γ′t).
Note first that the top and the bottom of the semi-monotone set X ′ are graphs

of non-decreasing functions on the interval X ′′ ⊂ span{x`}. It follows that for each
c ∈ R such that a`+am < c < b`+bm, the line {x`+xm = c} intersectsX ′ by an open
interval (p(c) = (p`(c), pm(c)), q(c) = (q`(c), qm(c))) with p`(c), pm(c), q`(c), qm(c)
being continuous non-decreasing functions of c. The limits of both p(c) and q(c) as
c → a` + am (respectively, as c → b` + bm) are equal to (a`, am) (respectively, to
(b`, bm)).

For each t ∈ (0, 1) define the curve

βt := {(1− t)p(c) + tq(c)| c ∈ (a` + am, b` + bm)} ⊂ X ′.

For each t the curve βt is continuous, and connects points a and b. As the parameter
c varies from a`+am to b`+bm both coordinates of points on βt are non-decreasing
as the functions of c, and strictly increasing everywhere except the parallelograms
in X ′ where either both p`(c) and q`(c) are constants or both pm(c) and qm(c) are
constants. It remains to modify the family of curves inside each such parallelogram
P .

Suppose that pm(c) and qm(c) are constant in P , so the curves βt∩P are horizon-
tal. The left and the right sides of P can be parameterized by t ∈ (0, 1). Consider
a monotone increasing continuous function φ(t) : [0, 1]→ [0, 1] such that φ(0) = 0,
φ(1) = 1, and t < φ(t) for every t ∈ (0, 1) (e.g., strictly concave).

For each t, connect a point corresponding to t on the left side of P with the
point corresponding to φ(t) on the right side. This gives a family of monotone
(with respect to c) curves αt,P inside P . The family γt can now be defined as βs
outside all parallelograms and αs,P inside each parallelogram P , with the natural
re-parameterizations. �

9. Combinatorial equivalence to standard families

LetK ⊂ Rn be a compact definable set with dimK ≤ 2, and {Sδ}δ>0 a monotone
definable family of compact subsets of K. According to Lemma 4.6, there is a non-
negative upper semi-continuous definable function f : K → R such that Sδ = {x ∈
K|f(x) ≥ δ}. Moreover, by Remark 4.10, there is a cylindrical decomposition D′ of
Rn+1, satisfying the frontier condition, and monotone with respect to the function
f (Definition 4.9).

Let D be the cylindrical cell decomposition induced by D′ on Rn.

Theorem 9.1. There is a definable ordered triangulation of K, which is a refine-
ment of the decomposition D, with the following properties.

(i) Every definable simplex Λ of the triangulation is a monotone cell.
(ii) For every simplex Λ, the restriction f |Λ is a monotone function.
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(iii) For every two-dimensional simplex Λ and every i = 0, 1, 2 the function (f |Λ)i
(see Definition 5.16) is monotone.

(iv) For every simplex Λ the family Sδ ∩ Λ satisfies the basic conditions (A)–(E),
and these conditions are hereditary.

(v) For every simplex Λ the family Sδ∩Λ is a standard family (see Definition 7.7).

The theorem will follow from a series of lemmas. First we introduce some nec-
essary notations.

Let Z be a cylindrical two-dimensional section cell of D′, and Y corresponding
two-dimensional cell of D, i.e., Z is the graph of f |Y . Let ` be minimal positive
integer for which dim ρR`Y = 1, and m, with ` < m ≤ n, be minimal for which
dim ρRmY = 2. Then, by Lemma 3.3,

X := ρspan{x`,xm}(Y ) = ρspan{x`,xm}(Z)

is a two-dimensional cylindrical cell, Y and Z are graphs of continuous definable
maps on X. Note that X is a semi-monotone set, while Y and Z are graphs of
monotone maps on X. Also observe that ρspan{x`,xm} maps Y and Z onto X, but

Y and Z are not necessarily graphs of some maps over X. Let (a, b) ⊂ span {x`}
be the common image ρspan {x`}(Z) = ρspan {x`}(Y ) = ρspan {x`}(X).

