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STOCHASTIC HEAT EQUATION WITH ROUGH DEPENDENCE IN
SPACE
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AND SAMY TINDEL†,3

University of Kansas∗ and Purdue University†

This paper studies the nonlinear one-dimensional stochastic heat equa-
tion driven by a Gaussian noise which is white in time and which has the co-
variance of a fractional Brownian motion with Hurst parameter H ∈ ( 1

4 , 1
2 )

in the space variable. The existence and uniqueness of the solution u are
proved assuming the nonlinear coefficient σ(u) is differentiable with a Lips-
chitz derivative and σ(0) = 0.
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1. Introduction. In this paper, we are interested in the one-dimensional
stochastic partial differential equation

(1.1)
∂u

∂t
= κ

2

∂2u

∂x2 + σ(u)Ẇ , t ≥ 0, x ∈ R,

where W is a centered Gaussian process with covariance given by

(1.2) E
[
W(s, x)W(t, y)

] = 1

2

(|x|2H + |y|2H − |x − y|2H )
(s ∧ t),

with 1
4 < H < 1

2 . That is, W is a standard Brownian motion in time and a fractional

Brownian motion with Hurst parameter H in the space variable and Ẇ = ∂2W
∂t ∂x

.
For this stochastic heat equation with a rough noise in space, understood in the
Itô sense, our aim is to obtain the existence and uniqueness of the solution for a
differentiable coefficient σ with a Lipschitz derivative and satisfying σ(0) = 0. We
now detail the main points.

Since the pioneering work by Peszat–Zabczyk [13] and Dalang (see [4]), there
has been a lot of interest in stochastic partial differential equations driven by a
Brownian motion in time with spatial homogeneous covariance. After more than
a decade of investigations, the standard assumptions on W under which existence
and uniqueness hold take the following form:

(i) E[Ẇ (s, x)Ẇ (t, y)] = �(x − y)δ0(s − t), where � is a positive distribution
of positive type.

(ii) The Fourier transform of the spatial covariance � is a tempered measure μ

that satisfies the integrability condition
∫
R

μ(dξ)

1+|ξ |2 < ∞.
In case of the covariance (1.2) under consideration, one can easily compute the

measure μ, whose explicit expression is μ(dξ) = c1,H |ξ |1−2H dξ , where c1,H is
a constant depending on H [see expression (2.2) below]. In addition, it is readily
checked that μ fulfills the condition

∫
R

μ(dξ)

1+|ξ |2 < ∞ for all H ∈ (0,1). However, the
corresponding covariance � is a distribution which fails to be positive when H <
1
2 , and the covariance of two stochastic integrals with respect to Ẇ is expressed in
terms of fractional derivatives. For this reason, the standard methodology used in
the classical references [4, 6, 13] to handle homogeneous spatial covariances does
not apply to our case of interest.

In a recent paper, Balan, Jolis and Quer-Sardanyons [2] proved the existence of
a unique mild solution for equation (1.1) in the case σ(u) = au + b, using tech-
niques of Fourier analysis. The method used in [2] cannot be extended to general
nonlinear coefficients. Indeed, the isometry property of stochastic integrals with
respect to W involves the seminorm

N 1
2 −H,2u(t, x) =

(∫
R

E
∣∣u(t, x + h) − u(t, x)

∣∣2|h|2H−2 dh

) 1
2
,
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where Nβ,p is defined in (3.2). Then, if u and v are two solutions, N 1
2 −H,2(σ (u)−

σ(v)) cannot be bounded in terms of N 1
2 −H,2(u−v), due to the presence of a dou-

ble increment of the form σ(u(s, z+h))−σ(v(s, z+h))−σ(u(s, z))+σ(v(s, z)).
To overcome this difficulty, we shall use a truncation argument to show the unique-
ness of mild solutions, inspired by the work of Gyöngy and Nualart in [11] on the
stochastic Burgers equation on the whole real line driven by a space–time white
noise. The main ingredient is a uniform estimate of the Lp(	)-norm of a stochas-
tic convolution (see Lemma 4.9). Due to this argument, the uniqueness is obtained
in the space Zp

T [see (4.1) for the definition of the norm in Zp
T ], which requires an

integrability condition in the space variable.
The existence of a solution is much more involved. The methodology, inspired

by the work of Gyöngy in [9] on semilinear stochastic partial differential equations,
consists in taking approximations obtained by regularizing the noise and using a
compactness argument on a suitable space of trajectories, together with the strong
uniqueness result.

Once existence and uniqueness are obtained, we establish the Hölder continuity
of the solution u in both space and time variables. We also derive upper bounds
for the moments of the solution using a sharp Burkholder’s inequality, as well as
the matching lower bounds for the second moment by means of a Sobolev em-
bedding argument. Summarizing, we get a complete basic picture of the solution
to equation (1.1) in the case 1

4 < H < 1
2 . The critical parameter H = 1

4 is worth-
while noting, since it is also the threshold under which rough differential equations
driven by a fractional Brownian motion are ill-defined.

The paper is organized as follows. Section 2 contains some preliminaries on
stochastic integration with respect to the noise W . Section 3 deals with basic mo-
ment estimates and Hölder continuity properties of stochastic convolutions. We
establish the uniqueness of the solution in Section 4. To do this, first we derive
moment estimates for the supremum norm in space and time for the stochastic
convolution. In order to show the existence, we need to introduce several spaces of
functions studied in the Appendix and derive compactness criteria.

2. Preliminaries. In this section, we introduce the noise structure and the cor-
responding stochastic integration.

Our noise W can be seen as a Brownian motion with values in an infinite
dimensional Hilbert space. One might thus think that the stochastic integra-
tion theory with respect to W can be handled by classical theories (see, e.g.,
[3, 4, 7]). However, the spatial covariance function of W , which is formally equal
to H(2H −1)|x −y|2H−2, is not locally integrable when H < 1/2 (in other words,
the Fourier transform of |ξ |1−2H is not a function), and W thus lies outside the
scope of application of these classical references. Due to this fact, we provide some
details about the construction of a stochastic integral with respect to our noise.

Let us start by introducing our basic notation on Fourier transforms of functions.
The space of Schwartz functions is denoted by S . Its dual, the space of tempered
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distributions, is S ′. The Fourier transform of a function u ∈ S is defined with the
normalization

Fu(ξ) =
∫
R

e−iξxu(x) dx,

so that the inverse Fourier transform is given by F−1u(ξ) = (2π)−1Fu(−ξ).
Let D((0,∞)×R) denote the space of real-valued infinitely differentiable func-

tions with compact support on (0,∞) ×R. Taking into account the spectral repre-
sentation of the covariance function of the fractional Brownian motion in the case
H < 1

2 proved in [14], Theorem 3.1, we represent our noise W by a zero-mean
Gaussian family {W(ϕ),ϕ ∈ D((0,∞) × R)} defined on a complete probability
space (	,F,P), whose covariance structure is given by

(2.1) E
[
W(ϕ)W(ψ)

] = c1,H

∫
R+×R

Fϕ(s, ξ)Fψ(s, ξ)|ξ |1−2H ds dξ,

where the Fourier transforms Fϕ,Fψ are understood as Fourier transforms in
space only and

(2.2) c1,H = 1

2π
(2H + 1) sin(πH).

The inner product appearing in (2.1) can be expressed in terms of fractional
derivatives. Let β be in (0,1). The Marchaud fractional derivative D

β
− of order β

with respect to the space variable is defined, for a function ϕ : R+ × R → R, as
follows:

(2.3) D
β
−ϕ(s, x) = lim

ε→0
D

β
−,εϕ(s, x),

where

D
β
−,εϕ(s, x) = β

(1 − β)

∫ ∞
ε

ϕ(s, x) − ϕ(s, x + y)

y1+β
dy.

We also define the Riemann–Liouville fractional integral of order β of a function
ψ :R+ ×R→R by

I
β
−ψ(s, x) = 1

(β)

∫ ∞
x

ψ(s, u)(u − x)β−1 du.

Note again that here the fractional differentiation and integration are only with
respect to space variables. Observe that if ϕ = I

β
−ψ for some ψ ∈ L2(R+ × R),

then by Theorem 6.1 in [15] we have

D
β
−ϕ = D

β
−

(
I

β
−ψ

) = ψ

and hence, ∫
R+×R

[
D

β
−ϕ(s, x)

]2
ds dx =

∫
R+×R

ψ2(s, x) ds dx < ∞.
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The previous notions can be related to our noise in the following way: it is
known (cf. [14] for further details) that

(2.4) E
[
W(ϕ)W(ψ)

] = c2,H

∫
R+×R

D
1
2 −H

− ϕ(s, x)D
1
2 −H

− ψ(s, x) ds dx,

where

(2.5) c2,H =
[


(
H + 1

2

)]2(∫ ∞
0

(
(1 + s)H− 1

2 − sH− 1
2
)2

ds + 1

2H

)−1

for any ϕ,ψ ∈ D((0,∞) ×R).
Based on the previous observation and relation (2.4), we introduce a new set

of function spaces. Indeed, let H be the class of functions ϕ : R+ × R → R such

that there exists ψ ∈ L2(R+ ×R) satisfying ϕ(s, x) = I
1
2 −H

− ψ(s, x). The relation
between H and our noise W is given in the following proposition.

PROPOSITION 2.1. The class of functions H is a Hilbert space equipped with
the inner product

(2.6) 〈ϕ,ψ〉H := c2,H

∫
R+×R

D
1
2 −H

− ϕ(s, x)D
1
2 −H

− ψ(s, x) ds dx,

and D((0,∞) × R) is dense in H. Moreover if H0 denotes the class of functions
ϕ ∈ L2(R+ × R) such that

∫
R+×R

|Fϕ(s, ξ)|2|ξ |1−2H dξ ds < ∞, then H0 is not
complete and the inclusion H0 ⊂ H is strict. Also for any ϕ,ψ ∈ H0,

(2.7) 〈ϕ,ψ〉H = c1,H

∫
R+×R

Fϕ(s, ξ)Fψ(s, ξ)|ξ |1−2H dξ ds.

We refer to [14] for the proof of this proposition. Note that in [14], the functions
considered there are from R to R, but by scrutinizing the proofs we see that the
results of this paper can be easily extended to our case, that is, for functions from
R+ ×R to R. We omit the details.

