(3) Let
$$A = \begin{bmatrix} 1+i & 1 \\ 1 & 1-i \end{bmatrix}$$
. Then A^{-1} is given by

A.
$$\begin{bmatrix} 1+i & 1 \\ 1 & 1-i \end{bmatrix}$$
B.
$$\begin{bmatrix} 1-i & -1 \\ -1 & 1+i \end{bmatrix}$$
C.
$$\begin{bmatrix} (1+i)/2 & 1/2 \\ 1/2 & (1-i)/2 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1-i & 1 \\ 1 & 1+i \end{bmatrix}$$
E. A^{-1} does not exist.

E. 6

7 3

Let \mathbf{u} and \mathbf{v} be orthogonal vectors in \mathbf{R}^5 such that $||\mathbf{u}|| = \sqrt{7}$, $||\mathbf{v}|| = 3$. Then $||2\mathbf{u} - \mathbf{v}||$ equals

13. Let $C[-\pi,\pi]$ be the real vector space of continuous functions defined on $[-\pi,\pi]$. Define an inner product on $C[-\pi,\pi]$ by

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt.$$

Then which of the following set of vectors are orthogonal?

- A. $1, t, t^2$
- B. $\sin^2 t$, 1, $\cos t$
- C. $1, e^t, e^{2t}$
- (i) $1, t, t^2 \frac{\pi^2}{3}$,
 - E. None of the above
- 14. Let A be an $n \times n$ matrix, which of the following statements is FALSE?
 - A. If A is a symmetric matrix, then A^T is also symmetric.
 - B. The product AA^T is always symmetric.
 - C. If A is skew symmetric, then A^3 is symmetric.
 - D. If A is symmetric, then $A + A^2$ is symmetric.
 - E. The sum $A + A^T$ is always symmetric.
- 15. A and B are $n \times n$ invertible matrices, which of the following statements is FALSE?
 - A. $(A^2)^{-1} = (A^{-1})^2$
 - B. $(A^{-1})^T = (A^T)^{-1}$.
 - C. $(AB^{-1})^{-1} = BA^{-1}$.
 - D. $(A + B^{-1})^{-1} = A^{-1} + B$.
 - E. $(aA)^{-1} = \frac{1}{a}A^{-1}$ for any nonzero real number a.