Notice that the bottom U and the top V of Z (see Definition 3.1) are open curve
intervals in Rn+1, and that

ρspan {x`}(Z) = ρspan {x`}(Y ) = ρspan {x`}(X) =

= ρspan {x`}(U) = ρspan {x`}(V ) = (a, b).

The side wall W of Z is the pre-image (ρspan {x`}|Z)−1({a, b}), and by Lemma 3.4
has exactly two connected components each of which is either a single point or a
closed curve interval.

For a 1-dimensional cylindrical cell C of D, contained in the closure of Y , denote
by fY,C the unique extension, by semicontinuity, of f |Y to C.

Lemma 9.2. (i) The set ∂Sδ ∩ Y , for small δ > 0 is either empty or a 1-
dimensional regular cell, i.e., an open curve interval with distinct endpoints
on ∂Y .

(ii) The Hausdorff limit of a non-empty ∂Sδ ∩ Y is either a vertex of one of
the 1-dimensional cylindrical cells on ∂Y or a curve interval in ∂Y with the
endpoints at two distinct vertices.

(iii) For small δ > 0, an endpoint of a non-empty ∂Sδ ∩Y is a vertex of one of the
1-dimensional cylindrical cells on ∂Y if and only if this endpoint is a blow-up
point of f |Y with infimum 0.

Proof. Due to Proposition 2.7, the intersection {xn+1 = δ} ∩ Z, for each δ, is
either empty or a monotone cell. By Proposition 2.8, the projection ρRn({xn+1 =
δ} ∩ Z) = {f |Y = δ} ∩ Y is also either empty or a monotone cell. According to
Remark 5.11, {f |Y = δ} ∩ Y coincides with ∂Sδ ∩ Y . Hence (i) is proved.

Let the Hausdorff limit of a non-empty ∂Sδ ∩ Y be either a single point x which
is not a vertex of any 1-dimensional cylindrical cell on ∂Y and belongs to a 1-
dimensional cell C on ∂Y , or an interval with at least one endpoint x belonging
to a 1-dimensional cell C on ∂Y . Then fY,C(x) = 0 while at some other point in
the neighbourhood of x in C the function fY,C is positive. This contradicts the
supposition that the cylindrical decomposition D′ satisfies the frontier condition,
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and is monotone with respect to the function f (see Definition 4.9). This proves
(ii).

The item (iii) follows directly from item (ii) and the definition of a blow-up. �

Definition 9.3. Let Z be a two-dimensional cell of the decomposition D′, i ∈
{1, . . . , n+ 1}, and c ∈ R. The intersection Z ∩ {xi = c} is called a separatrix in Z
if

• the sets {xi > c} ∩ Z and {xi < c} ∩ Z are not empty;

• the set {xi = c} ∩ Z is not contained in {xi > c} ∩ Z ∩ {xi < c} ∩ Z.

If Z ∩ {xi = c} is a separatrix in Z then its extension is Z ∩ {xi = c}.

Observe that for each fixed i = 1, . . . n + 1 any two different separatrices are
disjoint and their extensions are disjoint.

Lemma 9.4. If a cylindrical cell Z has no separatrices, then in any cylindrical
decomposition C of Rn compatible with Z, each cylindrical cell contained in Z has
no separatrices.

Proof. Suppose, contrary to the claim of the lemma, that there is a cylindrical 2-cell
C of C which contains a separatrix Z ∩ {xi = c}.

By Definition 9.3, there is a point u = (u1, . . . , un+1) ∈ C with ui = c such that
the closure of one of the sets, {xi > c} ∩ C or {xi < c} ∩ C, contains u, while the
closure of the other one does not contain u.

The point u can’t belong neither to the top V nor to the bottom U of C. Indeed,
V is a monotone cell, hence if u ∈ V , then the function xi is constant on V . It
follows that either xi is constant on whole C, or xi > c, or xi < c on C. Any
of these alternatives contradicts to C ∩ {xi = c} being a separatrix. The same
argument shows that u 6∈ U .

