Isotypic decomposition of cohomology modules of symmetric semi-algebraic sets: Polynomial bounds on the multiplicities

Saugata Basu

Department of Mathematics Purdue University, West Lafayette, IN

Dagstuhl Seminar, Jun 9, 2015 (joint work with Cordian Riener, Aalto University)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,..., X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- ▶ b(S, 𝔽) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- ► Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,..., X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- ▶ b(S, 𝔽) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- ► Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,...,X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- ▶ b(S, F) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- ► Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,...,X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- b(S, 𝔽) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,...,X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- b(S, ℙ) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- Throughout, R will denote a real closed field.
- ► Given P ∈ R[X₁,...,X_k] we denote by Z(P, R^k) the set of zeros of P in R^k.
- Given any semi-algebraic subset S ⊂ R^k we will denote by b_i(S, F) = dim_F(Hⁱ(S, F) (i.e. the dimension of the *i*-th cohomology group of S with coefficients in F assumed to be of characterisic 0), and we will denote by b(S, F) = ∑_{i≥0} b_i(S, F).
- b(S, ℙ) is an important measure of the "complexity" of a semi-algebaric set S.
- Upper bounds on Betti numbers of a semi-algebraic set translate into lower bounds for the membership in that set in cetain models of computations.
- Knowing very tight bounds on certain Betti numbers (for example, the 0-th Betti numbers) have become important for solving some hard problems in discrete geometry (for example, bounding incidences).

- Doubly exponential (in k) bounds on b(S, ℝ) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg $(P) \leq d$, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- Doubly exponential (in k) bounds on b(S, F) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg $(P) \leq d$, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- Doubly exponential (in k) bounds on b(S, F) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg(P) ≤ d, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- Doubly exponential (in k) bounds on b(S, F) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg(P) ≤ d, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- Doubly exponential (in k) bounds on b(S, F) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg(P) ≤ d, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- Doubly exponential (in k) bounds on b(S, F) follow from results on effective triangulation of semi-algebraic sets which in turn uses cylindrical algebraic decomposition.
- Singly exponential (in k) bounds: Long history Oleĭnik and Petrovskiĭ (1949), Thom, Milnor (1960s) – for real algebraic varieties and basic closed semi-algebraic sets.
- ▶ More precisely, if $P \in \mathbb{R}[X_1, ..., X_k]$ with deg(P) ≤ d, then $b(\mathbb{Z}(P, \mathbb{R}^k), \mathbb{F}) \leq d(2d-1)^{k-1}$.
- Main idea was to use Morse theory and counting critical points.
- Generalized to more general semi-algebraic sets (B-Pollack-Roy, Gabrielov-Vorobjov).
- Generalization uses additional tricks such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- ► Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R} \langle \varepsilon \rangle^k)$.
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- ▶ Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- ► For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R}\langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- ▶ Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R}\langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- ► Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = Z(F_{k,d}, R\langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- ► For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R}\langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- ► For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- ► Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R} \langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- ► For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- ► Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R} \langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- ► For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- For any fixed *d* ≥ 3, we have singly exponential lower bound.
- Let $F_{d,k} = \sum_{i=1}^{k} \left(\prod_{j=1}^{d} (X_i j) \right)^2 \varepsilon$, and $V_{d,k} = \mathbb{Z}(F_{k,d}, \mathbb{R}\langle \varepsilon \rangle^k).$
- ► $b_0(V_{d,k}, \mathbb{F}) = b_{k-1}(V_{d,k}, \mathbb{F}) = d^k$, which is singly exponential in *k*.
- Notice moreover that each $F_{d,k}$ is a symmetric polynomial.
- Symmetric varieties defined by polynomials of bounded degrees are "simple". For example, for every fixed degree d there is a polynomial-time algorithm to test whether such a variety is empty (Timofte, Riener).
- But clearly from the topological point of view they are not so simple.
- For fixed degree symmetric polynomials, the Betti numbers of the quotient of the variety (by the symmetric group) are polynomially bounded (B., Riener (2013)).
- For example, $b_0(V_{d,k}/\mathfrak{S}_k,\mathbb{F}) = \binom{k+d-1}{d-1} = O(k)^d$.

- A representation of G over a field F (assumed to be of characteristic 0) is a homomorphism ρ : G → GL(V) for some F-vector space V. It is usual to refer to the representation ρ by V.
- A representation ρ : G → GL(V) is said to be *irreducible* iff the only G-invariant subspaces are 0 and V.
- ► The set, Irred(G, F), of (equivalence classes of) irreducible representations of G over F, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$V = \bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_W,$$

where $V_W \cong_G m_W W$. The components V_W are called the *isotypic components*, and m_W the *multiplicity* of the irreducible *W* in *V*.

► Clearly, dim_{\mathbb{F}}(V) = $\sum_{W \in Irred(G,\mathbb{F})} m_W \dim_{\mathbb{F}}(W)$.

- A representation of G over a field F (assumed to be of characteristic 0) is a homomorphism ρ : G → GL(V) for some F-vector space V. It is usual to refer to the representation ρ by V.
- A representation ρ : G → GL(V) is said to be *irreducible* iff the only G-invariant subspaces are 0 and V.
- ► The set, Irred(G, F), of (equivalence classes of) irreducible representations of G over F, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$V = \bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_W,$$

where $V_W \cong_G m_W W$. The components V_W are called the *isotypic components*, and m_W the *multiplicity* of the irreducible *W* in *V*.

► Clearly, dim_{\mathbb{F}}(V) = $\sum_{W \in Irred(G,\mathbb{F})} m_W \dim_{\mathbb{F}}(W)$.

- A representation of G over a field F (assumed to be of characteristic 0) is a homomorphism ρ : G → GL(V) for some F-vector space V. It is usual to refer to the representation ρ by V.
- A representation ρ : G → GL(V) is said to be *irreducible* iff the only G-invariant subspaces are 0 and V.
- ► The set, Irred(G, F), of (equivalence classes of) irreducible representations of G over F, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$V = \bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_W,$$

where $V_W \cong_G m_W W$. The components V_W are called the *isotypic components*, and m_W the *multiplicity* of the irreducible *W* in *V*.

