Isotypic decomposition of cohomology modules of symmetric semi-algebraic sets:
 Polynomial bounds on the multiplicities

Saugata Basu

Department of Mathematics
Purdue University, West Lafayette, IN
Dagstuhl Seminar, Jun 9, 2015 (joint work with Cordian Riener, Aalto University)

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $Z\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset R^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(H^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by
$b(S, \mathbb{F})=\sum_{i \geq 0} b_{i}(S, \mathbb{F})$.
- $b(S, \mathbb{F})$ is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset \mathrm{R}^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by
$b(S, \mathbb{F})=\sum_{i>0} b_{i}(S, \mathbb{F})$.
- $b(S, \mathbb{F})$ is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset \mathrm{R}^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by $b(S, \mathbb{F})=\sum_{i \geq 0} b_{i}(S, \mathbb{F})$.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set
in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for
example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences)

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset \mathrm{R}^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by $b(S, \mathbb{F})=\sum_{i \geq 0} b_{i}(S, \mathbb{F})$.
- $b(S, \mathbb{F})$ is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set
in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for
example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences)

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset \mathrm{R}^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by $b(S, \mathbb{F})=\sum_{i \geq 0} b_{i}(S, \mathbb{F})$.
- $b(S, \mathbb{F})$ is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences)

Basic definitions

- Throughout, R will denote a real closed field.
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given any semi-algebraic subset $S \subset \mathrm{R}^{k}$ we will denote by $b_{i}(S, \mathbb{F})=\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{i}(S, \mathbb{F})\right.$ (i.e. the dimension of the i-th cohomology group of S with coefficients in \mathbb{F} assumed to be of characterisic 0), and we will denote by $b(S, \mathbb{F})=\sum_{i \geq 0} b_{i}(S, \mathbb{F})$.
- $b(S, \mathbb{F})$ is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F})$ follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in R\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(Z\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F}$) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in R\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(Z\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F})$ follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(\mathrm{Z}\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F})$ follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(\mathrm{Z}\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F})$ follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleǐnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(\mathrm{Z}\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds on the Betti numbers

- Doubly exponential (in k) bounds on $b(S, \mathbb{F})$ follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history - Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) - for real algebraic varieties and basic closed semi-algebraic sets.
- More precisely, if $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}(P) \leq d$, then $b\left(\mathrm{Z}\left(P, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- For example, $b_{0}\left(V_{d, k} / S_{k}, \mathbb{F}\right)=\binom{k+d-1}{d-1}_{\text {a }}=O(k)^{d} . \bar{\equiv}$

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and $V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly

exponential in k.

- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and
$V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such
a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and
$V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
degrees are "simple". For example, for every fixed degree
d there is a polynomial-time algorithm to test whether such
a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not
so simple.
- For fixed degree symmetric polynomials, the Betti numbers
of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and
$V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are oolynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and
$V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and
$V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).

Lower bounds on the Betti numbers

- For any fixed $d \geq 3$, we have singly exponential lower bound.
- Let $F_{d, k}=\sum_{i=1}^{k}\left(\prod_{j=1}^{d}\left(X_{i}-j\right)\right)^{2}-\varepsilon$, and $V_{d, k}=\mathrm{Z}\left(F_{k, d}, \mathrm{R}\langle\varepsilon\rangle^{k}\right)$.
- $b_{0}\left(V_{d, k}, \mathbb{F}\right)=b_{k-1}\left(V_{d, k}, \mathbb{F}\right)=d^{k}$, which is singly exponential in k.
- Notice moreover that each $F_{d, k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- For example, $b_{0}\left(V_{d, k} / \mathfrak{S}_{k}, \mathbb{F}\right)=\binom{k+d-1}{d-1}=O(k)^{d}$.

Representations of finite groups

- A representation of G over a field \mathbb{F} (assumed to be of characteristic 0) is a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$ for some \mathbb{F}-vector space V. It is usual to refer to the representation ρ by V.

- A representation $\rho: G \rightarrow G L(V)$ is said to be irreducible iff the only G-invariant subspaces are 0 and V.
 - The set, $\operatorname{Irred}(G, \mathbb{F})$, of (equivalence classes of) irreducible representations of G over \mathbb{F}, is finite.
 - Every finite dimensional representation V of G admits a canonical direct sum decomposition

$W \in \operatorname{Irred}(G, \mathbb{F})$

Representations of finite groups

- A representation of G over a field \mathbb{F} (assumed to be of characteristic 0) is a homomorphism $\rho: G \rightarrow \operatorname{GL}(V)$ for some \mathbb{F}-vector space V. It is usual to refer to the representation ρ by V.
- A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is said to be irreducible iff the only G-invariant subspaces are 0 and V.
representations of G over \mathbb{F}, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

Representations of finite groups

- A representation of G over a field \mathbb{F} (assumed to be of characteristic 0) is a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$ for some \mathbb{F}-vector space V. It is usual to refer to the representation ρ by V.
- A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is said to be irreducible iff the only G-invariant subspaces are 0 and V.
- The set, $\operatorname{Irred}(G, \mathbb{F})$, of (equivalence classes of) irreducible representations of G over \mathbb{F}, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

where $V_{W} \cong_{G} m_{W} W$. The components V_{W} are called the isotypic components, and m_{W} the multiplicity of the irreducible W in V.

Representations of finite groups

- A representation of G over a field \mathbb{F} (assumed to be of characteristic 0) is a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$ for some \mathbb{F}-vector space V. It is usual to refer to the representation ρ by V.
- A representation $\rho: G \rightarrow \operatorname{GL}(V)$ is said to be irreducible iff the only G-invariant subspaces are 0 and V.
- The set, $\operatorname{Irred}(G, \mathbb{F})$, of (equivalence classes of) irreducible representations of G over \mathbb{F}, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$
V=\bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_{W},
$$

where $V_{W} \cong_{G} m_{W} W$. The components V_{W} are called the isotypic components, and m_{W} the multiplicity of the irreducible W in V.