Now let the point u belong to one of the two connected components W of the
side wall of C. Observe that W = Z ∩ {xj = a} for some j 6= i and a ∈ R. The
function xj is a monotone function on the monotone cell Z ∩ {xi = c}. On the
other hand, it is constant on some interval in Z ∩{xi = c} and non-constant on the
whole Z ∩ {xi = c}, which is a contradiction. �

Lemma 9.5. There is a refinement E ′ of the cell decomposition D′ monotone with
respect to f , and such that no 2-cell Z in E ′ contains a separatrix.

Proof. First notice that for given Z and i there is a finite number of separatrices.
Indeed, the 1-dimensional set A of points u = (u1, . . . , un+1) ∈ ∂Z such that
Z ∩ {xi = ui} is a separatrix, is definable, hence has a finite number of connected
components. Since A and each separatrix extension are 1-dimensional and compact,
each connected component of A is contained in one of extensions. It follows that
the number of separatrix extensions, and hence separatrices, does not exceed the
number of connected components of A.

Apply Corollary 3.21 to the set of all separatrices of all 2-cells of D′ (as the sets
U1, . . . , Um in the corollary) and the decomposition D′ (as A′). By the corollary,
there is a refinement E ′ of D′, monotone with respect to function f and U1, . . . , Um,
such that no 2-cell Z of E ′ intersects with a separatrix of any 2-cell of D′.

According to Lemma 9.4, no 2-cell in E ′ contains a separatrix. �

Lemma 9.6. Suppose that a 2-cell Z in a cylindrical decomposition E ′ does not
contain a separatrix. Then any point v = (v1, . . . , vn+1) ∈ Z can be connected to
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any point u = (u1, . . . , un+1) ∈ Z by a curve γ which is 1-dimensional monotone
cell.

Proof. The point v belongs to a certain sign condition set of the functions xi − ui
for all i = 1, . . . , n+ 1. Let, for definiteness, v ∈ {x1 > u1, . . . , xn+1 > un+1}. Let

B := {(x1, . . . , xn+1) ∈ Rn+1| ui < xi < vi}.

Observe that Z ∩ B is a monotone cell. The closure Z ∩B contains u, otherwise
there would be a separatrix Z ∩ {xi = ui} for some i, which contradicts the main
property of the cylindrical decomposition E ′ (Lemma 9.5). Applying Theorem 8.1
to Z ∩ B as F, and (v, u) as (a, b), connect v to u by a curve γ, which is a
monotone cell. �

Lemma 9.7. Let Z be a cylindrical cell of E ′ having the side wall W ′, the bottom
U ′ and the top V ′. Let P ′ be a finite subset of W ′, containing all vertices of
Z, and v′ = (v′1, . . . , v

′
n+1) a point in Z. Introduce a′ := U ′ ∩ {x` = v′`} and

b′ := V ′∩{x` = v′`}, where ` is the minimal positive integer for which dim ρR`Z = 1.

There is a definable triangulation B′ of Z such that

(i) the triangulation B′ is a cylindrical decomposition of Z, in particular each
simplex is a cylindrical cell;

(ii) each simplex is a monotone cell;
(iii) each 2-simplex does not contain a separatrix;
(iv) the set of all vertices of the triangulation is P ′ ∪ {v′, a′, b′};
(v) the edges connecting v′ with a′ and b′ are contained in {x` = v′`}.

Proof. If u is any point in P ′, then by Lemma 9.6, there exists a curve γ which is 1-
dimensional monotone cell, connecting points v′ and u. If u be either a′ or b′, then
u` = v′` and we connect v′ to u by a monotone cell (interval) γ ⊂ {x` = v′`} ∩ Z.

Thus we have constructed a triangulation of Z, denote it by B′.
Each Λ′ in B′ is a cylindrical cell. Indeed, since all 1-dimensional simplices are

monotone cells, each such simplex, except the ones contained in {x` = v′`} ∩ Z, is
the graph of a monotone function on an interval in span{x`}, hence is a cylindrical
1-cell. Each two-dimensional simplex has the top and the bottom among these
graphs, moreover the the corresponding two functions are defined on the same
interval. Hence each two-dimensional simplex is a cylindrical two-cell. According
to the Lemma 9.4, each two-dimensional simplex contains no separatrix.