► Clearly, $\dim_{\mathbb{F}}(V) = \sum_{W \in \operatorname{Irred}(G,\mathbb{F})} m_W \dim_{\mathbb{F}}(W)$.

- A representation of G over a field F (assumed to be of characteristic 0) is a homomorphism ρ : G → GL(V) for some F-vector space V. It is usual to refer to the representation ρ by V.
- A representation ρ : G → GL(V) is said to be *irreducible* iff the only G-invariant subspaces are 0 and V.
- ► The set, Irred(G, F), of (equivalence classes of) irreducible representations of G over F, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$V = \bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_W,$$

where $V_W \cong_G m_W W$. The components V_W are called the *isotypic components*, and m_W the *multiplicity* of the irreducible W in V.

► Clearly, $\dim_{\mathbb{F}}(V) = \sum_{W \in \operatorname{Irred}(G,\mathbb{F})} m_W \dim_{\mathbb{F}}(W)$.

- A representation of G over a field F (assumed to be of characteristic 0) is a homomorphism ρ : G → GL(V) for some F-vector space V. It is usual to refer to the representation ρ by V.
- A representation ρ : G → GL(V) is said to be *irreducible* iff the only G-invariant subspaces are 0 and V.
- ► The set, Irred(G, F), of (equivalence classes of) irreducible representations of G over F, is finite.
- Every finite dimensional representation V of G admits a canonical direct sum decomposition

$$V = \bigoplus_{W \in \operatorname{Irred}(G, \mathbb{F})} V_W,$$

where $V_W \cong_G m_W W$. The components V_W are called the *isotypic components*, and m_W the *multiplicity* of the irreducible W in V.

► Clearly, $\dim_{\mathbb{F}}(V) = \sum_{W \in \operatorname{Irred}(G,\mathbb{F})} m_W \dim_{\mathbb{F}}(W)$.

- ► A partition λ of k (denoted $\lambda \vdash k$) is a tuple $(\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ with $\lambda_1 + \cdots + \lambda_\ell = k$.
- We denote by Par(k) the set of partitions of *k*.
- We denote by Young(λ) the Young diagram associated with λ.
- ▶ For example, Young((4,2,1)) is given by

For any two partitions

 $\mu = (\mu_1, \mu_2, ...), \lambda = (\lambda_1, \lambda_2, ...) \in Par(k)$, we say that $\mu \ge \lambda$, if for each $i \ge 0$, $\mu_1 + \cdots + \mu_i \ge \lambda_1 + \cdots + \lambda_i$. This is a partial order (called the *dominance order*).

- A partition λ of k (denoted $\lambda \vdash k$) is a tuple $(\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ with $\lambda_1 + \cdots + \lambda_\ell = k$.
- We denote by Par(k) the set of partitions of *k*.
- We denote by Young(λ) the Young diagram associated with λ.
- ▶ For example, Young((4,2,1)) is given by

For any two partitions

 $\mu = (\mu_1, \mu_2, ...), \lambda = (\lambda_1, \lambda_2, ...) \in Par(k)$, we say that $\mu \ge \lambda$, if for each $i \ge 0$, $\mu_1 + \cdots + \mu_i \ge \lambda_1 + \cdots + \lambda_i$. This is a partial order (called the *dominance order*).

- ► A partition λ of k (denoted $\lambda \vdash k$) is a tuple $(\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ with $\lambda_1 + \cdots + \lambda_\ell = k$.
- We denote by Par(k) the set of partitions of *k*.
- We denote by $Young(\lambda)$ the Young diagram associated with λ .
- ▶ For example, Young((4, 2, 1)) is given by

For any two partitions

 $\mu = (\mu_1, \mu_2, ...), \lambda = (\lambda_1, \lambda_2, ...) \in Par(k)$, we say that $\mu \ge \lambda$, if for each $i \ge 0$, $\mu_1 + \cdots + \mu_i \ge \lambda_1 + \cdots + \lambda_i$. This is a partial order (called the *dominance order*).

- ► A partition λ of k (denoted $\lambda \vdash k$) is a tuple $(\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ with $\lambda_1 + \cdots + \lambda_\ell = k$.
- We denote by Par(k) the set of partitions of *k*.
- We denote by Young(λ) the Young diagram associated with λ.
- ► For example, Young((4, 2, 1)) is given by

For any two partitions

 $\mu = (\mu_1, \mu_2, ...), \lambda = (\lambda_1, \lambda_2, ...) \in Par(k)$, we say that $\mu \ge \lambda$, if for each $i \ge 0$, $\mu_1 + \cdots + \mu_i \ge \lambda_1 + \cdots + \lambda_i$. This is a partial order (called the *dominance order*).

- ► A partition λ of k (denoted $\lambda \vdash k$) is a tuple $(\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \ge \cdots \ge \lambda_\ell > 0$ with $\lambda_1 + \cdots + \lambda_\ell = k$.
- We denote by Par(k) the set of partitions of *k*.
- We denote by Young(λ) the Young diagram associated with λ.
- ► For example, Young((4, 2, 1)) is given by

For any two partitions

 $\mu = (\mu_1, \mu_2, ...), \lambda = (\lambda_1, \lambda_2, ...) \in Par(k)$, we say that $\mu \ge \lambda$, if for each $i \ge 0$, $\mu_1 + \cdots + \mu_i \ge \lambda_1 + \cdots + \lambda_i$. This is a partial order (called the *dominance order*).

Dominance order on Par(6)

э

Given partitions μ, λ = (λ₁, λ₂,...,) ⊢ k, a semi-standard tableau of shape μ and content λ is a Young diagram in Young(μ) with entries in the boxes which are non-decreasing along rows and increasing along columns – and for each i > 0, the number of i's is equal to λ_i.

► For example,

- For λ, μ ⊢ k, the Kostka number K(μ, λ) is the number of semi-standard Young tableux of shape μ and content λ.
- ► Fact: for all $\mu, \lambda \vdash k$, $K(\mu, \mu) = K((k), \mu) = 1$, and $K(\mu, \lambda) \neq 0$ iff $\mu \succeq \lambda$.

