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Arrangements in Computational Geometry
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An arrangement in R” is a collection of n objects in R*
each of constant description complexity.

e Arrangements of lines in the plane, or more generally
hyperplanes in R”.

e Arrangements of balls or simplices in RF.

e Arrangements of semi-algebraic objects in RF, each
defined by a fixed number of polynomials of constant
degree.
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Arrangement of circles in r
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e Topology of arrangements can be very complicated.

e An important measure of the topological complexity of
a set S are the Betti numbers. (5;(.5).

e 3;(5) is the rank of the H'(S) (the i-th co-homology
group of 5).



e Topology of arrangements can be very complicated.

e An important measure of the topological complexity of
a set S are the Betti numbers. (5;(.5).

e 3;(5) is the rank of the H'(S) (the i-th co-homology
group of 5).

e 3y(S) = the number of connected components.



Topology of the Torus




Let 1" be the hollow torus.
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Computing the Betti Numbers: Previous Work




e Schwartz and Sharir, in their seminal papers on the
Piano Mover's Problem (Motion Planning).
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e Schwartz and Sharir, in their seminal papers on the
Piano Mover's Problem (Motion Planning).

e Computing the Betti numbers of arrangements of balls
by Edelsbrunner et al (Molecular Biology).

e Computing the Betti numbers of triangulated manifolds
(Edelsbrunner, Dey, Guha et al).
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Complexity of Algorithms




e In computational geometry it is customary to study
the combinatorial complexity of algorithms. The
dependence on the degree is considered to be a constant.



e In computational geometry it is customary to study
the combinatorial complexity of algorithms. The
dependence on the degree is considered to be a constant.

e We only count the number of algebraic operations and
ignore the cost of doing linear algebra.
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Two Approaches
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First Approach (Global): Using
Triangulations




Semi-algebraic

homeomorphism




Triangulation via Cylindrical Algebraic Decomposition




Computing Betti Numbers using Global
Triangulations




e Compact semi-algebraic sets are finitely triangulable.

e First triangulate the arrangement using Cylindrical
algebraic decomposition and then compute the Betti
numbers of the corresponding simplicial complex.

e But ...



e Compact semi-algebraic sets are finitely triangulable.

e First triangulate the arrangement using Cylindrical
algebraic decomposition and then compute the Betti
numbers of the corresponding simplicial complex.

e But ... CAD produces O(an) simplices in the worst
case.



Second Approach (Local): Using the Nerve
Complex




e If the sets have the special property that all their non-
empty Intersections are contractible we can use the
nerve lemma (Leray, Folkman).



e If the sets have the special property that all their non-
empty Intersections are contractible we can use the
nerve lemma (Leray, Folkman).

e The homology groups of the union are then isomorphic
to the homology groups of a combinatorially defined
complex called the nerve complex.






e The nerve complex has n vertices, one vertex for each
set in the union, and a simplex for each non-empty
Intersection among the sets.



e The nerve complex has n vertices, one vertex for each
set in the union, and a simplex for each non-empty
Intersection among the sets.

e Thus, the (¢ 4 1)-skeleton of the nerve complex can be
computed by testing for non-emptiness of each of the
possible >, _iys (7;) = O(n"*?) at most (¢ + 2)-ary
Intersections among the n given sets.
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What if the sets are not special ?




e If the sets are such that the topology of the “small”
Intersections are controlled, then
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e we can use the Leray spectral sequence as a substitute
for the nerve lemma.



e If the sets are such that the topology of the “small”
Intersections are controlled, then

e we can use the Leray spectral sequence as a substitute
for the nerve lemma.

e This approach produced the first non-trivial bounds on
the individual Betti numbers of arrangements rather

than their sum (B, 2001).



Theorem 1. Llet Si,...,S, C R" be compact semi-
algebraic sets of constant description complexity and let
S = Ui<i<nS;, and 0 < ¢ < k — 1. Then, there is an

algorithm to compute (3y(.S), . . ., B¢(S), whose complexity
is O(n*+?).



A crash course In
homological algebra.
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The Associated Total Complex
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the homology of the total complex. More precisely,



e A sequence of vector spaces progressively approximating
the homology of the total complex. More precisely,

e a sequence of bi-graded vector spaces and differentials
(Emdr : E,']?,q N E?13+r,q—r+1)7



e A sequence of vector spaces progressively approximating
the homology of the total complex. More precisely,

e a sequence of bi-graded vector spaces and differentials
(Emdr : E,']?,q N E?13+r,q—r+1)7

® i1 = H(Era dr)7



e A sequence of vector spaces progressively approximating
the homology of the total complex. More precisely,

e a sequence of bi-graded vector spaces and differentials
(Emdr : E,']?,q N E?13+r,q—r+1)7

® i1 = H(Era dr)7

o /.. = H*(Associated Total Complex).



Spectral Sequence




The Mayer-Vietoris Double Complex |




e let Ay,..., A, be sub-complexes of a finite simplicial
complex A such that A=A, U---UA,,.
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e let Ay,..., A, be sub-complexes of a finite simplicial
complex A such that A=A, U---UA,,.

e Let C'(A) denote the R-vector space of ¢ co-chains of

A, and C*(A) = @,C'(A).

.....
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The Algorithm




e Compute the spectral sequence (E,,d,) of the Mayer-
Vietoris double complex.
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e Compute the spectral sequence (E,,d,) of the Mayer-
Vietoris double complex.

e In order to compute 3y, we only need to compute upto
Ey.o.But the punchline is that:

e In order to compute the differentials d,, 1 <r < /¢ + 1,
it suffices to have independent triangulations of the
different unions taken { + 2 at a time.



e For instance, it should be intuitively clear that in order
to compute §y(U;S;) it suffices to triangulate pairs.



e Same idea is applicable as a divide-and-conquer tool
for computing the homology of arbitrary simplicial
complexes, given a covering. What kind of efficiency do
we derive ?
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e To what extent does topological simplicity aid
algorithms in computational geometry 7



e To what extent does topological simplicity aid
algorithms in computational geometry 7

e Other applications of spectral sequences, possibly in the
theory of distributed computing ?