Let us now identify our space H with another classical space in harmonic anal-
ysis. Indeed, according to Proposition 1.37 in [1], for any β ∈ (0, 1

2) the homo-
geneous Sobolev space Ḣ β is defined as the completion of the space of infinitely
differentiable functions with compact support with respect to the norm

‖f ‖2
Ḣ β =

∫
R

∣∣Dβ
−f (x)

∣∣2 dx

(2.8)
= c2

3,β

∫
R

∫
R

∣∣f (x + y) − f (x)
∣∣2|y|−1−2β dx dy,

where c2
3,β = (1/2 −β)βc−1

2, 1
2 −β

and c2, 1
2 −β

is defined by (2.5). As a consequence,

our Hilbert space H can be identified with the homogenous Sobolev space of order
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β = 1
2 − H of functions with values in L2(R+). Namely, H = Ḣ

1
2 −H(L2(R+)),

and for any f ∈H the quantity ‖f ‖H can be represented as

‖f ‖2
H = c2

3, 1
2 −H

∫
R+

∫
R

∫
R

∣∣f (s, x + y) − f (s, x)
∣∣2|y|2H−2 dx dy ds.

From Proposition 2.1, we see that the Gaussian family W can be extended as an
isonormal Gaussian process W = {W(φ),φ ∈ H} indexed by the Hilbert space H.

Let us now turn to the stochastic integration with respect to W . Since we are
handling a Brownian motion in time, one can start by integrating elementary pro-
cesses.

DEFINITION 2.2. For any t ≥ 0, let Ft be the σ -algebra generated by W up
to time t . An elementary process g is a process given by

g(s, x) =
n∑

i=1

m∑
j=1

Xi,j 1(ai ,bi ](s)1(hj ,lj ](x),

where n and m are finite positive integers, −∞ < a1 < b1 < · · · < an < bn <

∞, hj < lj and Xi,j are Fai
-measurable random variables for i = 1, . . . , n. The

integral of such a process with respect to W is defined as∫
R+

∫
R

g(s, x)W(ds, dx)

=
n∑

i=1

m∑
j=1

Xi,jW(1(ai ,bi ] ⊗ 1(hj ,lj ])(2.9)

=
n∑

i=1

m∑
j=1

Xi,j

[
W(bi, lj ) − W(ai, lj ) − W(bi, hj ) + W(ai, hj )

]
.

We can now extend the notion of integral with respect to W to a broad class of
adapted processes.

PROPOSITION 2.3. Let �H be the space of predictable processes g defined
on R+ ×R such that almost surely g ∈H and E[‖g‖2

H
] < ∞. Then we have:

(i) The space of elementary processes defined in Definition 2.2 is dense in �H .
(ii) For g ∈ �H , the stochastic integral

∫
R+

∫
R

g(s, x)W(ds, dx) is defined as

the L2(	)-limit of Riemann sums along elementary processes approximating g,
and we have

(2.10) E
[(∫

R+

∫
R

g(s, x)W(ds, dx)

)2]
= E

[‖g‖2
H

]
.
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PROOF. Let us prove item (i). To this aim, consider g ∈ �H and set

ϕ(t, x) = D
1
2 −H

− g(t, x). According to the definition of �H , we have
E[∫

R+
∫
R

|ϕ(s, x)|2 dx ds] < ∞. Then we will show that g(t, x) can be approx-

imated by elementary processes in L2(	;H) in three steps.

Step 1. Recall that Ḣ
1
2 −H denotes the class of functions f such that there exists

h ∈ L2(R) satisfying f = I
1/2−H
− h. We show that the process g can be approxi-

mated in L2(	;H) by functions of the form

(2.11) ψ(s, x;ω) =
N∑

i=1

1(ai ,bi ](s)φi(x;ω),

where for each i, φi(x;ω) is an Fai
-measurable L2(	; Ḣ 1

2 −H)-valued random
field. To see this, we just set

ψm(s, x;ω) =
m2m∑
k=1

1((k−1)2−m,k2−m](s)2m
∫ k2−m

(k−1)2−m
g(r, x;ω)dr,

and we easily get that D
1
2 −H

− ψm(s, x;ω) → D
1
2 −H

− g(s, x;ω) in L2(	 ×R+ ×R)

as m tends to infinity. In this way we get the desired approximation.
Step 2. We show that each ψm(s, x;ω) of the form (2.11) can be approximated in

L2(	;H) by a linear combination of elements of the form X1(a,b](s)h(x). Indeed,
for each φi(x), we notice that since

E
∫
R

∣∣D 1
2 −H

− φi(x)
∣∣2 dx < ∞,

the random function D
1
2 −H

− φi(x;ω) can be approximated in L2(	;L2(R)) by
functions of the form

∑N
j=1 Xjhj (x), where each Xj is an Fai

-measurable ran-

dom variable and each hj is an element in L2(R). Thus, it is easily seen that
φi(x;ω) can be approximated by a sequence of functions of the form

N∑
j=1

XjI
1
2 −H

− hj (x).

So we conclude that ψm(s, x;ω) can be approximated in L2(	;H) by

m∑
i=1

1(ai ,bi ](s)
N∑

j=1

Xi,j I
1
2 −H

− hi,j (x),

where for each (i, j), Xi,j are Fai
-measurable random variables and hi,j ∈ L2(R).

Step 3. Owing to Theorem 3.3 in [14] we know that

Span
{
D

1
2 −H

− 1(h,l], h < l
}
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is dense in �0 := {D
1
2 −H

− f : f ∈ Ḣ β}, in L2(R) norm. This observation and the
results in Step 2 immediately show that ψm(s, x;ω) can be approximated by ele-
mentary processes in L2(	;H).

For item (ii), it is easy to see that (2.10) holds for processes of the form (2.11).
For a general g ∈ �H , we obtain the result by a limiting argument. This completes
the proof. �

With this stochastic integral defined, we are ready to state the definition of the
solution to equation (1.1).

DEFINITION 2.4. Let u = {u(t, x),0 ≤ t ≤ T ,x ∈ R} be a real-valued pre-
dictable stochastic process such that for all t ∈ [0, T ] and x ∈ R the process
{pt−s(x − y)σ (u(s, y))1[0,t](s),0 ≤ s ≤ t, y ∈ R} is an element of �H , where
pt(x) is the heat kernel on the real line related to κ

2 �. We say that u is a mild
solution of (1.1) if for all t ∈ [0, T ] and x ∈R we have

(2.12) u(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)σ
(
u(s, y)

)
W(ds, dy) a.s.,

where the stochastic integral is understood in the sense of Proposition 2.3.

Along the paper, we denote by C a generic constant that may vary from line to
line.

3. Moment estimates and Hölder continuity of stochastic convolutions.
This section is devoted to a thorough study of the stochastic convolution related to
our noise Ẇ , including moment bounds and Hölder continuity estimates.

3.1. Moment bound of the solution. First, we introduce some notation, which
makes some of our formulae easier to read, and which will prevail until the end
of the article. Let (B,‖ · ‖) be a Banach space equipped with the norm ‖ · ‖, and
let β ∈ (0,1) be a fixed number. For every function f : R → B , we introduce the
function NB

β f :R→ [0,∞] defined by

(3.1) NB
β f (x) =

(∫
R

∥∥f (x + h) − f (x)
∥∥2|h|−1−2β dh

) 1
2
.

When B = R, we abbreviate the notation NR

β f into Nβf . With this notation, the

norm of the homogeneous Sobolev space Ḣ β can be written as c3,β‖Nβf ‖L2(R).
The following technical lemma will be used along the paper.

LEMMA 3.1. For any β ∈ (0,1),∫
R

[
Nβps(x)

]2
dx ≤ Cβ(κs)−

1
2 −β.
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PROOF. The kernel ps is an element of Ḣ β , where this space has been intro-
duced in Section 2. Thus, from (2.7) and (2.8), we can write∫

R

[
Nβps(x)

]2
dx = c−2

3,β‖ps‖2
Ḣ β = c−2

3,βc1, 1
2 −β

∫
R

∣∣Fps(ξ)
∣∣2|ξ |2β dξ

= C1,β

∫
R

e−κsξ2 |ξ |2β dξ.

Setting now η = (κs)1/2ξ in the integral in ξ , we get∫
R

[
Nβps(x)

]2
dx ≤ Cβ(κs)−

1
2 −β,

where Cβ = C1,β

∫
R

e−η2 |η|2β dη. �

The transformation NB
β can also be defined for functions f defined on R+ ×R

acting on the spatial variable, and in this case, NB
β f : R+ × R → [0,∞]. Now

fix p ≥ 2, and suppose that f = {f (t, x), t ≥ 0, x ∈ R} is a random field such
that E|f (t, x)|p < ∞ for all (t, x). Then we can consider f as an Lp(	)-valued
function and we will denote by Nβ,pf the transformation introduced in (3.1) for
B = Lp(	), that is,

(3.2) Nβ,pf (t, x) =
(∫

R

∥∥f (t, x + h) − f (t, x)
∥∥2
Lp(	)|h|−1−2β dh

) 1
2
.

With the above notation in mind, the following proposition is essential in our
approach.

PROPOSITION 3.2. Let W be the Gaussian noise defined by the covariance
(2.1), and consider a predictable random field f ∈ �H . Then, for any p ≥ 2 we
have ∥∥∥∥

∫ t

0

∫
R

f (s, y)W(ds, dy)

∥∥∥∥
Lp(	)

(3.3)

≤
√

4pc3, 1
2 −H

(∫ t

0

∫
R

[
N 1

2 −H,p
f (s, y)

]2
dy ds

) 1
2
,

where c3,β is defined by relation (2.8).

PROOF. Applying Burkholder’s inequality, we have

(3.4)
∥∥∥∥
∫ t

0

∫
R

f (s, y)W(ds, dy)

∥∥∥∥
Lp(	)

≤
√

4p

∥∥∥∥
∫ t

0

∥∥f (s, ·)∥∥2

Ḣ
1
2 −H

ds

∥∥∥∥
1
2

L
p
2 (	)

.

Moreover, using (2.8) we can write

(3.5)
∥∥f (s, ·)∥∥2

Ḣ
1
2 −H

= c2
3, 1

2 −H

∫
R2

∣∣f (s, y + h) − f (s, y)
∣∣2|h|2H−2 dhdy.
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We now invoke Minkowski’s inequality, under the form∥∥∥∥
∫
S
U(ξ)μ(dξ)

∥∥∥∥
Lq(	)

≤
∫
S

∥∥U(ξ)
∥∥
Lq(	)μ(dξ),

for a measure μ on the state space S. Together with (3.5), this yields∥∥∥∥
∫ t

0

∥∥f (s, ·)∥∥2

Ḣ
1
2 −H

ds

∥∥∥∥
L

p
2 (	)

≤ c2
3, 1

2 −H

∫ t

0

∫
R2

∥∥(
f (s, y + h) − f (s, y)

)2∥∥
L

p
2 (	)

|h|2H−2 dhdy ds

= c2
3, 1

2 −H

∫ t

0

∫
R2

∥∥f (s, y + h) − f (s, y)
∥∥2
Lp(	)|h|2H−2 dhdy ds,

from which identity (3.3) is easily deduced. �

From now on, we fix a finite time horizon T . We introduce the following func-
tion space which plays an important role throughout the paper.