- Given partitions μ, λ = (λ₁, λ₂,...,) ⊢ k, a semi-standard tableau of shape μ and content λ is a Young diagram in Young(μ) with entries in the boxes which are non-decreasing along rows and increasing along columns and for each i > 0, the number of i's is equal to λ_i.
- For example,

- For λ, μ ⊢ k, the Kostka number K(μ, λ) is the number of semi-standard Young tableux of shape μ and content λ.
- ► Fact: for all $\mu, \lambda \vdash k$, $K(\mu, \mu) = K((k), \mu) = 1$, and $K(\mu, \lambda) \neq 0$ iff $\mu \succeq \lambda$.

Given partitions μ, λ = (λ₁, λ₂,...,) ⊢ k, a semi-standard tableau of shape μ and content λ is a Young diagram in Young(μ) with entries in the boxes which are non-decreasing along rows and increasing along columns – and for each i > 0, the number of i's is equal to λ_i.

For example,

- For λ, μ ⊢ k, the Kostka number K(μ, λ) is the number of semi-standard Young tableux of shape μ and content λ.
- ► Fact: for all $\mu, \lambda \vdash k$, $K(\mu, \mu) = K((k), \mu) = 1$, and $K(\mu, \lambda) \neq 0$ iff $\mu \succeq \lambda$.

Given partitions μ, λ = (λ₁, λ₂,...,) ⊢ k, a semi-standard tableau of shape μ and content λ is a Young diagram in Young(μ) with entries in the boxes which are non-decreasing along rows and increasing along columns – and for each i > 0, the number of i's is equal to λ_i.

For example,

- For λ, μ ⊢ k, the Kostka number K(μ, λ) is the number of semi-standard Young tableux of shape μ and content λ.
- ► Fact: for all $\mu, \lambda \vdash k$, $K(\mu, \mu) = K((k), \mu) = 1$, and $K(\mu, \lambda) \neq 0$ iff $\mu \succeq \lambda$.

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- ▶ In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \mathrm{Young}(\lambda)} h_b}$$
$$\lim_{\mathbb{F}} \mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$$

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- ▶ In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \mathrm{Young}(\lambda)} h_b}$$
$$\lim_{\mathbb{F}} \mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$$

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \mathrm{Young}(\lambda)} h_b}$$
$$\lim_{\mathbb{F}} \mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$$

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \text{Young}(\lambda)} h_b}$$

$$\blacktriangleright \dim_{\mathbb{F}} \mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$$

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \text{Young}(\lambda)} h_b}$$

$$\blacktriangleright \dim_{\mathbb{F}} \mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$$

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \mathrm{Young}(\lambda)} h_b}$$

<□ > < @ > < E > < E > E のQ@

• dim_{\mathbb{F}} $\mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1$.

- ► The irreducible representations (also called Specht modules) of S_k are in 1-1 correspondence with the set, Par(k), of partitions of k.
- Given a partition $\lambda = (\lambda_1, \dots, \lambda_p) \in Par(\lambda)$, we denote by \mathbb{S}^{λ} the corresponding Specht module.
- In particular, $\mathbb{S}^{(k)} = \mathbf{1}_{\mathfrak{S}_k}, \mathbb{S}^{(1^k)} = \operatorname{sign}_{\mathfrak{S}_k}$.
- The dimension of S^λ equals the number of standard of Young tableau of shape λ. Its also give by the *hook length formula* below.
- For a box b in the Young diagram, Young(λ), of a partition λ, let h_b denote the length of the the hook of b i.e. h_b is the number of boxes in Young(λ) strictly to the right and below b plus 1.
- Hook length formula:

$$\dim_{\mathbb{F}} \mathbb{S}^{\lambda} = \frac{k!}{\prod_{b \in \operatorname{Young}(\lambda)} h_b}$$

• dim_{$$\mathbb{F}$$} $\mathbb{S}^{(k)} = \dim_{\mathbb{F}} \mathbb{S}^{1^k} = 1.$

For $\lambda \vdash k$, we will denote

 $M^{\lambda} = \operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}(\mathbf{1}_{\mathfrak{S}_{\lambda}})$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_k on the set of cosets in \mathfrak{S}_k of the subgroup \mathfrak{S}_{λ} .

• Clearly, dim_{\mathbb{F}} $M^{\lambda} = \binom{k}{\lambda}$.

(Young's theorem)

$$M^{\lambda} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \, \unrhd \, \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}.$$

► For example:

$$M^{(k)} \cong_{\mathfrak{S}_k} \mathbb{S}^{(k)} \cong_{\mathfrak{S}_k} \mathbf{1}_{\mathfrak{S}_k},$$
$$M^{\mathbf{1}^k} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \vdash k} \dim_{\mathbb{F}}(\mathbb{S}^{\mu}) \mathbb{S}^{\mu} \cong_{\mathfrak{S}_k} \mathbb{F}[\mathfrak{S}_k].$$

For $\lambda \vdash k$, we will denote

 $M^{\lambda} = \operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}(\mathbf{1}_{\mathfrak{S}_{\lambda}})$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_k on the set of cosets in \mathfrak{S}_k of the subgroup \mathfrak{S}_{λ} .

• Clearly, dim_{\mathbb{F}} $M^{\lambda} = \binom{k}{\lambda}$.

(Young's theorem)

$$M^{\lambda} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \, \unrhd \, \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}.$$

► For example:

$$M^{(k)} \cong_{\mathfrak{S}_k} \mathbb{S}^{(k)} \cong_{\mathfrak{S}_k} \mathbf{1}_{\mathfrak{S}_k},$$
$$M^{\mathbf{1}^k} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \vdash k} \dim_{\mathbb{F}}(\mathbb{S}^{\mu}) \mathbb{S}^{\mu} \cong_{\mathfrak{S}_k} \mathbb{F}[\mathfrak{S}_k].$$

For $\lambda \vdash k$, we will denote

 $M^{\lambda} = \operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}(\mathbf{1}_{\mathfrak{S}_{\lambda}})$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_k on the set of cosets in \mathfrak{S}_k of the subgroup \mathfrak{S}_{λ} .