Representations of finite groups

- A representation of G over a field \mathbb{F} (assumed to be of characteristic 0) is a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$ for some \mathbb{F}-vector space V. It is usual to refer to the representation ρ by V.
- A representation $\rho: G \rightarrow \operatorname{GL}(V)$ is said to be irreducible iff the only G-invariant subspaces are 0 and V.
- The set, $\operatorname{Irred}(G, \mathbb{F})$, of (equivalence classes of) irreducible representations of G over \mathbb{F}, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$
V=\bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_{W},
$$

where $V_{W} \cong_{G} m_{W} W$. The components V_{W} are called the isotypic components, and m_{W} the multiplicity of the irreducible W in V.

- Clearly, $\operatorname{dim}_{\mathbb{F}}(V)=\sum_{W \in \operatorname{Irred}(G, \mathbb{F})} m_{W} \operatorname{dim}_{\mathbb{F}}(W)$.

Partitions, Young diagrams and dominance ordering

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ with $\lambda_{1}+\cdots+\lambda_{\ell}=k$.
- We denote by $\operatorname{Par}(k)$ the set of partitions of k.
- We denote by Young (λ) the Young diagram associated with
- For example, Young $((4,2,1))$ is given by

- For any two partitions

$\mu \unrhd \lambda$, if for each $i \geq 0, \mu_{1}+\cdots+\mu_{i} \geq \lambda_{1}+\cdots+\lambda_{i}$. This is
a partial order (called the dominance order).

Partitions, Young diagrams and dominance ordering

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ with $\lambda_{1}+\cdots+\lambda_{\ell}=k$.
- We denote by $\operatorname{Par}(k)$ the set of partitions of k.
- We denote by Young (λ) the Young diagram associated with
- For example, Young $((4,2,1))$ is given by
- For any two partitions
$\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \operatorname{Par}(k)$, we say that
$\mu \unrhd \lambda$, if for each $I \geq 0, \mu_{1}+\cdots+\mu_{i} \geq \lambda_{1}+\cdots+\lambda_{i}$. This IS
a partial order (called the dominance order).

Partitions, Young diagrams and dominance ordering

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ with $\lambda_{1}+\cdots+\lambda_{\ell}=k$.
- We denote by $\operatorname{Par}(k)$ the set of partitions of k.
- We denote by Young (λ) the Young diagram associated with λ.
- For example, Young $((4,2,1))$ is given by
- For any two partitions
$\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \operatorname{Par}(k)$, we say that
a partial order (called the dominance order).

Partitions, Young diagrams and dominance ordering

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ with $\lambda_{1}+\cdots+\lambda_{\ell}=k$.
- We denote by $\operatorname{Par}(k)$ the set of partitions of k.
- We denote by Young (λ) the Young diagram associated with λ.
- For example, $\operatorname{Young}((4,2,1))$ is given by

- For any two partitions
$\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \lambda=\left(\lambda_{1}, \lambda_{2} \ldots\right) \in \operatorname{Par}(k)$, we say that
a partial order (called the dominance order).

Partitions, Young diagrams and dominance ordering

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$ with $\lambda_{1}+\cdots+\lambda_{\ell}=k$.
- We denote by $\operatorname{Par}(k)$ the set of partitions of k.
- We denote by Young (λ) the Young diagram associated with λ.
- For example, $\operatorname{Young}((4,2,1))$ is given by

- For any two partitions
$\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \operatorname{Par}(k)$, we say that $\mu \unrhd \lambda$, if for each $i \geq 0, \mu_{1}+\cdots+\mu_{i} \geq \lambda_{1}+\cdots+\lambda_{i}$. This is a partial order (called the dominance order).

Dominance order on $\operatorname{Par}(6)$

Semi-standard tableau, Kostka numbers

- Given partitions $\mu, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots,\right) \vdash k$, a semi-standard tableau of shape μ and content λ is a Young diagram in Young (μ) with entries in the boxes which are non-decreasing along rows and increasing along columns - and for each $i>0$, the number of i 's is equal to λ_{i}.
- For example,

is a semi-standard of shape $(4,2,1)$ and content $(3,3,1)$.
- For $\lambda, \mu \vdash k$, the Kostka number $K(\mu, \lambda)$ is the number of
semi-standard Young tableux of shape μ and content λ.
- Fact: for all $\mu, \lambda \vdash k, K(\mu, \mu)=K((k), \mu)=1$, and
$K(\mu, \lambda) \neq 0$ iff $\mu \unrhd \lambda$.

Semi-standard tableau, Kostka numbers

- Given partitions $\mu, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots,\right) \vdash k$, a semi-standard tableau of shape μ and content λ is a Young diagram in Young (μ) with entries in the boxes which are non-decreasing along rows and increasing along columns - and for each $i>0$, the number of i 's is equal to λ_{i}.
- For example,

\[

\]

is a semi-standard of shape $(4,2,1)$ and content $(3,3,1)$.
semi-standard Young tableux of shape μ and content λ.

Semi-standard tableau, Kostka numbers

- Given partitions $\mu, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots,\right) \vdash k$, a semi-standard tableau of shape μ and content λ is a Young diagram in Young (μ) with entries in the boxes which are non-decreasing along rows and increasing along columns - and for each $i>0$, the number of i 's is equal to λ_{i}.
- For example,

1	1	1	2
2	2		
3			

is a semi-standard of shape $(4,2,1)$ and content $(3,3,1)$.

- For $\lambda, \mu \vdash k$, the Kostka number $K(\mu, \lambda)$ is the number of semi-standard Young tableux of shape μ and content λ.