DEFINITION 3.3. Let X
β
T (B) be the space of all continuous functions f :

[0, T ] ×R → B such that

‖f ‖
X

β
T (B)

:= sup
t∈[0,T ],x∈R

∥∥f (t, x)
∥∥ + sup

t∈[0,T ],x∈R
NB

β f (t, x) < ∞,

where we recall that NB
β is defined by (3.1).

We equip X
β
T (B) with the norm ‖ · ‖

X
β
T (B)

defined above. Then X
β
T (B) is a

normed vector space. Moreover, it can be shown that Xβ
T (B) is a Banach space

(see Proposition A.2 in the Appendix).
When B = Lp(	) with p ∈ [1,∞), we use the notation X

β,p
T = X

β
T (Lp(	)).

A function f in X
β,p
T can be considered as a stochastic process indexed by (t, x)

in [0, T ] ×R such that

sup
t∈[0,T ],x∈R

∥∥f (t, x)
∥∥
Lp(	)

+ sup
t∈[0,T ],x∈R

(∫
R

∥∥f (t, x + y) − f (t, x)
∥∥2
Lp(	)|y|−2β−1 dy

) 1
2
< ∞.

Next, for θ > 0, ε > 0 and β ∈ (0,1), we consider the following norm on X
β,p
T :

‖f ‖
X

β,p
T ,θ,ε

:= sup
t∈[0,T ],x∈R

e−θt
∥∥f (t, x)

∥∥
Lp(	)

(3.6)
+ ε sup

t∈[0,T ],x∈R
e−θtNβ,pf (t, x),
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where we recall that Nβ,p is defined by (3.2). In the case ε = 1, we simply write
‖ · ‖

X
β,p
T ,θ

. Because T is finite, the norm ‖ · ‖
X

β,p
T ,θ,ε

defined as above is equivalent to

the norm ‖ · ‖
X

β,p
T

.

REMARK 3.4. (i) In (3.6), β is a parameter for regularity (see Proposi-
tion A.1), θ is a weight index for the interval [0, T ], which is introduced so that a
certain map becomes a contraction without changing the value of T (see Proposi-
tion 3.5 and Remark 3.6) and ε is a parameter of dimension which is introduced
so that correct upper bounds for the moments of the solution can be achieved (see
Theorem 4.7).

(ii) The second term in the norm in (3.6) is not invariant by scaling while the
first term is. Indeed, denote fλ(t, x) = f (t, λx), then

sup
x∈R

(∫
R

∥∥fλ(t, x + h) − fλ(t, x)
∥∥2
Lp(	)|h|−1−2β dh

) 1
2

= λβ sup
x∈R

(∫
R

∥∥f (t, x + h) − f (t, x)
∥∥2
Lp(	)|h|−1−2β dh

) 1
2
.

This is the very reason why various orders of (t − s) appear in the proof of Propo-
sition 3.5 below. We bypass this technical difficulty by the introduction of an ad-
ditional scaling factor ε in (3.6).

(iii) Another way to see the role of ε is via dimensional analysis. Suppose that
the amplitude of f has unit L, the spatial variable x has unit S, while the random-
ness ω is dimensionless. Then the first term in (3.6) has unit L while the second
term has unit L/Sβ . Hence, in order for the two terms to have the same dimension,
we multiply the second term with a constant ε having unit of Sβ .

The next proposition gives a convenient bound on the stochastic convolution in
term of the spaces Xβ,p

T .

PROPOSITION 3.5. Consider a predictable random field f ∈ X
1
2 −H,p

T and de-
fine a process {�(t, x), t ≥ 0, x ∈ R} by

(3.7) �(t, x) =
∫ t

0

∫
R

pt−s(x − y)f (s, y)W(ds, dy).

Then, for any θ > 0, ε > 0, β < H and p ≥ 2, the following inequality holds:

‖�‖
X

β,p
T ,θ,ε

≤ C0
√

p‖f ‖
X

1
2 −H,p

T,θ,ε

(3.8)

× (
κ

H
2 − 1

2 θ−H
2 + κ− 1

4 − β
2 θ

β
2 − 1

4 + ε−1κ− 1
4 θ− 1

4 + εκ
H
2 − β

2 − 1
2 θ

β
2 −H

2
)
,

where C0 is a constant depending only on H and β .
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REMARK 3.6. According to relation (3.8), the stochastic convolution induces
some stability properties in the spaces Xβ,p

θ,ε whenever 1
2 − H ≤ β < H . This im-

poses the restriction H > 1
4 already at this stage.

PROOF OF PROPOSITION 3.5. We begin by noting that since f is predictable

and belongs to X
1
2 −H,p

T , we have that pt−·(x −·)f (·, ·) is in �H . According to our
definition (3.6), we get ‖�‖

X
β,p
T ,θ,ε

=A1 + εA2, with

A1 = sup
t∈[0,T ],x∈R

e−θt
∥∥�(t, x)

∥∥
Lp(	) and A2 = sup

t∈[0,T ],x∈R
e−θtNβ,p�(t, x).

We now estimate those terms separately. Along the proof C will denote a generic
constant depending only on H and β .

Step 1: Upper bound for A1. The term �(t, x) is of the form∫ t

0

∫
R

gt,x(s, y)W(ds, dy) with gt,x(s, y) = pt−s(x − y)f (s, y).

Applying inequality (3.3), we thus have∥∥�(t, x)
∥∥
Lp(	)

≤ C
√

p

(∫ t

0

∫
R2

∥∥gt,x(s, y + h) − gt,x(s, y)
∥∥2
Lp(	)|h|2H−2 dhdy ds

) 1
2
.

A simple decomposition of the increment gt,x(s, y + h) − gt,x(s, y) then yields

∥∥�(t, x)
∥∥
Lp(	) ≤ C

√
p

[(∫ t

0
J1(s) ds

) 1
2 +

(∫ t

0
J2(s) ds

) 1
2
]
,

where

J1(s) =
∫
R

∫
R

∣∣pt−s(x − y − h) − pt−s(x − y)
∣∣2∥∥f (s, y + h)

∥∥2
Lp(	)|h|2H−2 dy dh

and

J2(s) =
∫
R

∫
R

p2
t−s(x − y)

∥∥f (s, y + h) − f (s, y)
∥∥2
Lp(	)|h|2H−2 dy dh.

To estimate J1(s), we write

J1(s) ≤ sup
x∈R

∥∥f (s, x)
∥∥2
Lp(	)

∫
R

[
N 1

2 −H
pt−s(y)

]2
dy.

Applying Lemma 3.1 with β = 1
2 − H , we obtain

J1(s) ≤ C sup
x∈R

∥∥f (s, x)
∥∥2
Lp(	)

[
κ(t − s)

]H−1
.
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Let us now turn to estimate J2(s). Recalling our notation (3.2), we have

J2(s) =
∫
R

p2
t−s(x − y)

[
N 1

2 −H,p
f (s, y)

]2
dy

≤ sup
x∈R

[
N 1

2 −H,p
f (s, x)

]2
∫
R

p2
t−s(x − y)dy(3.9)

≤ [
2πκ(t − s)

]− 1
2 sup

x∈R
[
N 1

2 −H,p
f (s, x)

]2
.

Hence, putting together our bounds on J1 and J2, we get

e−θt sup
x∈R

∥∥�(t, x)
∥∥
Lp(	)

≤ C
√

p sup
0≤s≤T

x∈R

e−θs
∥∥f (s, x)

∥∥
Lp(	)

(∫ t

0
e−2θ(t−s)[κ(t − s)

]H−1
ds

) 1
2

+ C
√

pε sup
0≤s≤T

x∈R

e−θs sup
x∈R

N 1
2 −H,p

f (s, x)
(
∫ t

0 e−2θ(t−s)[κ(t − s)]− 1
2 ds)

1
2

ε
,

and some elementary computations for the integrals above yield

A1 = sup
t∈[0,T ],x∈R

e−θt
∥∥�(t, x)

∥∥
Lp(	)

≤ C
√

p‖f ‖
X

1
2 −H,p

T,θ,ε

(
κ

H
2 − 1

2 θ−H
2 + ε−1κ− 1

4 θ− 1
4
)
.

Step 2: Upper bound for A2. According to the definition of A2, we have to
bound Nβ,p�(t, x), where we recall that

(3.10) Nβ,p�(t, x) =
(∫

R

∥∥�(t, x + h) − �(t, x)
∥∥2
Lp(	)|h|−1−2β dh

) 1
2
.

Furthermore, arguing as in Step 1 above, it is easily seen that∥∥�(t, x + h) − �(t, x)
∥∥
Lp(	)

(3.11)

≤ C
√

p

[(∫ t

0
J ′

1(s, h) ds

)1/2
+

(∫ t

0
J ′

2(s, h) ds

)1/2]
,

where

J ′
1(s, h) =

∫
R

∫
R

∣∣pt−s(x + h − y − z) − pt−s(x − y − z)

− pt−s(x + h − y) + pt−s(x − y)
∣∣2

× ∥∥f (s, y + z)
∥∥2
Lp(	)|z|2H−2 dy dz
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and

J ′
2(s, h) =

∫
R

∫
R

∣∣pt−s(x + h − y) − pt−s(x − y)
∣∣2

× ∥∥f (s, y + z) − f (s, y)
∥∥2
Lp(	)|z|2H−2 dy dz.

Plugging (3.11) into (3.10), we end up with

Nβ,p�(t, x)

≤ C
√

p

[∫ t

0

∫
R

J ′
1(s, h)|h|−1−2β dhds +

∫ t

0

∫
R

J ′
2(s, h)|h|−1−2β dhds

]
.

In addition, arguing again as in the proof of Lemma 3.1, we can show that∫
R

J ′
1(s, h)|h|−1−2β dh ≤ C

[
κ(t − s)

]H−β−1 sup
x∈R

∥∥f (s, x)
∥∥2
Lp(	).

On the other hand, applying Lemma 3.1 leads to∫
R

J ′
2(s, h)|h|−1−2β dh ≤ C

[
κ(t − s)

]− 1
2 −β sup

x∈R
[
N 1

2 −H,p
f (s, x)

]2
.

Combining these estimates for J ′
1, J ′

2 and resorting to (3.11), similarly as the esti-
mate for e−θt‖�(t, x)‖Lp(	), we obtain

A2 ≤ C
√

p‖f ‖
X

1
2 −H,p

T,θ,ε

(
κ

H
2 − β

2 − 1
2 θ

β
2 −H

2 + ε−1κ− 1
4 − β

2 θ
β
2 − 1

4
)
.