- Clearly, dim_{\mathbb{F}} $M^{\lambda} = \binom{k}{\lambda}$.
- (Young's theorem)

$$M^{\lambda} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \, \unrhd \, \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}.$$

► For example:

$$M^{(k)} \cong_{\mathfrak{S}_k} \mathbb{S}^{(k)} \cong_{\mathfrak{S}_k} \mathbf{1}_{\mathfrak{S}_k},$$
$$M^{\mathbf{1}^k} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \vdash k} \dim_{\mathbb{F}}(\mathbb{S}^{\mu}) \mathbb{S}^{\mu} \cong_{\mathfrak{S}_k} \mathbb{F}[\mathfrak{S}_k].$$

For $\lambda \vdash k$, we will denote

 $M^{\lambda} = \operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{k}}(\mathbf{1}_{\mathfrak{S}_{\lambda}})$

(the Young module of λ). It is isomorphic to the permutation representation of \mathfrak{S}_k on the set of cosets in \mathfrak{S}_k of the subgroup \mathfrak{S}_{λ} .

- Clearly, dim_{\mathbb{F}} $M^{\lambda} = \binom{k}{\lambda}$.
- (Young's theorem)

$$M^{\lambda} \cong_{\mathfrak{S}_k} igoplus_{\mu \, arepsilon \, \lambda} K(\mu, \lambda) \mathbb{S}^{\mu}.$$

For example:

$$M^{(k)} \cong_{\mathfrak{S}_k} \mathbb{S}^{(k)} \cong_{\mathfrak{S}_k} \mathbf{1}_{\mathfrak{S}_k},$$
$$M^{\mathbf{1}^k} \cong_{\mathfrak{S}_k} \bigoplus_{\mu \vdash k} \dim_{\mathbb{F}} (\mathbb{S}^{\mu}) \mathbb{S}^{\mu} \cong_{\mathfrak{S}_k} \mathbb{F}[\mathfrak{S}_k].$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► Let a finite group *G* act on a topological space *X*.
- ► The action of G on X induces an action of G on the cohomology group H^{*}(X, F), making H^{*}(X, F) into a G-module.
- If card(G) is invertible in 𝔽 (and so in particular, if 𝔽 is a field of characteristic 0) we have the isomorphisms

 $\mathrm{H}^*(X/G,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*_G(X,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*(X,\mathbb{F})^G.$

▶ In particular, if $S \subset \mathbb{R}^k$, is a symmetric semi-algebraic set, $H^*(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_k -module, and

 $\mathrm{H}^*_{\mathfrak{S}_k}(\mathcal{S},\mathbb{F})\cong\mathrm{H}^*(\mathcal{S},\mathbb{F})^{\mathfrak{S}_k}.$

- ► Let a finite group G act on a topological space X.
- ► The action of G on X induces an action of G on the cohomology group H^{*}(X, F), making H^{*}(X, F) into a G-module.
- If card(G) is invertible in 𝔽 (and so in particular, if 𝔽 is a field of characteristic 0) we have the isomorphisms

 $\mathrm{H}^*(X/G,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*_G(X,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^*(X,\mathbb{F})^G.$

▶ In particular, if $S \subset \mathbb{R}^k$, is a symmetric semi-algebraic set, $H^*(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_k -module, and

 $\mathrm{H}^*_{\mathfrak{S}_k}(\mathcal{S},\mathbb{F})\cong\mathrm{H}^*(\mathcal{S},\mathbb{F})^{\mathfrak{S}_k}.$

- ► Let a finite group G act on a topological space X.
- ► The action of G on X induces an action of G on the cohomology group H^{*}(X, F), making H^{*}(X, F) into a G-module.
- If card(G) is invertible in 𝔽 (and so in particular, if 𝔽 is a field of characteristic 0) we have the isomorphisms

 $\mathrm{H}^*(X/G,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*_G(X,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*(X,\mathbb{F})^G.$

▶ In particular, if $S \subset \mathbb{R}^k$, is a symmetric semi-algebraic set, $H^*(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_k -module, and

 $\mathrm{H}^*_{\mathfrak{S}_k}(\mathcal{S},\mathbb{F})\cong\mathrm{H}^*(\mathcal{S},\mathbb{F})^{\mathfrak{S}_k}.$

- ► Let a finite group G act on a topological space X.
- ► The action of G on X induces an action of G on the cohomology group H^{*}(X, F), making H^{*}(X, F) into a G-module.
- If card(G) is invertible in 𝔽 (and so in particular, if 𝔽 is a field of characteristic 0) we have the isomorphisms

 $\mathrm{H}^*(X/G,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*_G(X,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^*(X,\mathbb{F})^G.$

▶ In particular, if $S \subset \mathbb{R}^k$, is a symmetric semi-algebraic set, $H^*(S, \mathbb{F})$ is a finite dimensional \mathfrak{S}_k -module, and

 $\mathrm{H}^*_{\mathfrak{S}_k}(\mathcal{S},\mathbb{F})\cong\mathrm{H}^*(\mathcal{S},\mathbb{F})^{\mathfrak{S}_k}.$

Key example

Let

$$F_k = \sum_{i=1}^k (X_i(X_i - 1))^2 - \varepsilon,$$
$$V_k = Z(F_k, \mathbf{R}^k).$$

 $\mathrm{H}^{0}(V_{k},\mathbb{F})\cong \bigoplus_{0\leq i\leq k}\mathrm{H}^{0}(V_{k,i},\mathbb{F}),$

where for $0 \le i \le k$, $V_{k,i}$ is the \mathfrak{S}_k -orbit of the connected component of V_k infinitesimally close (as a function of ε) to the point $\mathbf{x}^i = (\underbrace{0, \dots, 0}_{i}, \underbrace{1, \dots, 1}_{k-i})$, and $\mathrm{H}^0(V_{k,i}, \mathbb{F})$ is an invariant subspace of $\mathrm{H}^0(V_k, \mathbb{F})$.