Now we show that each two-dimensional Λ′ in B′ is a monotone cell. Let Λ′ be
the definable simplex contained in the monotone cell Z ∩ {x` < v′`}, bounded in
Z by Z ∩ {x` = v′`} and the curve γ, connecting v′ with a vertex of Z. Then, by
Theorem 11 in [1], the curve γ divides Z∩{x` < v′`} into two monotone cells, one of
which is Λ′, and the other is the union of the remaining definable two-dimensional
simplices and their boundaries in Z ∩ {x` < v′`}. Applying inductively the same
argument, we prove that each of these remaining simplices is a monotone cell, and
all simplices in Z ∩ {x` > v′`} are also monotone cells. Hence each simplex Λ′ is a
monotone cell. �

Corollary 9.8. Let Y be a cylindrical cell of E having the side wall W , the bottom
U and the top V . Let P be a finite subset of W , containing all vertices of Y , and
v = (v1, . . . , vn) a point in Y . Let Q ⊂ P be the subset of all points w ∈ P at which
the function f |Y has a blow-up, and for each w ∈ Q fix one of the limit values α
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of f |Y at w. Introduce a := U ∩ {x` = v`} and b := V ∩ {x` = v`}, where ` is the
minimal positive integer for which dim ρR`Y = 1. There is a definable triangulation
B of Y such that

(i) the triangulation B is a cylindrical decomposition of Y , in particular each
simplex is a cylindrical cell;

(ii) each simplex is a monotone cell;
(iii) each 2-simplex does not contain a separatrix;
(iv) the set of all vertices of the triangulation is P ∪ {v, a, b};
(v) the edges connecting v with a and b are contained in {x` = v`};

(vi) for every simplex Λ, the restriction f |Λ is a monotone function;
(vii) for each w ∈ Q, the limit of f |Y at w along the edge connecting v and w

equals α.

Proof. Let Z be a cylindrical cell of E ′ such that ρRn(Z) = Y , i.e., Z is the graph of
f |Y . Since Q is the set of all blow-up points of f |Y , for each point u ∈ P \Q there
is a unique pre-image ρ−1(u) in the side wall of Z. Applying Lemma 9.7 to Z and
the union of the set (ρRn |Z)−1(P \w) ∪ {(w, α)|w ∈ Q} and the set of all vertices
of Z as P ′, and the point (ρRn |Z)−1(v) as v′, we obtain a triangulation B′ of Z. In
particular, all 1-dimensional simplices of B′ are monotone cells. Projections by ρRn

of these 1-dimensional simplices are monotone cells, connecting v with the points
in P , a and b.

The properties (i)–(v) of the triangulation B can be proved exactly as the anal-
ogous properties of the triangulation B′ in Lemma 9.7.

For each simplex Λ in B, the function f |Λ is monotone since its graph is a simplex
Λ′ of the triangulation B′, and hence is a monotone cell.

Finally, the property (vii) of B is valid by the choice of edges connecting v and
points w ∈ Q. �

The triangulation constructed in Corollary 9.8 is not ordered. To label the
vertices of simplices so that conditions (iv) and (v) of Theorem 9.1 are satisfied we
will need to perform a further refinement of the triangulation B, as follows.

Let Y be a cylindrical cell of the cell decomposition E . For the side wall W of
Y define the finite set P ⊂ W as the set of all vertices of cylindrical cells of E ,
contained in W (including vertices of Y ).

Apply Corollary 9.8 to Y , with this P , and arbitrary v. If there is a vertex w
of Y where f |Y has a blow-up point with infimum 0, then choose the value α = 0.
For all other points w ∈ Q choose α arbitrarily. According to the corollary, there
is a definable triangulation B(Y ) of Y satisfying properties (i)–(vii).

Let Λ be a simplex of the triangulation B(Y ). By Corollary 9.8, (i), the simplex
Λ is a cylindrical cell. One of the connected components of its side wall is a curve
interval, while another is a single point. Apply Corollary 9.8 to Λ (as Y ), with
the set P consisting of all three vertices of Λ and the point in the middle of the
1-dimensional component of its side wall. If any of the vertices of Λ is a blow-up
point w of f |Λ with infimum 0, then choose a value α > 0. The resulting definable
triangulation B(Λ) is then a barycentric subdivision of Λ. Label the vertices of
B(Λ) as follows: the center of the subdivision is assigned 0, the vertices of Λ are
assigned 2, while the remaining three vertices are assigned 1.