Semi-standard tableau, Kostka numbers

- Given partitions $\mu, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots,\right) \vdash k$, a semi-standard tableau of shape μ and content λ is a Young diagram in Young (μ) with entries in the boxes which are non-decreasing along rows and increasing along columns - and for each $i>0$, the number of i 's is equal to λ_{i}.
- For example,

1	1	1	2
2	2		
3			

is a semi-standard of shape $(4,2,1)$ and content $(3,3,1)$.

- For $\lambda, \mu \vdash k$, the Kostka number $K(\mu, \lambda)$ is the number of semi-standard Young tableux of shape μ and content λ.
- Fact: for all $\mu, \lambda \vdash k, K(\mu, \mu)=K((k), \mu)=1$, and $K(\mu, \lambda) \neq 0$ iff $\mu \unrhd \lambda$.

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- The dimension of \mathbb{S}^{λ} equals the number of standard of Young tableau of shape λ. Its also give by the hook length formula below.
- For a box b in the Young diagram, Young (λ), of a partition λ, let h_{b} denote the length of the the hook of bi.e. h_{b} is the number of boxes in Young (λ) strictly to the right and below b plus 1

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)}=\mathbf{1}_{\mathfrak{S}_{k}}, \mathbb{S}^{\left(1^{k}\right)}=\operatorname{sign}_{\mathfrak{S}_{k}}$.

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)}=\mathbf{1}_{\mathfrak{S}_{k}}, \mathbb{S}^{\left(1^{k}\right)}=\operatorname{sign}_{\mathfrak{S}_{k}}$.
- The dimension of \mathbb{S}^{λ} equals the number of standard of Young tableau of shape λ. Its also give by the hook length formula below.

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)}=\mathbf{1}_{\mathfrak{S}_{k}}, \mathbb{S}^{\left(1^{k}\right)}=\operatorname{sign}_{\mathfrak{S}_{k}}$.
- The dimension of \mathbb{S}^{λ} equals the number of standard of Young tableau of shape λ. Its also give by the hook length formula below.
- For a box b in the Young diagram, Young (λ), of a partition λ, let h_{b} denote the length of the the hook of b i.e. h_{b} is the number of boxes in Young (λ) strictly to the right and below b plus 1.

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)}=\mathbf{1}_{\mathfrak{S}_{k}}, \mathbb{S}^{\left(1^{k}\right)}=\operatorname{sign}_{\mathfrak{S}_{k}}$.
- The dimension of \mathbb{S}^{λ} equals the number of standard of Young tableau of shape λ. Its also give by the hook length formula below.
- For a box b in the Young diagram, Young (λ), of a partition λ, let h_{b} denote the length of the the hook of b i.e. h_{b} is the number of boxes in Young (λ) strictly to the right and below b plus 1.
- Hook length formula:

$$
\operatorname{dim}_{\mathbb{F}} \mathbb{S}^{\lambda}=\frac{k!}{\prod_{b \in \operatorname{Young}(\lambda)} h_{b}}
$$

Irreducible representations of \mathfrak{S}_{k}

- The irreducible representations (also called Specht modules) of \mathfrak{S}_{k} are in 1-1 correspondence with the set, $\operatorname{Par}(k)$, of partitions of k.
- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{Par}(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)}=\mathbf{1}_{\mathfrak{S}_{k}}, \mathbb{S}^{\left(1^{k}\right)}=\operatorname{sign}_{\mathfrak{S}_{k}}$.
- The dimension of \mathbb{S}^{λ} equals the number of standard of Young tableau of shape λ. Its also give by the hook length formula below.
- For a box b in the Young diagram, Young (λ), of a partition λ, let h_{b} denote the length of the the hook of b i.e. h_{b} is the number of boxes in Young (λ) strictly to the right and below b plus 1.
- Hook length formula:

$$
\operatorname{dim}_{\mathbb{F}} \mathbb{S}^{\lambda}=\frac{k!}{\prod_{b \in \operatorname{Young}(\lambda)} h_{b}}
$$

- $\operatorname{dim}_{\mathbb{F}} \mathbb{S}^{(k)}=\operatorname{dim}_{\mathbb{F}} \mathbb{S}^{1^{k}}=1$.

Young modules and Specht modules

- For $\lambda \vdash k$, we will denote

$$
M^{\lambda}=\operatorname{Ind}_{\mathfrak{G}_{\lambda}}^{\mathfrak{S}_{k}}\left(\mathbf{1}_{\mathfrak{S}_{\lambda}}\right)
$$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_{k} on the set of cosets in \mathfrak{S}_{k} of the subgroup \mathfrak{S}_{λ}.

- (Young's theorem)

- For example:

Young modules and Specht modules

- For $\lambda \vdash k$, we will denote

$$
M^{\lambda}=\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}\left(\mathbf{1}_{\mathfrak{S}_{\lambda}}\right)
$$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_{k} on the set of cosets in \mathfrak{S}_{k} of the subgroup \mathfrak{S}_{λ}.

- Clearly, $\operatorname{dim}_{\mathbb{F}} M^{\lambda}=\binom{k}{\lambda}$.
- For example:

Young modules and Specht modules

- For $\lambda \vdash k$, we will denote

$$
M^{\lambda}=\operatorname{Ind}_{\mathfrak{G}_{\lambda}}^{\mathfrak{S}_{k}}\left(\mathbf{1}_{\mathfrak{S}_{\lambda}}\right)
$$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_{k} on the set of cosets in \mathfrak{S}_{k} of the subgroup \mathfrak{S}_{λ}.