Putting together Step 1 and Step 2, our claim (3.8) is now easily checked. �

We conclude this section by a simple remark which is labeled for further use.
In the particular case β = 1

2 − H , and using the simplified notation ‖ · ‖
X

1
2 −H,p

T,θ,ε

=
‖ · ‖Xp

T,θ,ε
, the estimate (3.8) can be written as

(3.12) ‖�‖Xp
T,θ,ε

≤ C0
√

p‖f ‖Xp
T,θ,ε

(
κ

H
2 − 1

2 θ−H
2 + ε−1κ− 1

4 θ− 1
4 + εκH− 3

4 θ
1
4 −H )

.

3.2. Hölder continuity estimates. A natural question arising from the defini-
tion (3.7) of the process � is the derivation of Hölder type exponents in both time
and space. Some estimates in this direction are provided in the next proposition.

We set Xp
T = X

1
2 −H,p

T , and the norm ‖ · ‖Xp
T,θ

is given by (3.6) with ε = 1 and

β = 1
2 − H .

PROPOSITION 3.7. Recall that the covariance of the noise W is given by (2.1).
Consider p ≥ 2 and a predictable random field f ∈ X

p
T , where T is a fixed finite



MULTIPLICATIVE STOCHASTIC HEAT EQUATION 4575

time horizon. Let θ0 be any positive number. We define the random field � as in
(3.7). Then for every x,h ∈ R, t1, t2 ∈ [0, T ] and every γ ∈ [0,H ] we have∥∥�([t1, t2], x + h

) − �
([t1, t2], x)∥∥

Lp(	)
(3.13)

≤ C
√

peθ0T ‖f ‖Xp
T,θ0

|t2 − t1|H−γ
2 |h|γ .

In the above, the constant C depends on T and does not depend on p, and we are
using the notation

�
([t1, t2], x) = �(t2, x) − �(t1, x).

In particular, if we let t1 = 0, we get the Hölder estimate of the space variable. For
the Hölder estimate of the time variable, we have

(3.14)
∥∥�(t2, x) − �(t1, x)

∥∥
Lp(	) ≤ C

√
peθ0T ‖f ‖Xp

T,θ0
|t2 − t1|H

2 .

PROOF. First, we prove (3.13). Without loss of generality, we assume t1 < t2
and denote �t = t2 − t1. We also set

V1(f ) = sup
t∈[0,T ]

sup
x∈R

∥∥f (t, x)
∥∥
Lp(	),

(3.15)
V2(f ) = sup

t∈[0,T ]
sup
x∈R

N 1
2 −H,p

f (t, x),

and V (f ) = V1(f ) + V2(f ). Observe that according to (3.6), we have V (f ) ≤
exp(θ0T )‖f ‖Xp

T,θ0
.

As in the proof of Proposition 3.5, we first write �([t1, t2], x + h) − �([t1, t2],
x) = A1 +A2, where

A1 =
∫ t1

0

∫
R

[
p[t1−s,t2−s](x + h − y) − p[t1−s,t2−s](x − y)

]
f (s, y)W(ds, dy)

and

A2 =
∫ t2

t1

∫
R

[
pt2−s(x + h − y) − pt2−s(x − y)

]
f (s, y)W(ds, dy).

We now treat those two terms separately. To alleviate notation, we will include
√

p

into the constant C below.
Step 1: Upper bound for A1. The computations are carried out analogously to

the proof of Proposition 3.5, and we have

‖A1‖2
Lp(	) ≤ C

∫ t1

0

(
A11(s) + A12(s)

)
ds,
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where A11 and A12 are analogous to J1, J2 in the proof of Proposition 3.5, and are
respectively defined by

A11(s) =
∫
R

∫
R

∣∣p[t1−s,t2−s](x + h − y − z) − p[t1−s,t2−s](x − y − z)

− p[t1−s,t2−s](x + h − y) + p[t1−s,t2−s](x − y)
∣∣2

× ∥∥f (s, y + z)
∥∥2
Lp(	)|z|2H−2 dy dz

and

A12(s) =
∫
R

∫
R

∣∣p[t1−s,t2−s](x + h − y) − p[t1−s,t2−s](x − y)
∣∣2

× ∥∥f (s, y + z) − f (s, y)
∥∥2
Lp(	)|z|2H−2 dy dz.

Let us now bound A11. Invoking Plancherel’s identity with respect to y and the
explicit formula for Fpt , we have

A11(s) ≤ CV 2
1 (f )

∫
R

∫
R

∣∣p[t1−s,t2−s](h + y − z) − p[t1−s,t2−s](y − z)

− p[t1−s,t2−s](h + y) + p[t1−s,t2−s](y)
∣∣2|z|2H−2 dy dz

≤ CV 2
1 (f )

∫
R

∫
R

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2
× ∣∣e−iξz − 1

∣∣2∣∣eiξh − 1
∣∣2|z|2H−2 dξ dz

≤ CV 2
1 (f )

∫
R

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2∣∣eiξh − 1
∣∣2|ξ |1−2H dξ.

Moreover, owing to the inequality

(3.16)
∫ t1

0

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2 ds ≤ |e−�tκ
2 |ξ |2 − 1|2
κ|ξ |2 ,

we obtain∫ t1

0
A11(s) ds ≤ Cκ−1V 2

1 (f )

∫
R

∣∣e−�tκ
2 |ξ |2 − 1

∣∣2∣∣eiξh − 1
∣∣2|ξ |−1−2H dξ

(3.17)
≤ Cκ−1V 2

1 (f )I,

where

(3.18) I :=
∫
R

∣∣1 − e−�tκ
2 |ξ |2 ∣∣2 sin2(ξh/2)|ξ |−1−2H dξ.

Our next step is to bound I in two elementary and different ways:
(i) The change of variable hξ := ξ yields

I = |h|2H
∫
R

(
1 − e

− κ�t

2|h|2 |ξ |2)2 sin2(ξ/2)|ξ |−1−2H dξ,
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and we then bound 1 − e
− κ�t

2h2 by 1 to obtain I ≤ C|h|2H .
(ii) On the other hand, the change of variable (κ�t)1/2ξ := ξ in (3.18) leads to

I = (κ�t)H
∫
R

(
1 − e−ξ2/2)2 sin2

(
hξ

2(κ�t)1/2

)
|ξ |−1−2H dξ,

and we bound the trigonometric function sin2 by 1 to obtain I ≤ C(κ�t)H .
Interpolating the two estimates, we have obtained for I , with a coefficient δ =

γ
2H

∈ [0,1], we see that

(3.19) I ≤ C|h|2Hδ(κ�t)H(1−δ) ≤ C(κ�t)
2H−γ

2 |h|γ .

Plugging this identity back into (3.17), we have shown∫ t1

0
A11(s) ds ≤ Cκ−1(κ�t)

2H−γ
2 |h|γ V 2

1 (f ),

for all γ ∈ [0,2H ]. Let us now turn to the estimate for A12. Similar to what has
been done for A11, we get∫ t1

0
A12(s) ds ≤ CV 2

2 (f )

∫ t1

0

∫
R

∣∣p[t1−s,t2−s](h + y) − p[t1−s,t2−s](y)
∣∣2 dy ds

≤ CV 2
2 (f )

∫
R

∫ t1

0

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2 ds
∣∣eiξh − 1

∣∣2 dξ.

Thanks to (3.16), we thus end up with∫ t1

0
A12(s) ds ≤ Cκ−1V 2

2 (f )

∫
R

∣∣1 − e−�tκ
2 |ξ |2 ∣∣2 sin2(hξ/2)|ξ |−2 dξ.

In addition, the integral on the right-hand side can be estimated as I above, and we
get ∫ t1

0
A12(s) ds ≤ CV 2

2 (f )(κ�t)
1−γ ′

2 |h|γ ′

for all γ ′ ∈ [0,1]. Since 1 > 2H , we may choose γ ′ = γ to obtain∫ t1

0
A12(s) ds ≤ Cκ−1(κ�t)

2H−γ
2 |h|γ V 2

2 (f ),

for all γ ∈ [0,2H ]. Hence, the bounds on A11 and A12 yield

‖A1‖2
Lp(	) ≤ CV 2(f )(�t)

2H−γ
2 |h|γ ,

for all γ ∈ [0,2H ].
Step 2: Upper bound for A2. The term ‖A2‖2

Lp(	) can be estimated analogously
to A1. Indeed, the reader can check that, owing to inequality (3.3) and Plancherel’s
identity, we have

‖A2‖2
Lp(	) ≤ CV 2

1 (f )

∫ �t

0

∫
R

e−sκ|ξ |2 sin2(hξ/2)
(|ξ |1−2H + 1

)
dξ ds,
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where we recall that V1 is defined by (3.15). Taking integration in ds first, we see
that

‖A2‖2
Lp(	) ≤ Cκ−1V 2

1 (f )

∫
R

(
1 − e−�tκ|ξ |2) sin2(hξ/2)

(|ξ |−1−2H + |ξ |−2)
dξ.

These two integrals can be estimated as the term I in (3.19), and we get

‖A2‖2
Lp(	) ≤ CV 2

1 (f )(�t)
2H−γ

2 |h|γ ,

for all γ ∈ [0,2H ]. Let us remark that the constants in all previous estimates de-
pend only on T , p and κ−1. In addition, as functions of (p, κ−1), these constants
have at most polynomial growth. Hence, gathering the estimates for ‖A1‖2

Lp(	)

and ‖A2‖2
Lp(	) the proof of our claim (3.13) is complete.

Step 3: Proof of (3.14). Again, we assume that t1 < t2, and we proceed as in the
previous steps and the proof of Proposition 3.5. Indeed, we begin by writing∥∥�(t2, x) − �(t1, x)

∥∥
Lp(	) ≤ B1 + B2,

where

B1 =
∥∥∥∥
∫ t1

0

∫
R

p[t1−s,t2−s](x − y)f (s, y)W(ds, dy)

∥∥∥∥
Lp(	)

and

B2 =
∥∥∥∥
∫ t2

t1

∫
R

pt2−s(x − y)f (s, y)W(ds, dy)

∥∥∥∥
Lp(	)

.

Once again we handle those two terms separately.
For the term B1, we resort to inequality (3.3) in our usual way. We get

B1 ≤ C

(∫ t1

0

∫
R

∫
R

p2[t1−s,t2−s](x − y)
∥∥f (s, y) − f (s, y + z)

∥∥2
Lp(	)

× |z|2H−2 dzdy ds

) 1
2

+ C

(∫ t1

0

∫
R

∫
R

∣∣p[t1−s,t2−s](x − y) − p[t1−s,t2−s](x − y − z)
∣∣2

× ∥∥f (s, y + z)
∥∥2
Lp(	)|z|2H−2 dzdy ds

) 1
2
.