Observe that any simplex Σ of the triangulation B(Λ) may have at most one
vertex at which f |Y has a blow-up, and this vertex is Σ0,1 (having the label 2).
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This construction is illustrated on Figire 2. On this picture the triangulation
B(Λ) is shown for just one simplex Λ, the only simplex of the triangulation B(Y )
to which the restriction of the family Sδ is not separable.
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Figure 2. Iterated stellar subdivision of Y .

According to Convention 5.8, for a simplex Σ of B(Λ) we will write Sδ meaning
the monotone family {Sδ ∩ Σ}.

Lemma 9.9. For all cylindrical cells Y in E, for all simplices Λ in B(Y ), for all
1-dimensional simplices Σ in B(Λ), and for all i = 0, 1, 2 the restriction (Sδ)i has
one of the three combinatorial types of 1-dimensional model families.

Proof. Since the cylindrical decomposition D′ is monotone with respect to the func-
tion f (see Definition 4.9) the vertex Σ1,2 (labelled by 0) belongs to Sδ∩Y for small
δ > 0 whenever Sδ∩Y 6= ∅. It follows that the restrictions (Sδ)1 and (Sδ)2 have the
combinatorial type either (1) or (2) of 1-dimensional model family. If in the edge
Σ0 the vertex Σ0,2 (labelled by 1) lies in Y , then (Sδ)0 has the type either (1) or
(2) by the same argument. If, on the other hand, in Σ0 the vertex Σ0,2 lies in ∂Y ,
then it, and the whole edge Σ0 lies in a 1-dimensional cell C of the decomposition
E , and vertices of C are labelled by 2, in particular the vertex Σ0,2 lies in C. By
Lemma 9.2, (iii), C is compatible with the Hausdorff limit of ∂ΣSδ, hence (Sδ)0

may have any of the three combinatorial types of 1-dimensional model family. �

Lemma 9.10. For all cylindrical cells Y in E, for all simplices Λ in B(Y ), and for
all simplices Σ in B(Λ), the family Sδ satisfies the basic conditions (A)–(E), and
these conditions are hereditary.

Proof. Recall that by Definition 7.7, the standard family satisfies the basic condi-
tions (A)–(E).

Since the cylindrical decomposition D′ is monotone with respect to the function
f (see Definition 4.9) the vertex Σ1,2 (labelled by 0) belongs to Sδ ∩ Y for small
δ > 0 whenever Sδ ∩ Y 6= ∅. It follows that the basic condition (A) is satisfied.

Since, by the construction, Σ may have at most one vertex at which f |Y has a
blow-up, and this vertex is Σ0,1 (having the label 2), the vertex Σ0,2 (having the
label 1) is not a blow-up vertex. Thus, it can’t happen that one of the two sets
(Sδ)0,2, (Sδ)2,0 is empty while another is not. It follows that the basic condition
(C) is satisfied.



38 SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV

Because of the basic condition (C), the only possibility for the basic condition
(B) to fail for a simplex Σ would be to have (Sδ)0 = Σ0 while (Sδ)1,0 = ∅ for
small δ > 0. In this case the vertex Σ0,1 of Σ, labeled by 2, is a blow-up point of
f |Σ. By the construction, the function f |Σ1

(x) → α > 0 as x → Σ0,1. Since fY is
monotone, hence continuous, we have fΣ,Σ1

= f |Σ1
. It follows that (Sδ)1,0 6= ∅, for

small δ > 0, which is a contradiction.
The basic condition (D) holds true since the cylindrical decomposition D′ is

monotone with respect to the function f .
Let Σ′ be the graph of the function f |Σ. Due to Proposition 2.7, for every Σ, the

intersections Σ′ ∩ {xn+1 = c}, Σ′ ∩ {xn+1 ≶ c} for each c ∈ R are either empty or
monotone cells. By Proposition 2.8, the projections of these sets to Rn, in particular
the δ-level sets ∂ΣSδ of the function f |Σ, are also either empty or monotone cells.
Hence, the basic condition (E) is satisfied.