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Key example

Let

$$F_k = \sum_{i=1}^k (X_i(X_i - 1))^2 - \varepsilon,$$
$$V_k = Z(F_k, \mathbf{R}^k).$$

$$\mathrm{H}^{0}(V_{k},\mathbb{F})\cong \bigoplus_{0\leq i\leq k}\mathrm{H}^{0}(V_{k,i},\mathbb{F}),$$

where for $0 \le i \le k$, $V_{k,i}$ is the \mathfrak{S}_k -orbit of the connected component of V_k infinitesimally close (as a function of ε) to the point $\mathbf{x}^i = (\underbrace{0, \dots, 0}_{i}, \underbrace{1, \dots, 1}_{k-i})$, and $\mathrm{H}^0(V_{k,i}, \mathbb{F})$ is an invariant subspace of $\mathrm{H}^0(V_k, \mathbb{F})$.

► The isotropy subgroup of the point xⁱ under the action of S_k is S_i × S_{k-i}, and orbit(xⁱ) is thus in 1-1 correspondence with the cosets of the subgroup S_i × S_{k-i}.

It now follows from the definition of Young's module:

 $\begin{aligned} \mathrm{H}^{0}(V_{k,i},\mathbb{F}) &\cong_{\mathfrak{S}_{k}} & M^{(i,k-i)} \text{ if } i \geq k-i, \\ &\cong_{\mathfrak{S}_{k}} & M^{(k-i,i)} \text{ otherwise.} \end{aligned}$

► The isotropy subgroup of the point xⁱ under the action of S_k is S_i × S_{k-i}, and orbit(xⁱ) is thus in 1-1 correspondence with the cosets of the subgroup S_i × S_{k-i}.

It now follows from the definition of Young's module:

$$\begin{aligned} \mathrm{H}^{0}(V_{k,i},\mathbb{F}) &\cong_{\mathfrak{S}_{k}} & \mathcal{M}^{(i,k-i)} \text{ if } i \geq k-i, \\ &\cong_{\mathfrak{S}_{k}} & \mathcal{M}^{(k-i,i)} \text{ otherwise.} \end{aligned}$$

It follows that for k odd,

$$H^{0}(V_{k}, \mathbb{F}) \cong_{\mathfrak{S}_{k}} \bigoplus_{\substack{\lambda \vdash k \\ \ell(\lambda) \leq 2}} (M^{\lambda} \oplus M^{\lambda})$$
$$\cong_{\mathfrak{S}_{k}} \bigoplus_{\substack{\lambda \vdash k \\ \ell(\lambda) \leq 2}} \bigoplus_{\mu \geq \lambda} 2K(\mu, \lambda) \mathbb{S}^{\mu}$$
$$\cong_{\mathfrak{S}_{k}} \bigoplus_{\substack{\lambda \vdash k \\ \ell(\lambda) \leq 2}} \bigoplus_{\mu \geq \lambda} 2\mathbb{S}^{\mu}$$
$$\cong_{\mathfrak{S}_{k}} \bigoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0,\mu} \mathbb{S}^{\mu},$$
where for each $\mu = (\mu_{1}, \mu_{2}) \vdash k$,
$$m_{0,\mu} = 2(\mu_{1} - \lfloor k/2 \rfloor)$$
$$= 2\mu_{1} - k + 1$$
$$= \mu_{1} - \mu_{2} + 1.$$

For k even:

 $\mathrm{H}^{0}(V_{k},\mathbb{F}) \cong_{\mathfrak{S}_{k}} M^{(k/2,k/2)} \oplus ((M^{\lambda} \oplus M^{\lambda}))$ $\lambda \vdash k$ $\ell(\lambda) \leq 2$ $\lambda \neq (k/2,k/2)$ $\cong_{\mathfrak{S}_k} \bigoplus m_{0,\mu} \mathbb{S}^{\mu},$ $\mu \vdash k$ $\ell(\mu) < 2$ where for each $\mu = (\mu_1, \mu_2) \vdash k$, $m_{0,\mu} = 2(\mu_1 - k/2) + 1$ $= \mu_1 - \mu_2 + 1.$

▶ We deduce for all *k*,

$$m_{0,\mu} = \mu_1 - \mu_2 + 1$$

 $\leq k + 1.$

For k even:

 $\mathrm{H}^{0}(V_{k},\mathbb{F}) \cong_{\mathfrak{S}_{k}} M^{(k/2,k/2)} \oplus ((M^{\lambda} \oplus M^{\lambda}))$ $\lambda \vdash k$ $\ell(\lambda) \leq 2$ $\lambda \neq (k/2,k/2)$ $\cong_{\mathfrak{S}_k} \bigoplus m_{0,\mu} \mathbb{S}^{\mu},$ $\mu \vdash k$ $\ell(\mu) < 2$ where for each $\mu = (\mu_1, \mu_2) \vdash k$, $m_{0,\mu} = 2(\mu_1 - k/2) + 1$ $= \mu_1 - \mu_2 + 1.$

We deduce for all k,

$$m_{0,\mu} = \mu_1 - \mu_2 + 1$$

 $\leq k + 1.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What about $\mathrm{H}^{k-1}(V_k,\mathbb{F})$?

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_k on \mathbb{R}^k . Then, for each $p, 0 \le p \le k - 1$, there is a \mathfrak{S}_k -module isomorphism

 $\mathrm{H}^{\rho}(V,\mathbb{F})\xrightarrow{\sim}\mathrm{H}^{k-\rho-1}(V,\mathbb{F})\otimes \mathbf{sign}_{k}.$

This implies in our example that

$$\mathrm{H}^{k-1}(V_k,\mathbb{F}) \cong igoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0,\mu} \mathbb{S}^{\tilde{\mu}}.$$

・ロト・西ト・ヨト ・日・ うろの

What about $\mathrm{H}^{k-1}(V_k,\mathbb{F})$?

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_k on \mathbb{R}^k . Then, for each $p, 0 \le p \le k - 1$, there is a \mathfrak{S}_k -module isomorphism

 $\mathrm{H}^{p}(V,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V,\mathbb{F}) \otimes \mathrm{sign}_{k}.$

This implies in our example that

$$\mathrm{H}^{k-1}(V_k,\mathbb{F}) \cong \bigoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0,\mu} \mathbb{S}^{\tilde{\mu}}.$$

What about $\mathrm{H}^{k-1}(V_k,\mathbb{F})$?