With the definition (3.15) in mind, it is now readily checked that

(3.20) B1 ≤ C
(
B11V2(f ) + B12V1(f )

)
,

with

B11 =
(∫ t1

0

∫
R

∣∣p[t1−s,t2−s](x − y)
∣∣2 dy ds

) 1
2
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and

B12 =
(∫ t1

0

∫
R

∫
R

∣∣p[t1−s,t2−s](x − y)

− p[t1−s,t2−s](x − y − z)
∣∣2|z|2H−2 dzdy ds

) 1
2
.

We now appeal to Plancherel’s identity to get

B11 = C

(∫ t1

0

∫
R

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2 dξ ds

) 1
2 = C(t2 − t1)

1
4

and

B12 = C

(∫ t1

0

∫
R

∫
R

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2∣∣e−iξz − 1
∣∣2|z|2H−2 dzdξ ds

) 1
2

= C

(∫ t1

0

∫
R

∣∣e− t2−s

2 κ|ξ |2 − e− t1−s

2 κ|ξ |2 ∣∣2|ξ |1−2H dξ ds

) 1
2 = C(t2 − t1)

H
2 .

Reporting these estimates in (3.20) and observing that H < 1
2 , we end up with

B1 ≤ C(t2 − t1)
H
2
[
V1(f ) + V2(f )

] ≤ C(t2 − t1)
H
2 ‖f ‖Xp

T,θ0
eθ0T .

The patient reader might check that the same kind of upper bound is valid for B2,
and gathering the estimates for B1 and B2 yields inequality (3.14). �

4. Existence and uniqueness of the solution. In this section we will first
establish a result regarding the uniqueness of the solution. Then based on the anal-
ysis of the structure of some new spaces of stochastic processes, as described in the
Appendix, we will show the existence of the solution. Finally, we derive moment
estimates. For the reader’s convenience, in the first subsection we will introduce
the function spaces needed in the sequel. In the second subsection, we summa-
rize the main results of the current section. Details and proofs are provided in the
following subsections.

4.1. Function spaces. In this subsection, we list the functions spaces that will
be used along the paper.

(a) The spaces X
β
T (B) and X

β,p
T : We recall that Xβ

T (B), introduced in Defini-
tion 3.3, is the space of all continuous functions f from [0, T ] × R to a Banach
space B quipped with the norm ‖ · ‖ such that

‖f ‖
X

β
T (B)

:= sup
t∈[0,T ],x∈R

∥∥f (t, x)
∥∥

+ sup
t∈[0,T ],x∈R

(∫
R

∥∥f (t, x + h) − f (t, x)
∥∥2|h|−1−2β dh

)1/2
< ∞.
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When B = Lp(	) with p ∈ [1,∞), we use the notation X
β,p
T =X

β
T (Lp(	)).

(b) The space Zp
T : We first introduce a norm ‖ · ‖Zp

T
for a random field v(t, x)

as follows:

(4.1) ‖v‖Zp
T

= sup
t∈[0,T ]

∥∥v(t, ·)∥∥Lp(	×R) + sup
t∈[0,T ]

N ∗
1
2 −H,p

v(t),

where p ≥ 2 and

(4.2) N ∗
1
2 −H,p

v(t) :=
(∫

R

∥∥v(t, ·) − v(t, · + h)
∥∥2
Lp(	×R)|h|2H−2 dh

) 1
2
.

Then the space Zp
T will consist all the random fields v = v(t, x) such that ‖v‖Z

p
T

is finite. Observe that according to definition (3.1), we have N ∗
1
2 −H,p

v(t) =
NLp(	×R)

1
2 −H,p

v(t).

(c) The norm NB,(δ)
β : We denote by Cuc([0, T ]×R) the space of all real-valued

continuous functions on [0, T ]×R equipped with the topology of uniform conver-
gence over compact sets. Let (B,‖ · ‖) be a Banach space equipped with the norm
‖ · ‖. Let β ∈ (0,1) be a fixed number. For every δ ∈ (0,∞] and every function
f : R→ B , we introduce the function NB,(δ)

β f : R→ [0,∞] defined by

(4.3) NB,(δ)
β f (x) =

(∫
|h|≤δ

∥∥f (x + h) − f (x)
∥∥2|h|−1−2β dh

) 1
2
.

Notice that for δ = ∞, the quantity (4.3) coincides with the function NB,(∞)
β f =

NB
β f introduced in (3.1). In the same way as for the quantities NB

β f , the function

NB,(δ)
β f can be defined for functions defined on R+ ×R, acting only on the spatial

variable. In this case, we have NB,(δ)
β f : R+ ×R → [0,∞]. As our usual practice,

when B =R we omit the dependence of R in NR,(δ)
β and simply write N (δ)

β .

As we will see later in the Appendix of the paper, NB,(δ)
β f plays a role anal-

ogous to the modulus of continuity of f near x. It follows from the triangular
inequality, that N satisfies

(4.4)
∣∣NB,(δ)

β f (x) −NB,(δ)
β g(x)

∣∣ ≤ NB,(δ)
β (f − g)(x)

for all δ ∈ (0,∞], functions f,g and x in R. Thus, N is a seminorm.

REMARK 4.1. Whenever σ is an affine function [i.e. σ(u) = au + b for some
constants a, b], the spaces Xβ,p

T are sufficient to show existence and uniqueness for
equation (1.1). On the other hand, the case of general Lipschitz function σ leads
to the consideration of additional spaces, which we are going to introduce now.
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(d) The spaces X
β
T : The spaces X

β
T are the underlying spaces for our treatment

of the existence result. Since these spaces do not belong to standard classes of
function spaces, we will analyze them in detail in the Appendix. For every h ∈ R,
let τh be the translation map in the spatial variable, that is τhf (t, x) = f (t, x −h).

DEFINITION 4.2. Let X
β
T be the space of all real-valued continuous functions

f on [0, T ] ×R such that:

(i) (t, x) �→N (1)
β f (t, x) is finite and continuous on [0, T ] ×R.

(ii) limh↓0 supt∈[0,T ],x∈[−R,R]N
(1)
β (τhf − f )(t, x) = 0 for every R > 0.

We equip X
β
T with the following topology. A sequence {fn} in X

β
T converges

to f in X
β
T if for all R > 0, the sequences {fn} and {N (1)

β (fn − f )} converge

uniformly on [0, T ] × [−R,R] to f and 0 respectively. We define a metric on X
β
T

as follows:

(4.5) dβ(f, g) =
∞∑

n=1

2−n ‖f − g‖n,β

1 + ‖f − g‖n,β

,

where ‖ · ‖n,β is the seminorm

‖f ‖n,β := sup
t∈[0,T ],x∈[−n,n]

∣∣f (t, x)
∣∣ + sup

t∈[0,T ],x∈[−n,n]
N (1)

β f (t, x).

Since functions in X
β
T are locally bounded, the topology of X

β
T is not altered if in

the previous definition N (1)
β f is replaced by N (δ)

β f for some finite and positive δ.
We emphasize that replacing δ by ∞ would create a strictly smaller space. It is
shown in the Appendix, Corollary A.6, that X

β
T is a complete and separable space.

4.2. Main results. The first result is the uniqueness of the solution to (1.1)
assuming it has enough regularity.

THEOREM 4.3. Assume the following conditions hold true:

(1) For p > 6
4H−1 , the initial condition u0 is in Lp(R) and

(4.6)
∫
R

∥∥u0(·) − u0(· + h)
∥∥2
Lp(R)|h|2H−2 dh < ∞.

(2) σ is differentiable, its derivative is Lipschitz and σ(0) = 0.
(3) u and v are two solutions of (1.1) and u, v ∈ Zp

T .

Then for every t ∈ [0, T ] and x ∈ R, u(t, x) = v(t, x), a.s.
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REMARK 4.4. This is the first occurrence of the hypothesis σ(0) = 0, and
one might wonder about the necessity of this assumption. To this respect, let us
mention that if we define � as in (3.7) for f ≡ 1, then � does not belong to Zp

T .

The main ingredient of the proof of Theorem 4.3 is a localization argument
based on uniform estimates (in space and time) of stochastic convolutions, which
is provided by Lemma 4.9.

The next theorem is the existence result.

THEOREM 4.5. Assume that for equation (1.1) the following conditions hold:

(1) For some β0 > 1
2 − H and some p > max( 6

4H−1 , 1
β0+H−1/2), the initial

condition u0 is in Lp(R) ∩ L∞(R) and

(4.7) sup
x∈R

Nβ0u0(x) +
(∫

R

∥∥u0(·) − u0(· + h)
∥∥2
Lp(R)|h|2H−2 dh

) 1
2
< ∞.

(2) σ is differentiable, the derivative of σ is Lipschitz and σ(0) = 0.

Then there exists a solution u to (1.1) in Zp
T ∩ X

1
2 −H,p

T . In addition, the solution

has sample paths in the space X
1
2 −H

T a.s.

REMARK 4.6. (i) We can add a drift b(u(t, x)) in equation (1.1), and if the
function b is Lipschitz continuous with b(0) = 0, the results we have obtained on
the existence and uniqueness of a solution can be extended to equations with drift.

(ii) If we only assume that the initial condition u0 is bounded and

(4.8) sup
x∈R

∫
R

∣∣u0(x) − u0(x + h)
∣∣2|h|2H−2 dh < ∞,

and we only assume that σ is Lipschitz, then from the proof of Theorem 4.5 we can
show that we have the weak existence of a solution to equation (1.1). By this we
mean the existence of a couple of predictable random fields (X,W) parameterized
by [0, T ]×R, defined in some filtered probability space (	,F,P , {Ft}), such that
W is a centered Gaussian process with covariance (1.2) and X is a mild solution to

(1.1) in the sense of Definition 2.4, belonging to the space X
1
2 −H,p

T with trajectories

almost surely in X
1
2 −H

T . The assumption (1) in Theorem 4.5 and the condition that
the derivative of σ is Lipschitz and σ(0) = 0 are only used to show the uniqueness.

Finally, the techniques we have designed to get existence and uniqueness for
equation (1.1) also allow us to obtain the following moment bound for the solution.



MULTIPLICATIVE STOCHASTIC HEAT EQUATION 4583

THEOREM 4.7. Assuming the conditions in Theorem 4.5, then a solution of
(1.1) satisfies following moment bounds:

(4.9) sup
x∈R

∥∥u(t, x)
∥∥
Lp(	) ≤ 2‖u0‖ε0 exp

{
θ0p

1
H t

}
and

sup
x∈R

N1/2−H,pu(t, x) ≤ 2‖u0‖ε0ε
−1
0 exp

{
θ0p

1
H t

}
,

where we recall that N1/2−H,p is defined by (3.2), and where for any ε > 0 we
have used the notation

‖u0‖ε := sup
x∈R

∣∣u0(x)
∣∣ + ε sup

x∈R

(∫
R

∣∣u0(x + h) − u0(x)
∣∣2|h|2H−2 dh

) 1
2
.

