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Abstract. We consider sets and maps defined over an o-minimal structure
over the reals, such as real semi-algebraic or subanalytic sets. A monotone map
is a multi-dimensional generalization of a usual univariate monotone function,
while the closure of the graph of a monotone map is a generalization of a
compact convex set. In a particular case of an identically constant function,
such a graph is called a semi-monotone set. Graphs of monotone maps are,
generally, non-convex, and their intersections, unlike intersections of convex
sets, can be topologically complicated. In particular, such an intersection
is not necessarily the graph of a monotone map. Nevertheless, we prove a
Helly-type theorem, which says that for a finite family of subsets of Rn, if all
intersections of subfamilies, with cardinalities at most n + 1, are non-empty
and graphs of monotone maps, then the intersection of the whole family is
non-empty and the graph of a monotone map.

1. Introduction

In [1, 2] the authors introduced a certain class of definable subsets of Rn (called
semi-monotone sets) and definable maps f : Rn → Rk (called monotone maps) in
an o-minimal structure over R. These objects are meant to serve as building blocks
for obtaining a conjectured cylindrical cell decomposition of definable sets into
topologically regular cells, without changing the coordinate system in the ambient
space Rn (see [1, 2] for a more detailed motivation behind these definitions).

The semi-monotone sets, and more generally the graphs of monotone maps,
have certain properties which resemble those of classical convex subsets of Rn.
Indeed, the intersection of any definable open convex subset of Rn with an affine
flat (possibly Rn itself) is the graph of a monotone map. In this paper, we prove a
version of the classical theorem of Helly on intersections of convex subsets of Rn.

We first fix some notation that we are going to use for the rest of the paper.

Notation 1.1. For every positive integer p, we will denote by [p] the set {1, . . . , p}.
We fix an integer s > 0, and we will henceforth denote by I the set [s]. For any
family, F = (Fi)i∈I , of subsets of Rn and J ⊂ I, we will denote by FJ the set⋂
j∈J

Fj .

Theorem 1.2 (Helly’s Theorem [5, 8]). Let F = (Fi)i∈I be a family of convex
subsets of Rn, such that for each subset J ⊂ I such that card J ≤ n + 1, the
intersection FJ is non-empty. Then, FI is non-empty.

In this paper we prove an analogue of Helly’s theorem for semi-monotone sets as
well as for graphs of monotone maps. One important result in [2, Theorem 5.1] is
that the graph of a monotone map is a topologically regular cell. However, unlike
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the case of a family of convex sets, the intersection of a finite family of graphs of
monotone maps need not be a graph of a monotone map, or even be connected.
Moreover, such an intersection can have an arbitrarily large number of connected
components. Because of this lack of a good intersectional property, one would not
normally expect a Helly-type theorem to hold in this case. Nevertheless, we are
able to prove the following theorem.

Theorem 1.3. Let F = (Fi)i∈I be a family of definable subsets of Rn such that
for each i ∈ I the set Fi is the graph of a monotone map, and for each J ⊂ I, with
card J ≤ n + 1, the intersection FJ is non-empty and the graph of a monotone
map. Then, FI is non-empty and the graph of a monotone map as well.

Moreover, if dim FJ ≥ d for each J ⊂ I, with card J ≤ n+1, then dim FI ≥ d.

Remark 1.4. Katchalski [6] (see also [4]) proved the following generalization of
Helly’s theorem which took into account dimensions of the various intersections.

Theorem 1.5 ([6, 4]). Define the function g(j) as follows:
g(0) = n + 1,
g(j) = max(n + 1, 2(n− j + 1)) for 1 ≤ j ≤ n.

Fix any j such that 0 ≤ j ≤ n. Let F = (Fi)i∈I be a family of convex subsets of Rn,
with card I ≥ g(j), such that for each J ⊂ I, with card J ≤ g(j), the dimension
dim FJ ≥ j. Then, the dimension dim FI ≥ j.

Notice that in the special case of definable convex sets in Rn that are open
subsets of flats, Theorem 1.3 gives a slight improvement over Theorem 1.5 in that
n+1 ≤ g(j) for all j, 0 ≤ j ≤ n, where g(j) is the function defined in Theorem 1.5.
The reason behind this improvement is that convex sets that are graphs of monotone
maps (i.e., definable open convex subsets of affine flats) are rather special and easier
to deal with, since we do not need to control the intersections of their boundaries.