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_k on \mathbb{R}^k . Then, for each $p, 0 \le p \le k - 1$, there is a \mathfrak{S}_k -module isomorphism

 $\mathrm{H}^{p}(V,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V,\mathbb{F}) \otimes \mathrm{sign}_{k}.$

This implies in our example that

$$\mathrm{H}^{k-1}(V_k,\mathbb{F}) \cong \bigoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0,\mu} \mathbb{S}^{\tilde{\mu}}.$$

What about $\mathrm{H}^{k-1}(V_k,\mathbb{F})$?

Theorem

Let $V \subset \mathbb{R}^k$ be a bounded smooth compact semi-algebraic oriented hypersurface, which is stable under the standard action of \mathfrak{S}_k on \mathbb{R}^k . Then, for each $p, 0 \leq p \leq k - 1$, there is a \mathfrak{S}_k -module isomorphism

$$\mathrm{H}^{p}(V,\mathbb{F}) \xrightarrow{\sim} \mathrm{H}^{k-p-1}(V,\mathbb{F}) \otimes \mathrm{sign}_{k}.$$

This implies in our example that

$$\mathrm{H}^{k-1}(V_k,\mathbb{F}) \cong \bigoplus_{\substack{\mu \vdash k \\ \ell(\mu) \leq 2}} m_{0,\mu} \mathbb{S}^{\tilde{\mu}}.$$

In particular for k = 2, 3 we have:

$$\begin{split} & \mathrm{H}^{0}(V_{2},\mathbb{F}) &\cong_{\mathfrak{S}_{2}} & 3\mathbb{S}^{(2)} \oplus \mathbb{S}^{(1,1)}, \\ & \mathrm{H}^{0}(V_{3},\mathbb{F}) &\cong_{\mathfrak{S}_{3}} & 4\mathbb{S}^{(3)} \oplus 2\mathbb{S}^{(2,1)}, \\ & \mathrm{H}^{1}(V_{2},\mathbb{F}) &\cong_{\mathfrak{S}_{2}} & 3\mathbb{S}^{(1,1)} \oplus \mathbb{S}^{(2)}, \\ & \mathrm{H}^{2}(V_{3},\mathbb{F}) &\cong_{\mathfrak{S}_{3}} & 4\mathbb{S}^{(1,1,1)} \oplus 2\mathbb{S}^{(2,1)}. \end{split}$$

(ロ) (同) (三) (三) (三) (○) (○)

For $\mu = (\mu_1, \mu_2) \vdash k$, by the hook-length formula we have,

dim
$$\mathbb{S}^{\mu} = \frac{k! (\mu_1 - \mu_2 + 1)}{(\mu_1 + 1)! \mu_2!}.$$

Since H⁰(V_k, 𝔅) ≅_{𝔅k} ⊕_{µ=(µ1,µ2)⊢k} m_{0,µ}𝔅^µ, and hence dim_𝔅(H⁰(V_k, 𝔅) = ∑_{µ=(µ1,µ2)⊢k} m_{0,µ} dim_𝔅(𝔅^µ) = 2^k, we obtain as a consequence the identity

$$k! \left(\sum_{\substack{\mu_1 \ge \mu_2 \ge 0 \\ \mu_1 + \mu_2 = k}} \frac{(\mu_1 - \mu_2 + 1)^2}{(\mu_1 + 1)! \mu_2!} \right) = 2^k.$$

For $\mu = (\mu_1, \mu_2) \vdash k$, by the hook-length formula we have,

dim
$$\mathbb{S}^{\mu} = \frac{k! (\mu_1 - \mu_2 + 1)}{(\mu_1 + 1)! \mu_2!}.$$

► Since $\mathrm{H}^{0}(V_{k},\mathbb{F}) \cong_{\mathfrak{S}_{k}} \bigoplus_{\mu=(\mu_{1},\mu_{2})\vdash k} m_{0,\mu}\mathbb{S}^{\mu}$, and hence $\dim_{\mathbb{F}}(\mathrm{H}^{0}(V_{k},\mathbb{F}) = \sum_{\mu=(\mu_{1},\mu_{2})\vdash k} m_{0,\mu} \dim_{\mathbb{F}}(\mathbb{S}^{\mu}) = 2^{k}$, we obtain as a consequence the identity

$$k! \left(\sum_{\substack{\mu_1 \ge \mu_2 \ge 0 \\ \mu_1 + \mu_2 = k}} \frac{(\mu_1 - \mu_2 + 1)^2}{(\mu_1 + 1)! \mu_2!} \right) = 2^k.$$

Previous Results

Theorem (B., Riener (2013))

Let $P \in \mathbb{R}[X_1, ..., X_k]$, be non-negative polynomial of degree bounded by d, and and such that $V = \mathbb{Z}(P, \mathbb{R}^k)$ is invariant under the action of \mathfrak{S}_k . Then,

 $b(V/\mathfrak{S}_k,\mathbb{F}) \leq (k)^{2d}(O(d))^{2d+1}.$

Note that $\mathrm{H}^*(V/\mathfrak{S}_k, \mathbb{F})$ is isomorphic to the isotypic component of $\mathrm{H}^*(V, \mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_k}$, and $b(V/\mathfrak{S}_k, \mathbb{F})$ is its multiplicity.

Previous Results

Theorem (B., Riener (2013))

Let $P \in \mathbb{R}[X_1, ..., X_k]$, be non-negative polynomial of degree bounded by d, and and such that $V = \mathbb{Z}(P, \mathbb{R}^k)$ is invariant under the action of \mathfrak{S}_k . Then,

 $b(V/\mathfrak{S}_k,\mathbb{F}) \leq (k)^{2d}(O(d))^{2d+1}.$

Note that $\mathrm{H}^*(V/\mathfrak{S}_k, \mathbb{F})$ is isomorphic to the isotypic component of $\mathrm{H}^*(V, \mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_k}$, and $b(V/\mathfrak{S}_k, \mathbb{F})$ is its multiplicity.

