EXAMPLES OF SECTIONS 4.2

Question 1. Consider the set V of all triples (x, y, z) such that $x=3$. Is V a vector space?

Question 2. Consider the set V of solutions to the n-th order linear differential equation

$$
a_{0}(x) y^{(n)}(x)+\cdots a_{n-1}(x) y(x)+a_{n}(x)=0
$$

on some interval I. Is V a vector space under function addition and scalar multiplication?

SOLUTIONS.

1. First notice that elements of V can be written as $(3, y, z)$. In order for V to be a vector space, there must exist a zero element, i.e., an element $q=\left(q_{1}, q_{2}, q_{3}\right)$ such that $q \in V$ and $q+u=u$ for every $u \in V$. But if $q \in V$ then it can be written as $q=\left(3, q_{2}, q_{3}\right)$, and it follows that

$$
q+u=\left(3, q_{2}, q_{3}\right)+\left(3, u_{2}, u_{3}\right)=\left(6, q_{2}+u_{2}, q_{3}+u_{3}\right) \neq\left(3, u_{2}, u_{3}\right) .
$$

Therefore V it is not a vector space.
2. It is very hard to verify that V satisfies criteria A3-A4 and A7-A10. The zero element in V is the constant zero solution $y \equiv 0$, and the additive inverse of a solution $y(x)$ is simply $(-y)(x)=-y(x)$. It only remains to show that V is closed under function addition and scalar multiplication.
Suppose that y_{1} and y_{2} are two solutions to

$$
a_{0}(x) y^{(n)}(x)+\cdots a_{n-1}(x) y(x)+a_{n}(x)=0
$$

on I. Then we have

$$
a_{0}(x) y_{1}^{(n)}(x)+\cdots a_{n-1}(x) y_{1}(x)+a_{n}(x)=0
$$

and

$$
a_{0}(x) y_{2}^{(n)}(x)+\cdots a_{n-1}(x) y_{2}(x)+a_{n}(x)=0 .
$$

Adding these two equations together yields

$$
a_{0}(x)\left(y_{1}+y_{2}\right)^{(n)}(x)+\cdots a_{n-1}(x)\left(y_{1}+y_{2}\right)(x)+a_{n}(x)=0 .
$$

Similarly, for any $c \in \mathbb{R}$

$$
a_{0}(x) c y^{(n)}(x)+\cdots a_{n-1}(x) c y(x)+a_{n}(x)=0
$$

if y solves the linear differential equations. So the closedness of function addition and scalar multiplication is assured.