In the formulae above, θ0 = (6C0)
2
H κ1− 1

H ‖σ‖
2
H

Lip and

ε0 = (6C0)
1− 1

2H κ
1

4H
− 1

2 p
1
2 − 1

4H ‖σ‖1− 1
2H

Lip ,

where C0 is defined in (3.12). In addition, from Proposition A.1, we see that the
initial condition u0 is Hölder continuous with order β0, then by Proposition 3.7
we have

(4.10)
∥∥u(t, x) − u(s, y)

∥∥
Lp(	) ≤ C

(|t − s|H
2 ∧ β0

2 + |x − y|H∧β0
)

for all s, t ∈ [0, T ] and x, y ∈ R.

We also have the following matching lower bound in terms of κ and t for the
second moment.

PROPOSITION 4.8. Under the conditions of Theorem 4.5, let u be a solution
to equation (1.1). Suppose that u0 is a bounded nontrivial function and there is a
positive constant σ∗ such that |σ(z)| ≥ σ∗|z| for all z ∈ R. Then there exist some
universal constants C and L such that

(4.11) E
∣∣u(t, x)

∣∣2 ≥ C
|pt ∗ u0(x)|3

‖u0‖L∞
exp

{
Lσ

2
H∗ κ1− 1

H t
}
.

4.3. Proof of the uniqueness. In this subsection, we prove Theorem 4.3. First,
we need the following result.

LEMMA 4.9. Suppose that p > 6
4H−1 . Let v be a process in the space Zp

T . As
in (3.7), define

(4.12) �(t, x) =
∫ t

0

∫
R

pt−s(x − y)v(s, y)W(ds, dy).
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Then there exists a constant C depending on T , p and H , such that

(4.13)
∥∥∥ sup
t∈[0,T ],x∈R

N 1
2 −H

�(t, x)
∥∥∥
Lp(	)

≤ C‖v‖Zp
T
,

where recalling our definition (3.1), we have N1/2−H �(t, x) = NR

1/2−H �(t, x).

REMARK 4.10. Let us stress the following facts:
(i) In relation (4.13), the operator N 1

2 −H
[defined in (3.2)] acts on the trajec-

tories of the random field �(t, x). As a consequence, N 1
2 −H

�(t, x) is a random
variable.

(ii) With respect to Proposition 3.5, inequality (4.13) involves a supremum in
the variable x ∈ R before taking Lp(	) norms. We thus get a stronger result with

a different kind of assumptions (namely v ∈ Zp
T instead of v ∈ X

1
2 −H,p

T ).

PROOF OF LEMMA 4.9. We shall apply the factorization method to handle the
stochastic convolution (see, for instance, [7]). Namely, an application of a stochas-
tic version of Fubini’s theorem enables to write

�(t, x) = sin(πα)

π

∫ t

0

∫
R

(t − r)α−1pt−r (x − z)Y (r, z) dz dr,

with

Y(r, z) =
∫ r

0

∫
R

(r − s)−αpr−s(z − y)v(s, y)W(ds, dy),

and where α ∈ (0,1) is a parameter whose value will be chosen later. The proof
will be done in two steps.

Step 1: Uniform estimate of N 1
2 −H

�(t, x). In order to estimate N 1
2 −H

�(t, x),
we bound the difference �(t, x) − �(t, x + h) as follows:∣∣�(t, x) − �(t, x + h)

∣∣
= sin(απ)

π

∣∣∣∣
∫ t

0

∫
R

(t − r)α−1(
pt−r (x − z)

− pt−r (x + h − z)
)
Y(r, z) dz dr

∣∣∣∣
≤ sin(απ)

π

∫ t

0
(t − r)α−1∥∥pt−r (·) − pt−r (· + h)

∥∥
Lq(R)

∥∥Y(r, ·)∥∥Lp(R) dr,

where q satisfies p−1 +q−1 = 1. So using Minkowski’s integral inequality, we get∫
R

∣∣�(t, x) − �(t, x + h)
∣∣2|h|2H−2 dh

≤ C

∫
R

(∫ t

0
(t − r)α−1∥∥pt−r (x − ·) − pt−r (x + h − ·)∥∥Lq(R)(4.14)
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× ∥∥Y(r, ·)∥∥Lp(R) dr

)2
|h|2H−2 dh

≤ C

(∫ t

0
(t − r)α−1∥∥Y(r, ·)∥∥Lp(R)

[
Kt(r)

]1/2
dr

)2
,

where we have set

Kt(r) :=
∫
R

∥∥pt−r (x − z) − pt−r (x + h − z)
∥∥2
Lq(R,dz)|h|2H−2 dh.

Now the kernel Kt can be bounded by elementary methods: with the change of
variable z → √

t − rz and h → √
t − rh, we obtain

Kt(r) =
∫
R

∥∥pt−r (x − z) − pt−r (x + h − z)
∥∥2
Lq(R,dz)|h|2H−2 dh

= C(t − r)
− 3

2 + 1
q
+H

∫
R

(∫
R

∣∣e− z2
2κ − e− (z+h)2

2κ
∣∣q dz

) 2
q |h|2H−2 dh

= C(t − r)
− 1

2 − 1
p
+H

,

where we have used the fact that q−1 = 1 − p−1, and the constant C in the above
equation and below in this proof may depend on κ . Going back to (4.14), the
following holds true:∫

R

∣∣�(t, x) − �(t, x + h)
∣∣2|h|2H−2 dh

≤ C

(∫ t

0
(t − r)

α−1+ 1
2 (H− 1

p
− 1

2 )∥∥Y(r, ·)∥∥Lp(R) dr

)2

≤ C

(∫ t

0
(t − r)

q[α−1+ 1
2 (H− 1

2 − 1
p
)]

dr

) 2
q
(∫ t

0

∥∥Y(r, ·)∥∥p
Lp(R) dr

) 2
p

.

We can now start to tune our parameters. It is easily checked that the first integral
in the right-hand side above is finite (uniformly in 0 < t ≤ T ) if and only if

(4.15) α >
3

2p
+ 1

4
− H

2
.

With this choice of α, we get

∫
R

∣∣�(t, x) − �(t, x + h)
∣∣2|h|2H−2 dh ≤ C

(∫ t

0

∥∥Y(r, ·)∥∥p
Lp(R) dr

) 2
p

,

and since this bound is uniform in x, this yields

(4.16) sup
t∈[0,T ],x∈R

[
N 1

2 −H
�(t, x)

]2 ≤ C

(∫ T

0

∥∥Y(r, ·)∥∥p
Lp(R) dr

) 2
p

.
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Then, to prove (4.13) it suffices to show that

(4.17) E
∫
R

∣∣Y(r, z)
∣∣p dz ≤ C‖v‖p

Zp
T

.

Step 2: Proof of (4.17). Set gr,z(s, y) = (r − s)−αpr−s(z − y)v(s, y), so that

Y(r, z) =
∫ r

0

∫
R

gr,z(s, y)W(ds, dy).

Then applying the Burkholder-type inequality (3.3), plus an elementary decompo-
sition of the increments of gr,z, we obtain

E
∫
R

∣∣Y(r, z)
∣∣p dz ≤ C

[
D1(r) + D2(r)

]
,

where

D1(r) =
∫
R

(∫ r

0

∫
R2

(r − s)−2α
∣∣pr−s(y) − pr−s(y + h)

∣∣2

× ∥∥v(s, y + z + h)
∥∥2
Lp(	)|h|2H−2 dhdy ds

)p
2
dz

and

D2(r) =
∫
R

(∫ r

0

∫
R2

(r − s)−2α
∣∣pr−s(y)

∣∣2

× ∥∥v(s, y + z + h) − v(s, y + z)
∥∥2
Lp(	)|h|2H−2 dhdy ds

)p
2
dz.

Let us now bound the term D1. Invoking Minkowski’s integral inequality, it is
easily seen that

D1(r) ≤
(∫ r

0

∫
R2

(r − s)−2α
∣∣pr−s(y) − pr−s(y + h)

∣∣2

× ∥∥v(s, ·)∥∥2
Lp(	×R)|h|2H−2 dhdy ds

)p
2
.

Integrating this identity in h and y, we end up with

D1(r) ≤ C

(∫ r

0
(r − s)−2α+H−1∥∥v(s, ·)∥∥2

Lp(	×R) ds

)p
2
.

Similarly, we get the following estimate for D2(r):

D2(r) ≤ C

(∫ r

0

∫
R

(r − s)−2α− 1
2
∥∥v(s, · + h) − v(s, ·)∥∥2

Lp(	×R)|h|2H−2 dhds

)p
2

= C

(∫ r

0
(r − s)−2α− 1

2
[
N ∗

1
2 −H,p

v(s)
]2

ds

)p
2
.
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Combining the estimates for D1(r) and D2(r), we obtain

E
∫
R

∣∣Y(r, z)
∣∣p dz ≤ C

(∫ r

0

[
(r − s)−2α+H−1∥∥v(s, ·)∥∥2

Lp(	×R)

(4.18)

+ (r − s)−2α− 1
2
[
N ∗

1
2 −H,p

v(s)
]2]

ds

)p
2
.

Let us go back now to the values of our parameters α,p. One can check that
the two singularities in the integrals on the right-hand side above are nondivergent
whenever α < H

2 . Combining this condition with the restriction (4.15), we end up
with the relation

(4.19)
3

2p
+ 1

4
− H

2
< α <

H

2
.

Those two conditions can be jointly met if and only if H > 1
4 and p > 6

4H−1 . This
completes the proof of the lemma. �

REMARK 4.11. Notice that the previous lemma implies that for any pro-
cess v ∈ Zp

T , the random variable supt∈[0,T ] supx∈RN 1
2 −H

�(t, x) is finite almost
surely, if � is given by (4.12).

We are ready to prove Theorem 4.3.

PROOF OF THEOREM 4.3. Assume that u solves (1.1) and u ∈ Zp
T . From the

mild formulation of the solution, we have

(4.20) u(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)σ
(
u(s, y)

)
W(ds, dy).

We claim that

(4.21) sup
t∈[0,T ]

sup
x∈R

N 1
2 −H

u(t, x) < ∞, a.s.

This follows from the decomposition (4.20). Indeed, on one hand, (4.6) implies
that, if g(t, x) = pt ∗ u0(x), then

sup
t∈[0,T ]

sup
x∈R

N 1
2 −H

g(t, x) < ∞.