Also note that, while it follows immediately from Theorem 1.5 (using the same
notation) that

dim FI = min(dim FJ |J ⊂ I, card J ≤ 2n),

Katchalski [7] proved the stronger statement that

dim FI = min(dim FJ |J ⊂ I, card J ≤ n + 1).

In the case of graphs of monotone maps, the analogue of the latter statement is an
immediate consequence of Theorem 1.3.

2. Proof of Theorem 1.3

We begin with a few preliminary definitions.

Definition 2.1. Let Lj,σ,c := {x = (x1, . . . , xn) ∈ Rn| xjσc} for j = 1, . . . , n,
σ ∈ {<,=, >}, and c ∈ R. Each intersection of the kind

C := Lj1,σ1,c1 ∩ · · · ∩ Ljm,σm,cm ⊂ Rn,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, σ1, . . . , σm ∈ {<,=, >}, and
c1, . . . , cm ∈ R, is called a coordinate cone in Rn.

Each intersection of the kind

S := Lj1,=,c1 ∩ · · · ∩ Ljm,=,cm ⊂ Rn,
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where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, and c1, . . . , cm ∈ R, is called an affine
coordinate subspace in Rn.

In particular, the space Rn itself is both a coordinate cone and an affine coordi-
nate subspace in Rn.

Definition 2.2 ([1]). An open (possibly, empty) bounded set X ⊂ Rn is called
semi-monotone if for each coordinate cone C the intersection X ∩ C is connected.

Remark 2.3. In fact, in Definition 2.2 above, it suffices to consider intersections
with only affine coordinate subspaces (see Theorem 2.5 below).

We refer the reader to [1, Figure 1] for some examples of semi-monotone subsets
of R2, as well as some counter-examples. In particular, it is clear from the examples
that the intersection of two semi-monotone sets in plane is not necessarily connected
and hence not semi-monotone.

Notice that any convex open subset of Rn is semi-monotone.
The definition of monotone maps is given in [2] and is a bit more technical. We

will not repeat it here but recall a few important properties of monotone maps
that we will need. In particular, Theorem 2.5 below, which appears in [2], gives
a complete characterization of monotone maps. For the purposes of the present
paper this characterization can be taken as the definition of monotone maps.

Definition 2.4. Let a bounded continuous map f = (f1, . . . , fk) defined on an
open bounded non-empty set X ⊂ Rn have the graph F ⊂ Rn+k. We say that f is
quasi-affine if for any coordinate subspace T of Rn+k, the projection ρT : F → T
is injective if and only if the image ρT (F) is n-dimensional.

The following three statements were proved in [2].

Theorem 2.5 ([2], Theorem 4.3). Let a bounded continuous quasi-affine map f =
(f1, . . . , fk) defined on an open bounded non-empty set X ⊂ Rn have the graph
F ⊂ Rn+k. The following three statements are equivalent.

(i) The map f is monotone.
(ii) For each affine coordinate subspace S in Rn+k the intersection F ∩ S is

connected.
(iii) For each coordinate cone C in Rn+k the intersection F ∩ C is connected.

Corollary 2.6 ([2], Corollary 4.4). Let f : X → Rk be a monotone map having
the graph F ⊂ Rn+k. Then for every coordinate z in Rn+k and every c ∈ R, each
of the intersections F ∩ {z σ c}, where σ ∈ {<,>,=}, is either empty or the graph
of a monotone map.

Theorem 2.7 ([2], Theorem 4.6). Let f : X → Rk be a monotone map defined
on a semi-monotone set X ⊂ Rn and having the graph F ⊂ Rn+k. Then for
any coordinate subspace T in Rn+k the image ρT (F) under the projection map
ρT : F → T is either a semi-monotone set or the graph of a monotone map.

Remark 2.8. In view of Theorem 2.5, it is natural to identify any semi-monotone
set X ⊂ Rn with the graph of an identically constant function f ≡ c on X, where
c is an arbitrary real.

We need two preliminary lemmas before we prove Theorem 1.3.