- Clearly, $\operatorname{dim}_{\mathbb{F}} M^{\lambda}=\binom{k}{\lambda}$.
- (Young's theorem)

$$
M^{\lambda} \cong_{\mathfrak{S}_{k}} \bigoplus_{\mu \unrhd \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}
$$

- For example:

Young modules and Specht modules

- For $\lambda \vdash k$, we will denote

$$
M^{\lambda}=\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}\left(\mathbf{1}_{\mathfrak{S}_{\lambda}}\right)
$$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_{k} on the set of cosets in \mathfrak{S}_{k} of the subgroup \mathfrak{S}_{λ}.

- Clearly, $\operatorname{dim}_{\mathbb{F}} M^{\lambda}=\binom{k}{\lambda}$.
- (Young's theorem)

$$
M^{\lambda} \cong_{\mathfrak{S}_{k}} \bigoplus_{\mu \unrhd \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}
$$

- For example:

$$
\begin{gathered}
M^{(k)} \cong \mathfrak{S}_{k} \mathbb{S}^{(k)} \cong \mathfrak{S}_{k} \mathbf{1}_{\mathfrak{S}_{k}}, \\
M^{1^{k}} \cong \mathfrak{S}_{k} \bigoplus_{\mu \vdash k} \operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}^{\mu}\right) \mathbb{S}^{\mu} \cong \mathfrak{S}_{k} \mathbb{F}\left[\mathfrak{S}_{k}\right] .
\end{gathered}
$$

Action of a finite group on a space X

- Let a finite group G act on a topological space X.
- The action of G on X induces an action of G on the cohomology group $\mathrm{H}^{*}(X, \mathbb{F})$, making $\mathrm{H}^{*}(X, \mathbb{F})$ into a G-module.
- If card (G) is invertible in \mathbb{F} (and so in particular, if \mathbb{F} is a field of characteristic 0) we have the isomorphisms

$$
H^{*}(X / G, \mathbb{F}) \xrightarrow{\sim} H_{G}^{*}(X, \mathbb{F}) \xrightarrow{\sim} H^{*}(X, \mathbb{F})^{G} .
$$

- In particular, if $S \subset \mathrm{R}^{k}$, is a symmetric semi-algebraic set, $\mathrm{H}^{*}(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_{k}-module, and

$$
\mathrm{H}_{\mathfrak{S}_{k}}^{*}(S, \mathbb{F}) \cong \mathrm{H}^{*}(S, \mathbb{F})^{\mathfrak{S}_{k}} .
$$

Action of a finite group on a space X

- Let a finite group G act on a topological space X.
- The action of G on X induces an action of G on the cohomology group $\mathrm{H}^{*}(X, \mathbb{F})$, making $\mathrm{H}^{*}(X, \mathbb{F})$ into a G-module.
- If card (G) is invertible in \mathbb{F} (and so in particular, if \mathbb{F} is a field of characteristic 0) we have the isomorphisms

- In particular, if $S \subset \mathrm{R}^{k}$, is a symmetric semi-algebraic set, $\mathrm{H}^{*}(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_{k}-module, and

$$
\mathrm{H}_{\mathfrak{S}_{k}}^{*}(S, \mathbb{F}) \cong \mathrm{H}^{*}(S, \mathbb{F})^{\mathfrak{S}_{k}}
$$

Action of a finite group on a space X

- Let a finite group G act on a topological space X.
- The action of G on X induces an action of G on the cohomology group $\mathrm{H}^{*}(X, \mathbb{F})$, making $\mathrm{H}^{*}(X, \mathbb{F})$ into a G-module.
- If $\operatorname{card}(G)$ is invertible in \mathbb{F} (and so in particular, if \mathbb{F} is a field of characteristic 0) we have the isomorphisms

$$
\mathrm{H}^{*}(X / G, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}_{G}^{*}(X, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{*}(X, \mathbb{F})^{G} .
$$

- In particular, if $S \subset \mathrm{R}^{k}$, is a symmetric semi-algebraic set, $\mathrm{H}^{*}(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_{k}-module, and

Action of a finite group on a space X

- Let a finite group G act on a topological space X.
- The action of G on X induces an action of G on the cohomology group $\mathrm{H}^{*}(X, \mathbb{F})$, making $\mathrm{H}^{*}(X, \mathbb{F})$ into a G-module.
- If card (G) is invertible in \mathbb{F} (and so in particular, if \mathbb{F} is a field of characteristic 0) we have the isomorphisms

$$
\mathrm{H}^{*}(X / G, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}_{G}^{*}(X, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{*}(X, \mathbb{F})^{G}
$$

- In particular, if $S \subset \mathrm{R}^{k}$, is a symmetric semi-algebraic set, $\mathrm{H}^{*}(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_{k}-module, and

$$
\mathrm{H}_{\mathfrak{S}_{k}}^{*}(S, \mathbb{F}) \cong \mathrm{H}^{*}(S, \mathbb{F})^{\mathfrak{S}_{k}}
$$

Key example

- Let

$$
\begin{gathered}
F_{k}=\sum_{i=1}^{k}\left(X_{i}\left(X_{i}-1\right)\right)^{2}-\varepsilon \\
V_{k}=\mathrm{Z}\left(F_{k}, \mathrm{R}^{k}\right)
\end{gathered}
$$

where for $0 \leq i \leq k, V_{k, i}$ is the \mathfrak{S}_{k}-orbit of the connected component of V_{k} infinitesimally close (as a function of ε) to the point $\mathbf{x}^{i}=(\underbrace{0, \ldots, 0}_{i}, \underbrace{1, \ldots, 1}_{k-i})$, and $\mathrm{H}^{0}\left(V_{k, i}, \mathbb{F}\right)$ is an
invariant subspace of $\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right)$.