All basic conditions are hereditary for the restrictions of Sδ to edges of Σ by
Lemma 9.9. �

Lemma 9.11. For all cylindrical cells Y in E, for all simplices Λ in B(Y ), and for
all simplices Σ in B(Λ), the family Sδ is standard.

Proof. By Lemma 6.5, since the basic conditions (A)–(E) are satisfied for the family
Sδ for every Σ, it belongs to either one of the standard combinatorial types, or to
the combinatorial type (5) of the non-standard model family

({t1 + t2 ≤ 1− δ} ∪ {2t1 + t2 ≤ 1}) ∩∆2.

However the latter alternative is not possible. Suppose this is the case. Then the
vertex Σ0,1 in Σ (labeled by 2), is a blow-up point w of f |Y . Since Σ is an element of
a barycentric subdivision of some Λ, it is one simplex of the two, in the subdivision,
having the vertex w.

First let Σ be the simplex whose edge Σ0 lies in the edge of Λ connecting the
internal point of Y with w. Then the vertex Σ0,2 (labeled by 1) of Σ belongs to Sδ
for small δ > 0, which contradicts to the family Sδ being of the type (5).

Now let Σ be the other simplex in the barycentric subdivision of Λ with the
vertex w. Recall that, by the construction, f |Y (x)→ 0 as x→ w along the edge γ
of Λ connecting the internal point of Y with w. Under the supposition that Sδ is
of the type (5), at each point x ∈ γ in the neighbourhood of w we have f |Y (x) > δ
for small δ > 0 which is a contradiction. �

Proof of Theorem 9.1. The theorem follows immediately from Lemma 9.5, Corol-
lary 9.8, Lemmas 9.10 and 9.11. �

Corollary 7.12 and Theorem 9.1 immediately imply the following theorem.

Theorem 9.12. When dimK ≤ 2 there exists a definable triangulation of K such
that for each simplex Λ and small δ > 0, the intersection Sδ ∩ Λ is topologically
equivalent to one of the model families Vδ in the standard simplex ∆.

10. Triangulations with separable families

Consider the triangulation of K from Theorem 9.12, i.e., the definable home-
omorphism Φ : |C| → K, where C is the finite ordered simplicial complex. Let
Σ1, . . . ,Σr be all 1-simplices in C and ∆1, . . . ,∆k be all 2-simplices in C. Then
there are affine face-preserving homeomorphisms Ψi : ∆1 → Σi and Φi : ∆2 → ∆i,
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where ∆1 and ∆2 are a standard ordered 1-simplex and 2-simplex respectively. Let
Λ1
i := Φ(Σi), Λ2

j := Φ(∆j). In ∆1 consider definable families T iδ := Ψ−1
i (Φ−1(Sδ ∩

Λ1
i )), and in ∆2 consider definable families Siδ := Φ−1

i (Φ−1(Sδ ∩ Λ2
i )). For each

i = 1, . . . , r, in ∆1 consider the model family W i
δ combinatorially equivalent to the

family T iδ , and for each j = 1, . . . k in ∆2 consider the model family V jδ combinato-

rially equivalent to the family Sjδ . Let Vδ :=
⋃
i Ψi(W

i
δ) ∪

⋃
j Φj(V

j
δ ).

Lemma 10.1. For all small positive δ, the sets Φ−1(Sδ) and Vδ are homotopy
equivalent.

Proof. Without loss of generality, assume that Sδ (and hence, Φ−1(Sδ) and Vδ) is
connected. Consider the covering of the set Φ−1(Sδ) by all sets Aδ in

{Ψi(T iδ), Φi(S
j
δ)| i = 1, . . . , r, j = 1, . . . , k}.

and let NΦ−1(Sδ) be the nerve of this covering. Observe that every finite non-

empty intersection Ai1δ ∩ · · · ∩ A
it
δ is either a single point or an interval in one

of 1-simplices Σi, hence contractible. By the Nerve Theorem ([3], Theorem 6),
Φ−1(Sδ) is homotopy equivalent to the geometric realization of NΦ−1(Sδ).

