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Arrangements in Computational Geometry

An arrangement in Rk is a collection of n objects in Rk

each of constant description complexity.

• Arrangements of lines in the plane, or more generally

hyperplanes in Rk.

• Arrangements of balls or simplices in Rk.

• Arrangements of semi-algebraic objects in Rk, each

defined by a fixed number of polynomials of constant

degree.
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Arrangements of lines in the R2
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Arrangement of circles in R2
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Arrangement of tori in R3
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Topology of Arrangements

• Topology of arrangements can be very complicated.

• An important measure of the topological complexity of

a set S are the Betti numbers. βi(S).

• βi(S) is the rank of the H i(S) (the i-th co-homology

group of S).

• β0(S) = the number of connected components.
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Betti Numbers of the Torus

• β0(T ) = 1

• β1(T ) = 2

• β2(T ) = 1

• βi(T ) = 0, i > 2.
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Computing the Betti Numbers: Previous Work

• Schwartz and Sharir, in their seminal papers on the

Piano Mover’s Problem (Motion Planning).

• Computing the Betti numbers of arrangements of balls

by Edelsbrunner et al (Molecular Biology).

• Computing the Betti numbers of triangulated manifolds

(Edelsbrunner, Dey, Guha et al).
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Complexity of Algorithms

• In computational geometry it is customary to study

the combinatorial complexity of algorithms. The

dependence on the degree is considered to be a constant.

• We only count the number of algebraic operations and

ignore the cost of doing linear algebra.
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Two Approaches

Global
vs

Local



12

First Approach (Global): Using
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First Approach (Global): Using
Triangulations

Semi−algebraic

homeomorphism
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Triangulation via Cylindrical Algebraic Decomposition
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Computing Betti Numbers using Global
Triangulations

• Compact semi-algebraic sets are finitely triangulable.

• First triangulate the arrangement using Cylindrical

algebraic decomposition and then compute the Betti

numbers of the corresponding simplicial complex.

• But ... CAD produces O(n2k
) simplices in the worst

case.
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Second Approach (Local): Using the Nerve
Complex

• If the sets have the special property that all their non-

empty intersections are contractible we can use the

nerve lemma (Leray, Folkman).

• The homology groups of the union are then isomorphic

to the homology groups of a combinatorially defined

complex called the nerve complex.
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The Nerve Complex

Figure 1: The nerve complex of a union of disks
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Computing the Betti Numbers via the
Nerve Complex (local algorithm)

• The nerve complex has n vertices, one vertex for each

set in the union, and a simplex for each non-empty

intersection among the sets.
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Computing the Betti Numbers via the
Nerve Complex (local algorithm)

• The nerve complex has n vertices, one vertex for each

set in the union, and a simplex for each non-empty

intersection among the sets.

• Thus, the (` + 1)-skeleton of the nerve complex can be

computed by testing for non-emptiness of each of the

possible
∑

1≤j≤`+2

(
n
j

)
= O(n`+2) at most (` + 2)-ary

intersections among the n given sets.
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What if the sets are not special ?

• If the sets are such that the topology of the “small”

intersections are controlled, then

• we can use the Leray spectral sequence as a substitute

for the nerve lemma.

• This approach produced the first non-trivial bounds on

the individual Betti numbers of arrangements rather

than their sum (B, 2001).
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Main Result

Theorem 1. Let S1, . . . , Sn ⊂ Rk be compact semi-

algebraic sets of constant description complexity and let

S = ∪1≤i≤nSi, and 0 ≤ ` ≤ k − 1. Then, there is an

algorithm to compute β0(S), . . . , β`(S), whose complexity

is O(n`+2).
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Complexes and Spectral Sequences

A crash course in
homological algebra.
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The Associated Total Complex
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Spectral Sequence

• A sequence of vector spaces progressively approximating

the homology of the total complex. More precisely,

• a sequence of bi-graded vector spaces and differentials

(Er, dr : Ep,q
r → Ep+r,q−r+1

r ),

• Er+1 = H(Er, dr),

• E∞ = H∗(Associated Total Complex).
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Spectral Sequence

p

q

d1

d2

d3

p + q = i+1p + q = i

Figure 2: The differentials dr in the spectral sequence

(Er, dr)
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The Mayer-Vietoris Double Complex I

• Let A1, . . . , An be sub-complexes of a finite simplicial

complex A such that A = A1 ∪ · · · ∪An.

• Let Ci(A) denote the R-vector space of i co-chains of

A, and C∗(A) = ⊕iC
i(A).

• Denote by Aα0,...,αp the sub-complex Aα0 ∩ · · · ∩Aαp.
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The Mayer-Vietoris Double Complex II
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The Algorithm

• Compute the spectral sequence (Er, dr) of the Mayer-

Vietoris double complex.

• In order to compute β`, we only need to compute upto

E`+2.But the punchline is that:

• In order to compute the differentials dr, 1 ≤ r ≤ ` + 1,

it suffices to have independent triangulations of the

different unions taken ` + 2 at a time.
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• For instance, it should be intuitively clear that in order

to compute β0(∪iSi) it suffices to triangulate pairs.
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• To what extent does topological simplicity aid

algorithms in computational geometry ?

• Other applications of spectral sequences, possibly in the

theory of distributed computing ?