Key example

- Let

$$
\begin{gathered}
F_{k}=\sum_{i=1}^{k}\left(X_{i}\left(X_{i}-1\right)\right)^{2}-\varepsilon \\
V_{k}=\mathrm{Z}\left(F_{k}, \mathrm{R}^{k}\right)
\end{gathered}
$$

$$
\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) \cong \bigoplus_{0 \leq i \leq k} \mathrm{H}^{0}\left(V_{k, i}, \mathbb{F}\right)
$$

where for $0 \leq i \leq k, V_{k, i}$ is the \mathfrak{S}_{k}-orbit of the connected component of V_{k} infinitesimally close (as a function of ε) to the point $\mathbf{x}^{i}=(\underbrace{0, \ldots, 0}_{i}, \underbrace{1, \ldots, 1}_{k-i})$, and $\mathrm{H}^{0}\left(V_{k, i}, \mathbb{F}\right)$ is an
invariant subspace of $\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right)$.

Key example (cont).

- The isotropy subgroup of the point \mathbf{x}^{i} under the action of \mathfrak{S}_{k} is $\mathfrak{S}_{i} \times \mathfrak{S}_{k-i}$, and orbit $\left(\mathbf{x}^{i}\right)$ is thus in 1-1 correspondence with the cosets of the subgroup $\mathfrak{S}_{i} \times \mathfrak{S}_{k-i}$.
- It now follows from the definition of Young's module:

Key example (cont).

- The isotropy subgroup of the point \mathbf{x}^{i} under the action of \mathfrak{S}_{k} is $\mathfrak{S}_{i} \times \mathfrak{S}_{k-i}$, and orbit $\left(\mathbf{x}^{i}\right)$ is thus in 1-1 correspondence with the cosets of the subgroup $\mathfrak{S}_{i} \times \mathfrak{S}_{k-i}$.
- It now follows from the definition of Young's module:

$$
\begin{aligned}
\mathrm{H}^{0}\left(V_{k, i}, \mathbb{F}\right) & \cong_{\mathfrak{S}_{k}} \quad M^{(i, k-i)} \text { if } i \geq k-i, \\
& \cong_{\mathfrak{S}_{k}} \quad M^{(k-i, i)} \text { otherwise } .
\end{aligned}
$$

Key example (cont).

- It follows that for k odd,

$$
\begin{aligned}
& \mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) \cong_{\mathfrak{S}_{k}} \bigoplus_{\substack{\lambda \vdash-k \\
\ell(\lambda) \leq 2}}\left(M^{\lambda} \oplus M^{\lambda}\right) \\
& \cong \mathfrak{S}_{k} \bigoplus_{\substack{\lambda \vdash-k \\
\ell(\lambda) \leq 2}} \bigoplus_{\mu \unrhd \lambda} 2 K(\mu, \lambda) \mathbb{S}^{\mu} \\
& \cong_{S_{k}} \bigoplus_{\substack{\lambda \vdash k \\
\ell(\lambda) \leq 2}} \bigoplus_{\mu \unrhd \lambda} 2 \mathbb{S}^{\mu} \\
& \cong \mathfrak{S}_{k} \\
& \bigoplus_{\substack{\mu \vdash k \\
\ell(\mu) \leq 2}} m_{0, \mu} \mathbb{S}^{\mu}
\end{aligned}
$$

where for each $\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k$,

$$
\begin{aligned}
m_{0, \mu} & =2\left(\mu_{1}-\lfloor k / 2\rfloor\right) \\
& =2 \mu_{1}-k+1 \\
& =\mu_{1}-\mu_{2}+1
\end{aligned}
$$

Key example (cont).

- For k even:

$$
\begin{aligned}
\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) & \cong \mathfrak{S}_{k} \quad M^{(k / 2, k / 2)} \oplus\left(\bigoplus_{\substack{\lambda \vdash k \\
\ell(\lambda) \leq 2 \\
\lambda \neq(k / 2, k / 2)}}\left(M^{\lambda} \oplus M^{\lambda}\right)\right) \\
& \cong \mathfrak{S}_{k} \bigoplus_{\substack{\mu \vdash k \\
\ell(\mu) \leq 2}} m_{0, \mu} \mathbb{S}^{\mu},
\end{aligned}
$$

where for each $\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k$,

$$
\begin{aligned}
m_{0, \mu} & =2\left(\mu_{1}-k / 2\right)+1 \\
& =\mu_{1}-\mu_{2}+1
\end{aligned}
$$

- We deduce for all k,

Key example (cont).

- For k even:

$$
\begin{aligned}
\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) & \cong \mathfrak{S}_{k} \quad M^{(k / 2, k / 2)} \oplus\left(\bigoplus_{\substack{\lambda \vdash k \\
\ell(\lambda) \leq 2 \\
\lambda \neq(k / 2, k / 2)}}\left(M^{\lambda} \oplus M^{\lambda}\right)\right) \\
& \cong \mathfrak{S}_{k} \bigoplus_{\substack{\mu \vdash k \\
\ell(\mu) \leq 2}} m_{0, \mu} \mathbb{S}^{\mu}
\end{aligned}
$$

where for each $\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k$,

$$
\begin{aligned}
m_{0, \mu} & =2\left(\mu_{1}-k / 2\right)+1 \\
& =\mu_{1}-\mu_{2}+1
\end{aligned}
$$

- We deduce for all k,

$$
\begin{aligned}
m_{0, \mu} & =\mu_{1}-\mu_{2}+1 \\
& \leq k+1
\end{aligned}
$$

\mathfrak{S}_{k}-equivariant Poincaré duality

What about $\mathrm{H}^{k-1}\left(V_{k}, \mathbb{F}\right)$?