On the other hand, from the properties of σ , it follows that if u ∈ Zp
T , then σ(u)

also belongs to Zp
T [notice that to estimate the first term of (4.1) for σ(u), we need

to assume σ(0) = 0]. Hence, Remark 4.11 entails

sup
t∈[0,T ]

sup
x∈R

N 1
2 −H

σ(u)(t, x) < ∞, a.s.
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If v is another solution of equation (1.1) belonging also to Zp
T , then (4.21) also

holds for v. In this way, we can define the stopping times

Tk = inf
{

0 ≤ t ≤ T : sup
0≤s≤t,x∈R

∫
R

∣∣u(s, x) − u(s, x + h)
∣∣2|h|2H−2 dh ≥ k

or sup
0≤s≤t,x∈R

∫
R

∣∣v(s, x) − v(s, x + h)
∣∣2|h|2H−2 dh ≥ k

}
,

and Tk ↑ T , almost surely, as k tends to infinity. Our strategy will be to control the
two following quantities:

I1(t, x) = E
[
1{t<Tk}

∣∣u(t, x) − v(t, x)
∣∣2]

and

I2(t, x) = E
[∫

R

1{t<Tk}
∣∣u(t, x)− v(t, x)−u(t, x +h)+ v(t, x +h)

∣∣2|h|2H−2 dh

]
.

We also set Ij (t) = supx∈R Ij (t, x) for j = 1,2.
In order to bound I1, let us first use elementary properties of Itô’s integral, which

yield

1{t<Tk}
(
u(t, x) − v(t, x)

)
= 1{t<Tk}

∫ t∧Tk

0

∫
R

pt−s(x − y)
[
σ

(
u(s, y)

) − σ
(
v(s, y)

)]
W(ds, dy)

= 1{t<Tk}
∫ t

0

∫
R

pt−s(x − y)1{s<Tk}
[
σ

(
u(s, y)

) − σ
(
v(s, y)

)]
W(ds, dy).

We thus get I1(t, x) ≤ C(I11(t, x) + I12(t, x)), where

I11(t, x) = E
∫ t

0

∫
R2

∣∣pt−s(x − y) − pt−s(x − y − h)
∣∣2

× 1{s<Tk}
∣∣σ (

u(s, y + h)
) − σ

(
v(s, y + h)

)∣∣2|h|2H−2 dhdy ds

and

I12(t, x) = E
∫ t

0

∫
R2

p2
t−s(x − y)1{s<Tk}

∣∣σ (
u(s, y)

) − σ
(
v(s, y)

)
− σ

(
u(s, y + h)

) + σ
(
u(s, y + h)

)∣∣2|h|2H−2 dhdy ds.

Next, we bound the term I11(t, x) as follows:

I11(t, x) ≤ CE
∫ t

0

∫
R2

∣∣pt−s(x − y) − pt−s(x − y − h)
∣∣2

× 1{s<Tk}
∣∣u(s, y + h) − v(s, y + h)

∣∣2|h|2H−2 dhdy ds

≤ C

∫ t

0
(t − s)H−1I1(s) ds,
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where we recall that I1(t) = supx∈R I1(t, x), and the constant C in the above in-
equality and below in this proof may depend on κ . Let us now invoke the following
elementary bound on the rectangular increments of σ , valid whenever σ ′ is Lips-
chitz:∣∣σ(a) − σ(b) − σ(c) + σ(d)

∣∣ ≤ C|a − b − c + d| + C|a − b|(|a − c| + |b − d|).
With this additional ingredient, and along the same lines as for I11(t, x), we get

I12(t, x) ≤ Ck

∫ t

0
(t − s)−

1
2
[
I1(s) + I2(s)

]
ds.

Finally, gathering our estimates on I11 and I12 we end up with

I1(t) ≤ Ck

∫ t

0
(t − s)H−1[

I1(s) + I2(s)
]
ds.

The term I2(t, x) above is dealt with exactly the same way, and we leave to the
reader the task of showing that

I2(t) ≤ Ck

∫ t

0
(t − s)2H− 3

2
[
I1(s) + I2(s)

]
ds.

As a consequence,

I1(t) + I2(t) ≤ Ck

∫ t

0
(t − s)2H− 3

2
[
I1(s) + I2(s)

]
ds,

which implies I1(t) + I2(t) = 0 for all t ∈ [0, T ]. In particular,

E
[
1{t<Tk}

∣∣u(t, x) − v(t, x)
∣∣2] = 0,

which implies u(t, x) = v(t, x) a.s. on {t < Tk} for all k ≥ 1 and t ∈ [0, T ]. There-
fore, taking into account that Tk ↑ ∞ a.s. as k tends to infinity, we conclude that
u(t, x) = v(t, x) a.s. for all (t, x) ∈ [0, T ] ×R. This proves the uniqueness. �

4.4. Proof of the existence. In this subsection, we prove Theorem 4.5. The
methodology, inspired by the work of Gyöngy [9] on semilinear stochastic partial
differential equations, consists in proving tightness of a sequence of solutions ob-
tained by regularizing the noise, and then using the uniqueness result. The space
Zp

T , where we proved our uniqueness result, consists of Lp(R)-valued processes,
and it is not clear how to characterize compactness of probability laws on the space
of trajectories of these processes. For this reason, we prove the existence of a so-

lution with paths in the space X
1
2 −H

T introduced in Definition 4.2, equipped with
the metric (4.5).

PROOF OF THEOREM 4.5. As mentioned above, we follow the methodology
developed in [9] and we consider a regularization of the noise in space. Indeed, for
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each ε > 0 and ϕ ∈ H, we define

Wε(ϕ) =
∫ t

0

∫
R

[ρε ∗ ϕ](s, y)W(ds, dy)

(4.22)

=
∫ t

0

∫
R

∫
R

ϕ(s, x)ρε(x − y)W(ds, dy) dx.

The noise Wε induces an approximation to equation (2.12), namely

(4.23) uε(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)σ
(
uε(s, y)

)
Wε(ds, dy),

where the integral is understood in the Itô sense. Applying Lemma 4.12 below, we
see that for each ε > 0, equation (4.23) has a unique solution uε satisfying

sup
ε>0

‖uε‖Xβ,p
T

< ∞,

for all β ≤ β0 and 1
2 − H ≤ β < H . In particular, because 1

2 − H < β0 − 1
p

, we

can choose β such that 1
2 − H < β − 1

p
. In addition, we can show that uε satisfies

Condition (2) in Proposition A.17. With these properties, we can check that the
three conditions in Proposition A.17 are satisfied. Hence, the laws of the processes

uε , considered as probability measures on the space X
1
2 −H

T are tight, and hence
weakly relatively compact.

We now base our final considerations on the forthcoming Lemmas 4.13–4.16.
Fix a sequence εn converging to zero and set un = uεn . We shall hinge on
Lemma 4.14 in order to prove that the sequence un actually converges in prob-
ability. To apply this lemma, we consider now two sequences um(n) and ul(n),
where {m(n),n ≥ 1} and {l(n), n ≥ 1} are strictly increasing sequences of positive
integers. For each n ≥ 1, the triplet (um(n), ul(n),W) defines probability measure
on the space

B := X
1
2 −H

T × X
1
2 −H

T × Cuc
([0, T ] ×R

)
.

Since the family {uε, ε > 0} is weakly relatively compact, there exists a subse-
quence of the form {(um(nk), ul(nk),W), k ≥ 1} which converges in distribution as
k tends to infinity. Thus, by Skorokhod embedding theorem, there is a probabil-
ity space (	′,F ′,P′) and a sequence of random elements zk = (u′

m(nk)
, u′

l(nk)
,W ′)

with values on B such that zk has the same distribution as (um(nk), ul(nk),W) and
zk converges almost surely (in the topology of B) to (u′, v′,W ′). By Lemma 4.16,
we see that both u′ and v′ are solutions to equation (2.12), with W replaced by
W ′. Then by Lemma 4.15 and the uniqueness result Theorem 4.3 we thus get that

u′ = v′ in X
1
2 −H

T . We can now apply Lemma 4.14 in order to assert that un con-

verges to some random field u in X
1
2 −H

T , in probability. Moreover, taking a sub-

sequence if necessary, we see that un converges to u in X
1
2 −H

T a.s. Hence, thanks
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to another application of Lemma 4.16 we see that u satisfies equation (2.12). This
proves the existence of the solution. �

We now state the lemmas on which the proof of Theorem 4.5 relies.

LEMMA 4.12. Let the initial condition u0 and β0 be as in Theorem 4.5. Then
for each ε > 0, equation (4.23) has a unique solution uε such that uε ∈ X

β,q
T for

every β ∈ (0, β0] and q ≥ 2. Furthermore, for all q ≥ 2, β ≤ β0 and 1
2 − H ≤ β <

H ,

(4.24) sup
ε>0

‖uε‖Xβ,q
T

< ∞.

PROOF. Fix q ≥ 2. Since |ξ |1−2H e−ε|ξ |2 is in L1(R), |fε| is bounded. Thus,
using Picard iteration, it is easy to see that (4.23) has a unique random field solu-
tion, and by estimating the qth moment of |uε(t, x) − uε(t, x

′)|, we see that each

solution uε belongs to X
1
2 −H,q

T . We remark that ‖uε‖
X

1
2 −H,q

T

may not be bounded

uniformly in ε as seen from this procedure. Using the definition of Wε and stochas-
tic Fubini theorem, for any predictable processes g defined on R+ × R such that
E[‖g‖2

H
] < ∞, we have∫ t

0

∫
R

g(s, y)Wε(ds, dy) =
∫ t

0

∫
R

∫
R

g(s, y)ρε(y − z)W(ds, dz) dy

=
∫ t

0

∫
R

g(s, ·) ∗ ρε(z)W(ds, dz).

Applying Proposition 3.2, we obtain∥∥∥∥
∫ t

0

∫
R

g(s, y)Wε(ds, dy)

∥∥∥∥2

Lq(	)

≤ Cq

∫ t

0

∫
R

[
N 1

2 −H,q
g(s, ·) ∗ ρε(y)

]2
dy ds.

In addition, from (4.13) and Minkowski inequality, we see that∫
R

[
N 1

2 −H,q
g(s, ·) ∗ ρε(y)

]2
dy

≤
∫
R

∫
R

∫
R

∥∥g(s, y + h − z) − g(s, y − z)
∥∥2
Lq(	)ρε(z) dz|h|2H−2 dhdy

=
∫
R

[
N 1

2 −H,q
g(s, y)

]2
dy.

So, if we proceed as in the proof of Proposition 3.5, and take ε = 1 in (3.8), we are
able to get

(4.25) ‖uε‖Xβ,q
T ,θ

≤ C0 + Cq‖uε‖
X

1
2 −H,q

T ,θ

(
θ−H

2 + θ
β
2 − 1

4 + θ− 1
4 + θ

β
2 −H

2
)
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for any β ≤ β0 and β < H . By taking β = 1
2 − H and θ large enough such that

Cq

(
θ−H

2 + θ
β
2 − 1

4 + θ− 1
4 + θ

β
2 −H

2
) ≤ 1

2
,

noting that ‖uε‖
X

1
2 −H,q

T ,θ

is finite, (4.25) implies that supε>0 ‖uε‖
X

1
2 −H,q

T ,θ

is at most

2C0. Plugging this back into (4.25) yields (4.24). �

The next lemma is a version of Gronwall’s lemma, borrowed from [4],
Lemma 15, and the correction [5] to that paper.