Analogously, the covering of the set Vδ by all sets Bδ in

{Ψi(W i
δ), Φi(V

j
δ )| i = 1, . . . , r, j = 1, . . . , k}

has the nerve NVδ whose geometric realization is homotopy equivalent to Vδ.
Since each model family W i

δ is combinatorially equivalent to T iδ , and each model

family V jδ is combinatorially equivalent to Sjδ , the nerves NΦ−1(Sδ) and NVδ are
isomorphic, hence their geometric realizations are homotopy equivalent. It follows
that Φ−1(Sδ) and Vδ are homotopy equivalent. �

Theorem 10.2. There exists a definable monotone family Rδ in K and a defin-
able ordered triangulation of K such that Rδ is homotopy equivalent to Sδ for all
small positive δ, and for each ordered simplex Λ and each small enough δ > 0, the
intersection Rδ∩Λ is topologically equivalent to one of the separable families in the
standard simplex.

Proof. By Lemma 10.1, for all small positive δ, the sets Φ−1(Sδ) and Vδ are homo-
topy equivalent. According to Lemma 6.24, the restrictions of W i

δ to each simplex

of the barycentric subdivision of ∆1, and of V jδ to each simplex of the barycentric
subdivision of ∆2 are a separable model families. As Rδ take Φ(Vδ) and as trian-
gulation of K take Φ : |C ′| → K, where C ′ is the barycentric subdivision of the
simplicial complex C. �

11. Approximation by compact families

Let, as before, S :=
⋃
δ>0 Sδ ⊂ K ⊂ Rn. In [6] the following construction was

introduced.
For each δ > 0, let {Sδ,ε}ε>0 be a definable family of compact subsets of K such

that the following conditions hold:

(1) for all ε, ε′ ∈ (0, 1), if ε′ > ε, then Sδ,ε ⊂ Sδ,ε′ ;
(2) Sδ =

⋂
ε>0 Sδ,ε;

(3) for all δ′ > 0 sufficiently smaller than δ, and all ε′ > 0, there exists an open
in K set U ⊂ K such that Sδ ⊂ U ⊂ Sδ′,ε′ .
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For a sequence ε0 � δ0 � ε1 � δ1 � · · · � εm � δm, introduce the compact
set Tm(Sδ,ε) := Sδ0,ε0 ∪ · · · ∪ Sδm,εm . Here m ≥ 0, and � stands for “sufficiently
smaller than” (for the precise meaning of � see Definition 1.7 in [6]).

Let Hi(X) be the singular homology group of a topological space X with coef-
ficients in some fixed Abelian group. Without loss of generality, assume that S is
connected in order to make the homotopy groups πk(S) and πk(Tm(Sδ,ε)) indepen-
dent of a base point.

Proposition 11.1 ([6], Theorem 1.10). (i) For every 1 ≤ k ≤ m, there are epi-
morphisms

ψk : πk(Tm(Sδ,ε))→ πk(S),

ϕk : Hk(Tm(Sδ,ε))→ Hk(S).

(ii) If there is a triangulation of S such that the restriction of Sδ to each simplex
is separable, then ψk and ϕk are isomorphisms for all k ≤ m− 1. Herewith if
m ≥ dimS, then Tm(Sδ,ε) is homotopy equivalent to S.

It was conjectured in [6], Remark 1.11, that ψk and ϕk are isomorphisms for all
k ≤ m− 1 even without the separability condition.

We now show that this conjecture is true in case when dimK ≤ 2.
Let a family {Sδ,ε} have the corresponding monotone family {Sδ}. Consider the

triangulation from Theorem 9.1, corresponding to {Sδ}. Construct new families
{Vδ} and {Vδ,ε} in K as follows.

We start with Vδ. For each definable simplex Λ of the triangulation Φ, if the
restriction Λ ∩ Sδ is separable, let Λ ∩ Vδ coincide with Λ ∩ Sδ. If Λ ∩ Sδ is not
separable, consider two cases.