This implies in our example that

\mathfrak{S}_{k}-equivariant Poincaré duality

What about $\mathrm{H}^{k-1}\left(V_{k}, \mathbb{F}\right)$?
Theorem
Let $V \subset \mathrm{R}^{k}$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_{k} on R^{k}. Then, for each $p, 0 \leq p \leq k-1$, there is a \mathfrak{S}_{k}-module isomorphism

$$
\mathrm{H}^{p}(V, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V, \mathbb{F}) \otimes \boldsymbol{\operatorname { s i g n }}_{k} .
$$

This implies in our example that

\mathfrak{S}_{k}-equivariant Poincaré duality

What about $\mathrm{H}^{k-1}\left(V_{k}, \mathbb{F}\right)$?
Theorem
Let $V \subset \mathrm{R}^{k}$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_{k} on R^{k}. Then, for each $p, 0 \leq p \leq k-1$, there is a \mathfrak{S}_{k}-module isomorphism

$$
\mathrm{H}^{p}(V, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V, \mathbb{F}) \otimes \boldsymbol{\operatorname { s i g n }}_{k} .
$$

This implies in our example that

\mathfrak{S}_{k}-equivariant Poincaré duality

What about $\mathrm{H}^{k-1}\left(V_{k}, \mathbb{F}\right)$?
Theorem
Let $V \subset \mathrm{R}^{k}$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_{k} on R^{k}. Then, for each $p, 0 \leq p \leq k-1$, there is a \mathfrak{S}_{k}-module isomorphism

$$
\mathrm{H}^{p}(V, \mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V, \mathbb{F}) \otimes \boldsymbol{\operatorname { s i g n }}_{k} .
$$

This implies in our example that

$$
\mathrm{H}^{k-1}\left(V_{k}, \mathbb{F}\right) \cong \bigoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0, \mu} \mathbb{S}^{\tilde{\mu}}
$$

Key example (cont).

In particular for $k=2,3$ we have:

$$
\begin{aligned}
& \mathrm{H}^{0}\left(V_{2}, \mathbb{F}\right) \cong_{\mathfrak{S}_{2}} \quad 3 \mathbb{S}^{(2)} \oplus \mathbb{S}^{(1,1)} \text {, } \\
& \mathrm{H}^{0}\left(V_{3}, \mathbb{F}\right) \cong_{\mathfrak{S}_{3}} 4 \mathbb{S}^{(3)} \oplus 2 \mathbb{S}^{(2,1)} \text {, } \\
& H^{1}\left(V_{2}, \mathbb{F}\right) \cong_{\mathfrak{S}_{2}} \quad 3 \mathbb{S}^{(1,1)} \oplus \mathbb{S}^{(2)} \text {, } \\
& \mathrm{H}^{2}\left(V_{3}, \mathbb{F}\right) \cong_{\mathfrak{S}_{3}} 4 \mathbb{S}^{(1,1,1)} \oplus 2 \mathbb{S}^{(2,1)} .
\end{aligned}
$$

Key example (cont).

- For $\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k$, by the hook-length formula we have,

$$
\operatorname{dim} \mathbb{S}^{\mu}=\frac{k!\left(\mu_{1}-\mu_{2}+1\right)}{\left(\mu_{1}+1\right)!\mu_{2}!}
$$

- Since $\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) \cong_{\mathfrak{S}_{k}} \bigoplus_{\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k} m_{0, \mu} \mathbb{S}^{\mu}$, and hence $\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right)=\sum_{\mu=\left(\mu_{1}, \mu_{0}\right) \vdash-k} m_{0, \mu} \operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}^{\mu}\right)=2^{k}\right.$, we obtain as a consequence the identity

Key example (cont).

- For $\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k$, by the hook-length formula we have,

$$
\operatorname{dim} \mathbb{S}^{\mu}=\frac{k!\left(\mu_{1}-\mu_{2}+1\right)}{\left(\mu_{1}+1\right)!\mu_{2}!}
$$

- Since $\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right) \cong_{\mathfrak{S}_{k}} \bigoplus_{\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k} m_{0, \mu} \mathbb{S}^{\mu}$, and hence $\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{0}\left(V_{k}, \mathbb{F}\right)=\sum_{\mu=\left(\mu_{1}, \mu_{2}\right) \vdash k} m_{0, \mu} \operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}^{\mu}\right)=2^{k}\right.$, we obtain as a consequence the identity

$$
k!\left(\sum_{\substack{\mu_{1} \geq \mu_{2} \geq 0 \\ \mu_{1}+\mu_{2}=k}} \frac{\left(\mu_{1}-\mu_{2}+1\right)^{2}}{\left(\mu_{1}+1\right)!\mu_{2}!}\right)=2^{k}
$$

Previous Results

Theorem (B., Riener (2013))
Let $P \in R\left[X_{1}, \ldots, X_{k}\right]$, be non-negative polynomial of degree bounded by d, and and such that $V=\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ is invariant under the action of \mathfrak{S}_{k}. Then,

$$
b\left(V / \mathfrak{S}_{k}, \mathbb{F}\right) \leq(k)^{2 d}(O(d))^{2 d+1}
$$

Note that $\mathrm{H}^{*}\left(V / \mathfrak{S}_{k}, \mathbb{F}\right)$ is isomorphic to the isotypic component
of $\mathrm{H}^{*}(V, \mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_{k}}$, and
$b\left(V / S_{k}, \mathbb{F}\right)$ is its multiplicity.

Previous Results

Theorem (B., Riener (2013))
Let $P \in R\left[X_{1}, \ldots, X_{k}\right]$, be non-negative polynomial of degree bounded by d, and and such that $V=\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ is invariant under the action of \mathfrak{S}_{k}. Then,

$$
b\left(V / \mathfrak{S}_{k}, \mathbb{F}\right) \leq(k)^{2 d}(O(d))^{2 d+1}
$$

Note that $\mathrm{H}^{*}\left(V / \mathfrak{S}_{k}, \mathbb{F}\right)$ is isomorphic to the isotypic component
of $\mathrm{H}^{*}(V, \mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_{k}}$, and
$b\left(V / S_{k}, \mathbb{F}\right)$ is its multiplicity.

