A PROOF FOR THE CRAMER'S RULE

Proof. Suppose that A is an $n \times n$ invertible matrix. We look at the linear system $A X=b$. Then this system has a unique solution

$$
X=A^{-1} b=\frac{1}{|A|} \operatorname{adj} A \cdot b=\frac{1}{|A|}\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
\vdots & \vdots & \vdots & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right] b .
$$

Here • denotes matrix multiplication. By the formula for matrix multiplication, the k-th unknown, x_{k}, can be written as

$$
x_{k}=\frac{1}{|A|} \sum_{i=1}^{n} A_{i k} b_{i}=\frac{1}{|A|} \operatorname{det}\left[\begin{array}{lllllll}
c_{1} & \cdots & c_{k-1} & b & c_{k+1} & \cdots & c_{n}
\end{array}\right] .
$$

Here c_{i} denotes the i-th column of A. The second equality follows from the cofactor expansion of the matrix $\left[\begin{array}{lllllll}c_{1} & \cdots & c_{k-1} & b & c_{k+1} & \cdots & c_{n}\end{array}\right]$ along the k-th column.