Previous Results

Theorem (B., Riener (2013))

Let $P \in \mathbb{R}[X_1, ..., X_k]$, be non-negative polynomial of degree bounded by d, and and such that $V = \mathbb{Z}(P, \mathbb{R}^k)$ is invariant under the action of \mathfrak{S}_k . Then,

 $b(V/\mathfrak{S}_k,\mathbb{F}) \leq (k)^{2d}(O(d))^{2d+1}.$

Note that $\mathrm{H}^*(V/\mathfrak{S}_k,\mathbb{F})$ is isomorphic to the isotypic component of $\mathrm{H}^*(V,\mathbb{F})$ belonging to the trivial representation $\mathbf{1}_{\mathfrak{S}_k}$, and $b(V/\mathfrak{S}_k,\mathbb{F})$ is its multiplicity.

More notation

► For any \mathfrak{S}_k -symmetric semi-algebraic subset $S \subset \mathbb{R}^k$, and $\lambda \vdash k$, we denote

$$egin{array}{rcl} m_{i,\lambda}(\mathcal{S},\mathbb{F})&=& ext{mult}(\mathbb{S}^{\lambda}, ext{H}^{i}(\mathcal{S},\mathbb{F})),\ m_{\lambda}(\mathcal{S},\mathbb{F})&=&\sum_{i\geq 0}m_{i,\lambda}(\mathcal{S},\mathbb{F}). \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

New Results

Theorem (B., Riener (2014)) Let $P \in \mathbb{R}[X_1, ..., X_k]$ be a \mathfrak{S}_k -symmetric polynomial, with deg(P) \leq d. Let $V = \mathbb{Z}(P, \mathbb{R}^K)$. Then, for all $\mu = (\mu_1, \mu_2, ...) \vdash k$, $m_\mu(V, \mathbb{F}) > 0$ implies that

 $\operatorname{card}(\{i \mid \mu_i \geq 2d\}) \leq 2d, \operatorname{card}(\{j \mid \tilde{\mu}_j \geq 2d\}) \leq 2d.$

Moreover, for

 $m_{\mu}(V,\mathbb{F}) \leq k^{O(d^2)} d^d.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pictorially

Figure : The shaded area contains all Young diagrams of partitions in Par(k), while the darker area contains the Young diagrams of the partitions which can possibly appear in the $H^*(V, \mathbb{F})$ for fixed *d* and large *k*.

Asymptotics

 Note that by a famous result of Hardy and Ramanujan (1918)

$$\operatorname{card}(\operatorname{Par}(k)) \sim \frac{1}{4\sqrt{3}k} e^{\pi\sqrt{\frac{2k}{3}}}, k \to \infty$$

which is exponential in k;

whereas it follows from the last theorem that

 $\operatorname{card}(\{\mu \vdash k \mid m_{\mu}(V, \mathbb{F}) > 0\})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is polynomially bounded in k (for fixed d).

Asymptotics

 Note that by a famous result of Hardy and Ramanujan (1918)

$$\operatorname{card}(\operatorname{Par}(k)) \sim \frac{1}{4\sqrt{3}k} e^{\pi\sqrt{\frac{2k}{3}}}, k \to \infty$$

which is exponential in k;