Previous Results

Theorem (B., Riener (2013))
Let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, be non-negative polynomial of degree bounded by d, and and such that $V=\mathrm{Z}\left(P, \mathrm{R}^{k}\right)$ is invariant under the action of \mathfrak{S}_{k}. Then,

$$
b\left(V / \mathfrak{S}_{k}, \mathbb{F}\right) \leq(k)^{2 d}(O(d))^{2 d+1} .
$$

Note that $\mathrm{H}^{*}\left(V / \mathfrak{S}_{k}, \mathbb{F}\right)$ is isomorphic to the isotypic component of $\mathrm{H}^{*}(V, \mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_{k}}$, and $b\left(V / \mathfrak{S}_{k}, \mathbb{F}\right)$ is its multiplicity.

More notation

- For any \mathfrak{S}_{k}-symmetric semi-algebraic subset $S \subset \mathrm{R}^{k}$, and $\lambda \vdash k$, we denote

$$
\begin{aligned}
m_{i, \lambda}(S, \mathbb{F}) & =\operatorname{mult}\left(\mathbb{S}^{\lambda}, \mathrm{H}^{i}(S, \mathbb{F})\right) \\
m_{\lambda}(S, \mathbb{F}) & =\sum_{i \geq 0} m_{i, \lambda}(S, \mathbb{F})
\end{aligned}
$$

New Results

Theorem (B., Riener (2014))
Let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a \mathfrak{S}_{k}-symmetric polynomial, with $\operatorname{deg}(P) \leq d$. Let $V=\mathrm{Z}\left(P, \mathrm{R}^{K}\right)$. Then, for all $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right) \vdash k, m_{\mu}(V, \mathbb{F})>0$ implies that

$$
\operatorname{card}\left(\left\{i \mid \mu_{i} \geq 2 d\right\}\right) \leq 2 d, \operatorname{card}\left(\left\{j \mid \tilde{\mu}_{j} \geq 2 d\right\}\right) \leq 2 d
$$

Moreover, for

$$
m_{\mu}(V, \mathbb{F}) \leq k^{O\left(d^{2}\right)} d^{d} .
$$

Pictorially

Figure : The shaded area contains all Young diagrams of partitions in $\operatorname{Par}(k)$, while the darker area contains the Young diagrams of the partitions which can possibly appear in the $\mathrm{H}^{*}(V, \mathbb{F})$ for fixed d and large k.

Asymptotics

- Note that by a famous result of Hardy and Ramanujan (1918)

$$
\operatorname{card}(\operatorname{Par}(k)) \sim \frac{1}{4 \sqrt{3} k} e^{\pi \sqrt{\frac{2 k}{3}}}, k \rightarrow \infty
$$

which is exponential in k;

- whereas it follows from the last theorem that

$$
\operatorname{card}\left(\left\{\mu \vdash k \mid m_{\mu}(V, \mathbb{F})>0\right\}\right)
$$

is polynomially bounded in k (for fixed d).

Asymptotics

- Note that by a famous result of Hardy and Ramanujan (1918)

$$
\operatorname{card}(\operatorname{Par}(k)) \sim \frac{1}{4 \sqrt{3} k} e^{\pi \sqrt{\frac{2 k}{3}}}, k \rightarrow \infty
$$

which is exponential in k;

- whereas it follows from the last theorem that

$$
\operatorname{card}\left(\left\{\mu \vdash k \mid m_{\mu}(V, \mathbb{F})>0\right\}\right)
$$

is polynomially bounded in k (for fixed d).

Proof Ingredients

- Degree principle.
- Equivariant Morse theory, equivariant Mayer-Vietoris sequence.
- Some tableau combinatorics. Pieri's rule.

Proof Ingredients

- Degree principle.
- Equivariant Morse theory, equivariant Mayer-Vietoris sequence.
- Some tableau combinatorics. Pieri's rule.

Proof Ingredients

- Degree principle.
- Equivariant Morse theory, equivariant Mayer-Vietoris sequence.
- Some tableau combinatorics. Pieri's rule.

More results

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

- More general actions of the symmetric group - permuting blocks of size larger than one.
- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

More results

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

- More general actions of the symmetric group - permuting blocks of size larger than one.
- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

More results

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

- More general actions of the symmetric group - permuting blocks of size larger than one.
- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

More results

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

- More general actions of the symmetric group - permuting blocks of size larger than one.
- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

Algorithmic conjecture

Conjecture

For any fixed $d>0$, there is an algorithm that takes as input the description of a symmetric semi-algebraic set $S \subset \mathrm{R}^{k}$, defined by a \mathcal{P}-closed formula, where \mathcal{P} is a set symmetric polynomials of degrees bounded by d, and computes $m_{i, \lambda}(S, \mathbb{Q})$, for each $\lambda \vdash k$ with $m_{i, \lambda}(S, \mathbb{Q})>0$, as well as all the Betti numbers $b_{i}(S, \mathbb{Q})$, with complexity which is polynomial in $\operatorname{card}(\mathcal{P})$ and k.