4 SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV

Lemma 2.9. Suppose that F = (Fi)i∈I is a family of definable subsets of Rn such
that for each i ∈ I the set Fi is the graph of a monotone map. Then, there exists
a family of definable sets, F ′ = (F′

i)i∈I such that:

(1) for each i ∈ I the set F′
i is closed and bounded;

(2) for each J ⊂ I we have

H∗(F ′
J , Z) ∼= H∗(FJ , Z),

where H∗(X, Z) denotes the singular homology of X.

Proof. Since, according to [1, Theorem 5.1], the graph of a monotone map is a
regular cell, we have for each i ∈ I a definable homeomorphism

φi : (0, 1)dim(Fi) → Fi.

For each real ε > 0 small enough, and for each i ∈ I consider the image

F(ε)
i = φi([ε, 1− ε]dim(Fi)).

Consider the family F (ε) =
(
F(ε)

i

)
i∈I

. Observe for each J ⊂ I and each ε > 0 the

intersection F (ε)
J is compact, and the increasing family

(
F (ε)

J

)
ε>0

is co-final in the

directed system (under the inclusion maps) of the compact subsets of FJ . Since,
the singular homology group of any space is isomorphic to the direct limit of the
singular homology groups of its compact subsets [9, Sec. 4, Theorem 6], we have

lim−→H∗(F (ε)
J , Z) ∼= H∗(FJ , Z).

Finally, by Hardt’s triviality theorem [3] there exists ε0 > 0, such that

lim−→H∗(F (ε)
J , Z) ∼= H∗(F (ε0)

J , Z).

For each i ∈ I, we let F′
i = F(ε0)

i . �

Lemma 2.10. Let F = (Fi)i∈I be a family of definable subsets of Rn such that for
each i ∈ I the set Fi is the graph of a monotone map, and for each J ⊂ I, with
card J ≤ n+1 the intersection FJ is non-empty and the graph of a monotone map.
Suppose that dim FI = p, where 0 ≤ p < n. Then, there exists a subset J ⊂ I with
card J ≤ n− p such that dim FJ = p.

Proof. The proof is by induction on p. If p = n, then the lemma trivially holds.
Suppose that the claim holds for all dimensions strictly larger than p. Then,

there exist a subset J ′ ⊂ I (possibly empty), with dim FJ′ > p (noting that
if J ′ = ∅, then dim FJ′ = n), and i ∈ I such that dim FJ′∪{i} = p. By the
induction hypothesis there exists a subset J ′′ ⊂ J ′, with card J ′′ < n−p, such that
dim FJ′′ = dim FJ′ .

Since FJ′ ⊂ FJ′′ , there exists an open definable subset U ⊂ Rn such that

(1) U ∩ FJ′ = U ∩ FJ′′ and
(2) dim (U ∩ FJ′ ∩ Fi) = p.

Then card J ≤ n− p, and, since n− p ≤ n + 1, the intersection FJ is the graph of
a monotone map by the conditions of the theorem. This proves the lemma because
FJ , being a regular cell, has the same local dimension at each point. �
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Proof of Theorem 1.3. The proof is by a double induction on n and s. For n = 1
the theorem is true for all s, since it is just Helly’s theorem in dimension 1.

Now assume that the statement is true in dimension n−1 for all s. In dimension
n, for s ≤ n + 1, there is nothing to prove. Assume that the theorem is true in
dimension n for at least s− 1 sets.

We first prove that FI is non-empty. The proof of this fact is adapted from the
classical proof of the topological version of Helly’s theorem (also due to Helly [5]).

According to Lemma 2.9 there exists a family F ′ = (F′
i)i∈I consisting of closed

and bounded definable sets, such that for each J ⊂ I we have

H∗(F ′
J , Z) ∼= H∗(FJ , Z).

Thus, it suffices to prove that F ′
I is non-empty. Suppose that F ′

I is empty. Then,
there exists a smallest sub-family, (F′

j)j∈[p], for some p with n+2 ≤ p ≤ s, such that
F ′

[p] is empty, and for each proper subset J ⊂ [p] the intersection F ′
J is non-empty.