whereas it follows from the last theorem that

```
\operatorname{card}(\{\mu \vdash k \mid m_{\mu}(V, \mathbb{F}) > 0\})
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is polynomially bounded in k (for fixed d).

Proof Ingredients

Degree principle.

 Equivariant Morse theory, equivariant Mayer-Vietoris sequence.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some tableau combinatorics. Pieri's rule.

Proof Ingredients

- Degree principle.
- Equivariant Morse theory, equivariant Mayer-Vietoris sequence.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some tableau combinatorics. Pieri's rule.

Proof Ingredients

- Degree principle.
- Equivariant Morse theory, equivariant Mayer-Vietoris sequence.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some tableau combinatorics. Pieri's rule.

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

More general actions of the symmetric group – permuting blocks of size larger than one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

More general actions of the symmetric group – permuting blocks of size larger than one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

More general actions of the symmetric group – permuting blocks of size larger than one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

Similar results bounding multiplicities in th eisotypic decomposition of the cohomology modules of:

More general actions of the symmetric group – permuting blocks of size larger than one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Symmetric semi-algebraic sets.
- Symmetric complex varieties.
- Symmetric projective varieties.

Algorithmic conjecture

Conjecture

For any fixed d > 0, there is an algorithm that takes as input the description of a symmetric semi-algebraic set $S \subset \mathbb{R}^k$, defined by a \mathcal{P} -closed formula, where \mathcal{P} is a set symmetric polynomials of degrees bounded by d, and computes $m_{i,\lambda}(S, \mathbb{Q})$, for each $\lambda \vdash k$ with $m_{i,\lambda}(S, \mathbb{Q}) > 0$, as well as all the Betti numbers $b_i(S, \mathbb{Q})$, with complexity which is polynomial in card(\mathcal{P}) and k.

- Let F ∈ R[X₁,..., X_d]^{G_d}_{≤d} be a symmetric polynomial of degree at most d, and let for k ≥ d
 F_k = φ_{d,k}(F) ∈ R[X₁,..., X_k]^{G_k} where φ_{d,k} : R[X₁,..., X_d]^{G_d} → R[X₁,..., X_k]^{G_k} is the canonical injection.
- Let (V_k = Z(F_k, ℝ^k)_{k≥d} be the corresponding sequence of symmetrc real varieties.
- Also, let µ = (µ₁,...,µ_ℓ) ⊢ k₀ be any fixed partition, and for all k ≥ k₀ + µ₁, let {µ}_k = (k − k₀, µ₁, µ₂,...,µ_ℓ) ⊢ k.
- It is a consequence of the hook-length formula that

$$\dim_{\mathbb{F}}(\mathbb{S}^{\{\mu\}_k}) = rac{\dim_{\mathbb{F}}(\mathbb{S}_\mu)}{|\mu|!} P_\mu(k),$$

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $deg(P_{\mu}) = |\mu|$.

- Let F ∈ R[X₁,..., X_d]^{G_d}_{≤d} be a symmetric polynomial of degree at most d, and let for k ≥ d
 F_k = φ_{d,k}(F) ∈ R[X₁,..., X_k]^{G_k} where φ_{d,k} : R[X₁,..., X_d]^{G_d} → R[X₁,..., X_k]^{G_k} is the canonical injection.
- Let (V_k = Z(F_k, ℝ^k)_{k≥d} be the corresponding sequence of symmetrc real varieties.
- Also, let µ = (µ₁,...,µ_ℓ) ⊢ k₀ be any fixed partition, and for all k ≥ k₀ + µ₁, let {µ}_k = (k − k₀, µ₁, µ₂,...,µ_ℓ) ⊢ k.
- It is a consequence of the hook-length formula that

$$\dim_{\mathbb{F}}(\mathbb{S}^{\{\mu\}_k}) = rac{\dim_{\mathbb{F}}(\mathbb{S}_\mu)}{|\mu|!} P_\mu(k),$$

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $deg(P_{\mu}) = |\mu|$.

- Let F ∈ R[X₁,..., X_d]^{G_d}_{≤d} be a symmetric polynomial of degree at most d, and let for k ≥ d
 F_k = φ_{d,k}(F) ∈ R[X₁,..., X_k]^{G_k} where φ_{d,k} : R[X₁,..., X_d]^{G_d} → R[X₁,..., X_k]^{G_k} is the canonical injection.
- Let (V_k = Z(F_k, ℝ^k)_{k≥d} be the corresponding sequence of symmetrc real varieties.
- Also, let µ = (µ₁,...,µ_ℓ) ⊢ k₀ be any fixed partition, and for all k ≥ k₀ + µ₁, let {µ}_k = (k − k₀, µ₁, µ₂,...,µ_ℓ) ⊢ k.
- It is a consequence of the hook-length formula that

$$\dim_{\mathbb{F}}(\mathbb{S}^{\{\mu\}_k}) = rac{\dim_{\mathbb{F}}(\mathbb{S}_\mu)}{|\mu|!} P_\mu(k),$$

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and $deg(P_{\mu}) = |\mu|$.

- Let F ∈ R[X₁,..., X_d]^{G_d}_{≤d} be a symmetric polynomial of degree at most d, and let for k ≥ d
 F_k = φ_{d,k}(F) ∈ R[X₁,..., X_k]^{G_k} where φ_{d,k} : R[X₁,..., X_d]^{G_d} → R[X₁,..., X_k]^{G_k} is the canonical injection.
- Let (V_k = Z(F_k, ℝ^k)_{k≥d} be the corresponding sequence of symmetrc real varieties.
- Also, let µ = (µ₁,...,µ_ℓ) ⊢ k₀ be any fixed partition, and for all k ≥ k₀ + µ₁, let {µ}_k = (k − k₀, µ₁, µ₂,...,µ_ℓ) ⊢ k.
- It is a consequence of the hook-length formula that

$$\dim_{\mathbb{F}}(\mathbb{S}^{\{\mu\}_k}) = rac{\dim_{\mathbb{F}}(\mathbb{S}_\mu)}{|\mu|!} P_\mu(k),$$

where $P_{\mu}(T)$ is a monic polynomial having distinct integer roots, and deg(P_{μ}) = $|\mu|$.

Question

For any fixed number $p \ge 0$ we pose the following question.

Question

Does there exist a polynomial $P_{F,\rho,\mu}(k)$ such that for all sufficiently large k, $m_{\rho,\{\mu\}_k}(V_k,\mathbb{F}) = P_{F,\rho,\mu}(k)$? Note that a positive answer would imply that

$$\dim_{\mathbb{F}}(\mathrm{H}^{p}(V_{k},\mathbb{F}))_{\{\mu\}_{k}}=\frac{\dim_{\mathbb{F}}(\mathbb{S}_{\mu})}{|\mu|!}P_{F,p,\mu}(k)P_{\mu}(k)$$

is also given by a polynomial for all large enough *k*. A stronger question is to ask for a bound on the degree of $P_{F,p,\mu}(k)$ as a function of d, μ and p.

The conjecture holds in the "key example".

Question

For any fixed number $p \ge 0$ we pose the following question.

Question

Does there exist a polynomial $P_{F,\rho,\mu}(k)$ such that for all sufficiently large k, $m_{\rho,\{\mu\}_k}(V_k,\mathbb{F}) = P_{F,\rho,\mu}(k)$? Note that a positive answer would imply that

$$\dim_{\mathbb{F}}(\mathrm{H}^{p}(V_{k},\mathbb{F}))_{\{\mu\}_{k}}=\frac{\dim_{\mathbb{F}}(\mathbb{S}_{\mu})}{|\mu|!}P_{F,p,\mu}(k)P_{\mu}(k)$$

is also given by a polynomial for all large enough *k*. A stronger question is to ask for a bound on the degree of $P_{F,p,\mu}(k)$ as a function of d, μ and p.

The conjecture holds in the "key example".

Question

For any fixed number $p \ge 0$ we pose the following question.

Question

Does there exist a polynomial $P_{F,\rho,\mu}(k)$ such that for all sufficiently large k, $m_{\rho,\{\mu\}_k}(V_k,\mathbb{F}) = P_{F,\rho,\mu}(k)$? Note that a positive answer would imply that

$$\dim_{\mathbb{F}}(\mathrm{H}^{p}(V_{k},\mathbb{F}))_{\{\mu\}_{k}}=\frac{\dim_{\mathbb{F}}(\mathbb{S}_{\mu})}{|\mu|!}P_{F,p,\mu}(k)P_{\mu}(k)$$

is also given by a polynomial for all large enough *k*. A stronger question is to ask for a bound on the degree of $P_{F,p,\mu}(k)$ as a function of d, μ and p.

The conjecture holds in the "key example".

Reference

S. Basu, C. Riener. On the isotypic decomposition of the cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities. arXiv:1503.00138.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●