Representational stability question

- Let $F \in \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{<d}^{\mathfrak{E}_{d}}$ be a symmetric polynomial of degree at most d, and let for $k \geq d$ $F_{k}=\phi_{d, k}(F) \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\Theta_{k}}$ where
$\phi_{d, k}: \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{\leq d}^{\mathcal{E}_{d}} \rightarrow \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\Im_{k}}$ is the canonical injection.
- Let $\left(V_{k}=Z\left(F_{k}, \mathrm{R}^{k}\right)_{k \geq d}\right.$ be the corresponding sequence of symmetrc real varieties.
- Also, let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash k_{0}$ be any fixed partition, and for all $k \geq k_{0}+\mu_{1}$, let $\{\mu\}_{k}=\left(k-k_{0}, \mu_{1}, \mu_{2}, \ldots, \mu_{e}\right) \vdash k$.
- It is a consequence of the hook-length formula that

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $\operatorname{deg}\left(P_{\mu}\right)=|\mu|$.

Representational stability question

- Let $F \in \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{<d}^{\mathfrak{E}_{d}}$ be a symmetric polynomial of degree at most d, and let for $k \geq d$ $F_{k}=\phi_{d, k}(F) \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\Theta_{k}}$ where
$\phi_{d, k}: \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{\leq d}^{\mathcal{E}_{d}} \rightarrow \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\Im_{k}}$ is the canonical injection.
- Let $\left(V_{k}=Z\left(F_{k}, \mathrm{R}^{k}\right)_{k \geq d}\right.$ be the corresponding sequence of symmetrc real varieties.
- Also, let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash k_{0}$ be any fixed partition, and for
- It is a consequence of the hook-length formula that
where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $\operatorname{deg}\left(P_{\mu}\right)=|\mu|$.

Representational stability question

- Let $F \in \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{<d}^{\mathfrak{E}_{d}}$ be a symmetric polynomial of degree at most d, and let for $k \geq d$ $F_{k}=\phi_{d, k}(F) \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\Theta_{k}}$ where
$\phi_{d, k}: \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{\leq d}^{\mathcal{E}_{d}} \rightarrow \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\mathcal{E}_{k}}$ is the canonical injection.
- Let $\left(V_{k}=Z\left(F_{k}, \mathrm{R}^{k}\right)_{k \geq d}\right.$ be the corresponding sequence of symmetrc real varieties.
- Also, let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash k_{0}$ be any fixed partition, and for all $k \geq k_{0}+\mu_{1}$, let $\{\mu\}_{k}=\left(k-k_{0}, \mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \vdash k$.
- It is a consequence of the hook-length formula that

Representational stability question

- Let $F \in \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{<d}^{\mathcal{E}_{d}}$ be a symmetric polynomial of degree at most d, and let for $k \geq d$ $F_{k}=\phi_{d, k}(F) \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\varsigma_{k}}$ where
$\phi_{d, k}: \mathrm{R}\left[X_{1}, \ldots, X_{d}\right]_{\leq d}^{\mathcal{S}_{d}} \rightarrow \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]^{\mathfrak{G}_{k}}$ is the canonical injection.
- Let $\left(V_{k}=Z\left(F_{k}, \mathrm{R}^{k}\right)_{k \geq d}\right.$ be the corresponding sequence of symmetrc real varieties.
- Also, let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash k_{0}$ be any fixed partition, and for all $k \geq k_{0}+\mu_{1}$, let $\{\mu\}_{k}=\left(k-k_{0}, \mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \vdash k$.
- It is a consequence of the hook-length formula that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}^{\{\mu\}_{k}}\right)=\frac{\operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}_{\mu}\right)}{|\mu|!} P_{\mu}(k),
$$

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $\operatorname{deg}\left(P_{\mu}\right)=|\mu|$.

Question

For any fixed number $p \geq 0$ we pose the following question.
Question
Does there exist a polynomial $P_{F, p, \mu}(k)$ such that for all sufficiently large $k, m_{p,\{\mu\}_{k}}\left(V_{k}, \mathbb{F}\right)=P_{F, p, \mu}(k)$? Note that a positive answer would imply that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{p}\left(V_{k}, \mathbb{F}\right)\right)_{\{\mu\}_{k}}=\frac{\operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}_{\mu}\right)}{|\mu|!} P_{F, p, \mu}(k) P_{\mu}(k)
$$

is also given by a polynomial for all large enough k. A stronger question is to ask for a bound on the degree of $P_{F, p, \mu}(k)$ as a function of d, μ and p.

Question

For any fixed number $p \geq 0$ we pose the following question.
Question
Does there exist a polynomial $P_{F, p, \mu}(k)$ such that for all sufficiently large $k, m_{p,\{\mu\}_{k}}\left(V_{k}, \mathbb{F}\right)=P_{F, p, \mu}(k)$? Note that a positive answer would imply that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{p}\left(V_{k}, \mathbb{F}\right)\right)_{\{\mu\}_{k}}=\frac{\operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}_{\mu}\right)}{|\mu|!} P_{F, p, \mu}(k) P_{\mu}(k)
$$

is also given by a polynomial for all large enough k. A stronger question is to ask for a bound on the degree of $P_{F, p, \mu}(k)$ as a function of d, μ and p.

Question

For any fixed number $p \geq 0$ we pose the following question.
Question
Does there exist a polynomial $P_{F, p, \mu}(k)$ such that for all sufficiently large $k, m_{p,\{\mu\}_{k}}\left(V_{k}, \mathbb{F}\right)=P_{F, p, \mu}(k)$? Note that a positive answer would imply that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathrm{H}^{p}\left(V_{k}, \mathbb{F}\right)\right)_{\{\mu\}_{k}}=\frac{\operatorname{dim}_{\mathbb{F}}\left(\mathbb{S}_{\mu}\right)}{|\mu|!} P_{F, p, \mu}(k) P_{\mu}(k)
$$

is also given by a polynomial for all large enough k.
A stronger question is to ask for a bound on the degree of $P_{F, p, \mu}(k)$ as a function of d, μ and p.
The conjecture holds in the "key example".

Reference

S. Basu, C. Riener. On the isotypic decomposition of the cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities. arXiv:1503.00138.