Using the induction hypothesis on s, applied to the family (Fj)j∈J , and noting
that card J < card I = s, we conclude that FJ is the graph of a monotone
map and hence acyclic. But then the set F ′

J is also acyclic since it has the same
singular homology groups as FJ . Consider the nerve simplicial complex of the
family (F′

j)j∈[p]. Clearly, it has the homology of the (p − 2)-dimensional sphere
Sp−2 (being isomorphic to the simplicial complex of the boundary of a (p − 1)-
dimensional simplex). Therefore, the union

⋃
i∈[p]

F′
i also has the homology of Sp−2,

which is impossible since p − 2 ≥ n. Thus, F ′
I is non-empty, and hence FI is

non-empty as well.
We next prove that FI is connected. If not, let FI = B1 ∪ B2, where the sets

B1, B2 are non-empty, disjoint and closed in FI .
For any c ∈ R the intersection FI ∩ {x1 = c}, where x1 is a coordinate in Rn,

is either empty or connected, by Corollary 2.6 and the induction hypothesis for
dimension n− 1. Hence, B1 and B2 must lie on the opposite sides of a hyperplane
{x1 = c}, with

B1 ∩ {x1 = c} = B2 ∩ {x1 = c} = ∅.
Now, for every J ⊂ I, such that card J ≤ n, the intersection FJ is the graph of
a monotone map by the conditions of the theorem, and contains both B1 and B2.
Hence FJ meets the hyperplane {x1 = c}, and, by Corollary 2.6, the intersection
FJ ∩ {x1 = c} is a graph of a monotone map. Applying the induction hypothesis
in dimension n− 1, to the family (Fi ∩ {x1 = c})i∈I we obtain that FI ∩ {x1 = c}
is non-empty, which is a contradiction.

We next prove that FI is quasi-affine.
Let dim FI = p. By Lemma 2.10, there exists J ⊂ I with card J ≤ n − p such

that dim FJ = p. By the assumption of the theorem, FJ is the graph of a monotone
map, in particular, that map is quasi-affine. Since p < n, there exists i ∈ J such
that m := dim Fi < n. Assume Fi to be the graph of a monotone map defined on
the semi-monotone subset of the coordinate subspace T . Then dim T = m < n.

Let ρT : Rn → T be the projection map. Consider the family

F ′′ := (ρT (Fj ∩ Fi))j∈I .

Every intersection of at most m+1 members of F ′′ is the image under ρT of the
intersection of at most m + 2 ≤ n + 1 members of F . By the assumption of the
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theorem, each intersection of at most m+2 ≤ n+1 members of F is the non-empty
graph of a monotone map. Then, by Theorem 2.7, every intersection of at most
m + 1 elements of F ′′ is non-empty and is either the graph of a monotone map
or a semi-monotone set. The case when all intersections are semi-monotone sets
is trivial, so assume that some of them are graphs of a monotone maps. Applying
the induction hypothesis (with respect to n) to the family F ′′ we obtain that the
intersection, F ′′

I is a graph of a monotone map defined on some semi-monotone
subset U ⊂ L where L is a coordinate subspace of T , and hence FI is the graph of
a definable map defined on U . This, together with the fact that FI is contained in
the graph FJ of a quasi-affine map, having the same dimension, implies that FI is
also quasi-affine.

It now follows from Theorem 2.5 that FI is the graph of a monotone map.
Finally, we prove the claim that if dim FJ ≥ d for each J ⊂ I, with card J ≤

n + 1, then dim FI ≥ d.
Since d < n, there exists i ∈ I, such that m := dimFi < n. Let T ⊂ Rn be a

coordinate subspace such that Fi is a graph over a non-empty semi-monotone subset
of T , and let dim T = m. Let ρT : Rn → T be the projection map, and consider the
family (ρT (Fj ∩Fi))j∈I . By assumption of the theorem and Theorem 2.5, we have
that for every subset J ⊂ I, with card J ≤ n, the family (ρT (Fj ∩ Fi))j∈I consists
of graphs of monotone maps, and every finite intersection of at most p + 1 ≤ n of
these sets is non-empty and also the graph of monotone map having a dimension
at least d. Using the induction hypothesis with respect to n, we conclude that

dim
⋂
j∈I

ρT (Fj ∩ Fi) ≥ d.

It follows that dim FI ≥ d. �
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