In the first case Λ0 ⊂ Sδ,ε. Then, for Λ ∩ Vδ, replace the restriction Λ ∩ Sδ by
the (separable) family of combinatorial type of the model family (4) (i.e., by the
full simplex Λ).

In the second case Λ0 6⊂ Sδ,ε. Let Φ : ∆→ Λ, where ∆ is the standard 2-simplex,
be a homeomorphism preserving the order of vertices. Let Wδ be the monotone
family in ∆ having the combinatorial type of the model family (2), such that ∂∆Wδ

is the straight line interval parallel to ∆2 with the endpoint Φ−1(∂Λ0(Λ ∩ Sδ ∩Λ0))
(hence, the restrictions to ∆0 of Φ−1(Λ∩Sδ) and Wδ coincide). For Λ∩Vδ, replace
the restriction Λ ∩ Sδ by a (separable) family Φ(Wδ).

Now we construct the family Vδ,ε. Observe that the set Φ−1(Λ ∩ Sδ,ε ∩ Λ0)
consists of two semi-open intervals (∆0,2, a] and [b,∆0,1) in ∆0 (in particular, the
open endpoint of the first interval is the vertex 1 of ∆, while the open endpoint
of the second interval is the vertex 2). Let α be the intersection of ∆ with the
straight line passing through a parallel to ∆2, and β be the intersection of ∆ with
the straight line passing through b parallel to ∆1.

Let Λ1, . . . ,Λr be all two-dimensional simplices of the triangulation such that
Λi ∩ Sδ is non-separable and Λi ∩ Vδ 6= Λi for each i = 1, . . . , r. For each δ let
Vδ,ε \

⋃
i Λi coincide with Sδ,ε \

⋃
i Λi.

For each i = 1, . . . , r let Λi ∩ Vδ,ε be the union of two sectors, closed in Λi. One
sector lies between Λ2 and the curve Φ(α). Another sector lies between Λ1 and the
curve Φ(β).

Remark 11.2. (i) The family Vδ,ε satisfies the conditions (1), (2), (3) at the be-
ginning of this section.

(ii) The family Λ∩Vδ is separable for each definable simplex Λ of the triangulation.
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(iii)
⋃
δ>0 Vδ = S, since the unions

⋃
δ>0(Λ∩Sδ) and

⋃
δ>0(Λ∩Vδ) coincide, being

simultaneously either empty or equal to Λ for each Λ.

Lemma 11.3. For m ≥ 1 and the families Sδ,ε, Vδ,ε, we have Tm(Sδ,ε) = Tm(Vδ,ε).

Proof. By the definition, for all δ and ε, the sets Sδ,ε and Vδ,ε coincide everywhere
outside the union of all simplices Λ such that Λ ∩ Sδ is non-separable. Then so do
also the sets Tm(Sδ,ε) and Tm(Vδ,ε). On the other hand, for each such Λ, we have
Λ ∩ T1(Sδ,ε) = Λ ∩ T1(Vδ,ε) = Λ, and therefore Λ ∩ Tm(Sδ,ε) = Λ ∩ Tm(Vδ,ε) = Λ.
Hence, Tm(Sδ,ε) = Tm(Vδ,ε). �

Theorem 11.4. If dimK ≤ 2 then for every 1 ≤ k ≤ m, there are epimorphisms

ψk : πk(Tm(Sδ,ε))→ πk(S),

ϕk : Hk(Tm(Sδ,ε))→ Hk(S)

which are isomorphisms for all k ≤ m − 1. In particular, if m ≥ dimS, then
Tm(Sδ,ε) is homotopy equivalent to S.

Proof. Construct the family {Vδ,ε} for {Sδ,ε} as described above. Since
⋃
δ>0 Vδ =

S, and each family Λ ∩ Vδ is separable (see Remark 11.2, (ii)), there exist, by
Proposition 11.1, (ii), epimorphisms

ψk : πk(Tm(Vδ,ε))→ πk(S),

ϕk : Hk(Tm(Vδ,ε))→ Hk(S)

which are isomorphisms for all k ≤ m − 1. By Lemma 11.3, we have Tm(Sδ,ε) =
Tm(Vδ,ε), which implies the theorem. �
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