LEMMA 4.13. Let g ∈ L1([0, T ];R+) and consider a sequence of functions
{fn;n ≥ 0} with fn : [0, T ] → R+, such that f0 is bounded and for all n ≥ 1

(4.26) fn(t) ≤ c1 + c2

∫ t

0
g(t − s)fn−1(s) ds,

for two positive constants c1, c2. Then supn≥1 fn is bounded. If we assume more-

over that c1 = 0 in inequality (4.26), we obtain that
∑

n≥0 f
1/p
n converges uni-

formly in [0, T ], for all 1 ≤ p < ∞.

The third lemma is a general result on convergence of random variables bor-
rowed from [9, 10].

LEMMA 4.14. Let E be a Polish space equipped with the Borel σ -algebra.
A sequence of E-valued random elements zn converges in probability if and
only if for every pair of subsequences zl(n), zm(n) there exists a subsequence
wk := (zl(nk), zm(nk)) converging weakly to a random element w supported on the
diagonal {(x, y) ∈ E×E : x = y}.

The next result asserts that the approximate solution to the stochastic heat equa-
tion is uniformly bounded in the space Zp

T defined by (4.2).

LEMMA 4.15. The approximate solutions uε satisfy the condition

(4.27) sup
ε>0

‖uε‖Zp
T

< ∞.

Furthermore, if uε → u in X
1
2 −H

T a.s., as ε tends to zero, then u is also in Zp
T .

PROOF. We will use Picard’s iteration to show that for each ε, uε ∈ Zp
T . Then

we will use Gronwall’s lemma to show that the processes uε are uniformly (in ε)
bounded in Zp

T . To this end, we first define

u0
ε(t, x) = pt ∗ u0(x),
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and recursively

un+1
ε (t, x) = pt ∗ u0(x) +

∫ t

0

∫
R

pt−s(x − y)σ
(
un

ε(s, y)
)
Wε(ds, dy).

We wish to bound ‖un
ε‖Zp

T
uniformly in n. First, recall that

∥∥un
ε

∥∥
Zp

T
= sup

t∈[0,T ]
∥∥un

ε(t, ·)
∥∥
Lp(	×R) + sup

t∈[0,T ]
N ∗

1
2 −H,p

un
ε(t),

where N ∗
1
2 −H,p

is defined in (4.2). Let us now bound the terms ‖un
ε(t, ·)‖Lp(	×R)

and N ∗
1
2 −H,p

un
ε(t).

Step 1. We shall bound ‖un
ε(t, ·)‖Lp(	×R) uniformly in n by considering the

differences of Picard’s iterations. Indeed, by Burkholder’s inequality we have

E
∣∣un+1

ε (t, x) − un
ε(t, x)

∣∣p
= E

∣∣∣∣
∫ t

0

∫
R

pt−s(x − y)
[
σ

(
un

ε(s, y)
) − σ

(
un−1

ε (s, y)
)]

Wε(ds, dy)

∣∣∣∣p

≤ CpE
∣∣∣∣
∫ t

0

∫
R

pt−s(x − y)pt−s(x − z)
[
σ

(
un

ε(s, y)
) − σ

(
un−1

ε (s, y)
)]

× [
σ

(
un

ε(s, z)
) − σ

(
un−1

ε (s, z)
)]

fε(y − z) dy dz ds

∣∣∣∣
p
2
.

Thus, since ‖fε‖∞ ≤ Cε and owing to the fact that σ is a Lipschitz function, we
have

E
∣∣un+1

ε (t, x) − un
ε(t, x)

∣∣p
≤ CεE

∣∣∣∣
∫ t

0

(∫
R

pt−s(y)|un
ε(s, x + y) − un−1

ε (s, x + y)|dy

)2
ds

∣∣∣∣
p
2
,

where Cε denotes a generic constant depending on ε and p. We now integrate with
respect to the space variable and invoke Minkowski’s inequality. In this way, we
obtain

E
∥∥un+1

ε (t, ·) − un
ε(t, ·)

∥∥p
Lp(R)

≤ CεE
∥∥∥∥
∫ t

0

(∫
R

pt−s(y)
∣∣un

ε(s, y + ·) − un−1
ε (s, y + ·)∣∣dy

)2
ds

∥∥∥∥
p
2

L
p
2 (R)

≤ CεE
(∫ t

0

(∫
R

pt−s(y)
∥∥un

ε(s, ·) − un−1
ε (s, ·)∥∥Lp(R) dy

)2
ds

)p
2

≤ Cε

(∫ t

0

∥∥un
ε(s, ·) − un−1

ε (s, ·)∥∥2
Lp(	×R) ds

)p
2
.
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This relation easily entails

∥∥un+1
ε (t, ·) − un

ε(t, ·)
∥∥2
Lp(	×R) ≤ Cε

∫ t

0

∥∥un
ε(s, ·) − un−1

ε (s, ·)∥∥2
Lp(	×R) ds,

and a direct application of Gronwall’s lemma as stated in Lemma 4.13 yields that
the quantity supn supt∈[0,T ] ‖un

ε(t, ·)‖Lp(	×R) is finite for each fixed ε > 0. This
implies that supt∈[0,T ] ‖uε(t, ·)‖Lp(	×R) < ∞ for each fixed ε > 0.

Step 2. Next, we estimate N ∗
1
2 −H,p

uε(t), and observe that we are able to handle

this term directly (namely without invoking Picard’s iterations). We can write∫
R

E
∣∣uε(t, x) − uε(t, x + h)

∣∣p dx

≤ C

∫
R

∣∣pt ∗ u0(x) − pt ∗ u0(x + h)
∣∣p dx

+ Cε

∫
R

E
∣∣∣∣
∫ t

0

(∫
R

∣∣pt−s(y) − pt−s(y + h)
∣∣∣∣uε(s, y + x)

∣∣dy

)2
ds

∣∣∣∣
p
2
dx

≤ C

∫
R

∣∣pt ∗ u0(x) − pt ∗ u0(x + h)
∣∣p dx

+ Cε

(∫ t

0

(∫
R

∣∣pt−s(y) − pt−s(y + h)
∣∣dy

)2∥∥uε(s, ·)
∥∥2
Lp(	×R) ds

)p
2
.

We thus end up with

N ∗
1
2 −H,p

uε(t)

=
∫
R

∥∥uε(t, ·) − uε(t, · + h)
∥∥2
Lp(	×R)|h|2H−2 dh

≤ C

∫
R

∥∥pt ∗ u0(·) − pt ∗ u0(· + h)
∥∥2
Lp(R)|h|2H−2 dh

+ Cε sup
s∈[0,T ]

∥∥uε(s, ·)
∥∥2
Lp(	×R)

×
∫ t

0

∫
R

(∫
R

∣∣pt−s(y) − pt−s(y + h)
∣∣dy

)2
|h|2H−2 dhds,

and the right-hand side in the above inequality is easily seen to be finite. Putting
together the last two steps, we can conclude that for each fixed ε, uε ∈ Zp

T .
Step 3: Uniform bounds in ε. To prove the norms of uε in Zp

T are uniformly
bounded in ε, we note that uε satisfies the equation

uε(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

[(
pt−s(x − ·)σ (

uε(s, ·))) ∗ ρε

]
(y)W(ds, dy).
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Hence, we have

E
∣∣uε(t, x)

∣∣p
≤ C

∣∣pt ∗ u0(x)
∣∣p

+ CE
(∫ t

0

∫
R

∣∣F(
pt−s(x − ·)σ (

uε(s, ·)))(ξ)
∣∣2e−ε|ξ |2 |ξ |1−2H dξ ds

)p
2

(4.28)

≤ C
∣∣pt ∗ u0(x)

∣∣p
+ CE

(∫ t

0

∫
R

∣∣F(
pt−s(x − ·)σ (

uε(s, ·)))(ξ)
∣∣2|ξ |1−2H dξ ds

)p
2
.

Going back from Fourier to direct coordinates, one can check that

E
∣∣uε(t, x)

∣∣p ≤ C
∣∣pt ∗ u0(x)

∣∣p +D1(t) +D2(t),

with

D1(t) =
(∫ t

0

∫
R2

∣∣pt−s(y) − pt−s(y + h)
∣∣2

× ∥∥uε(s, y + x + h)
∥∥2
Lp(	)|h|2H−2 dhdy ds

)p
2

and

D2(t) =
(∫ t

0

∫
R2

∣∣pt−s(y)
∣∣2∥∥uε(s, y + x + h) − uε(s, y + x)

∥∥2
Lp(	)

× |h|2H−2 dhdy ds

)p
2
.

These terms are treated exactly as the terms D1,D2 in the proof of Lemma 4.9,
except for the fact that α = 0 in the current situation. We obtain∥∥uε(t, ·)

∥∥2
Lp(	×R)

≤ C‖u0‖2
Lp(R) + C

∫ t

0
(t − s)H−1∥∥uε(s, ·)

∥∥2
Lp(	×R) ds(4.29)

+ C

∫ t

0
(t − s)−

1
2

∫
R

∥∥uε(s, ·) − uε(s, · + h)
∥∥2
Lp(	×R)|h|2H−2 dhds.

Similarly, we get (see also the bounds for the terms I1,I2 in the proof of Theo-
rem 4.3)[

N ∗
1
2 −H,p

uε(t)
]2

≤ C

∫
R

∥∥u0(·) − u0(· + h)
∥∥2
Lp(R)|h|2H−2 dh(4.30)
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+ C

∫ t

0
(t − s)2H− 3

2
∥∥uε(s, ·)

∥∥2
Lp(	×R) ds

+ C

∫ t

0

∫
R

(t − s)H−1∥∥uε(s, ·) − uε(s, · + l)
∥∥2
Lp(	×R)|l|2H−2 dl ds.

Set

�(t) = ∥∥uε(t, ·)
∥∥2
Lp(	×R) + [

N ∗
1
2 −H,p

uε(t)
]2

.

Thus combining the estimates (4.29) and (4.30) yields

�(t) ≤ C‖u0‖2
Lp(R) + C

∫
R

∥∥u0(·) − u0(· + h)
∥∥2
Lp(R)|h|2H−2 dh

+ C

∫ t

0
(t − s)2H− 3

2 �(s) ds.

Since we have shown that for each fixed ε, ‖uε‖Zp
T

< ∞, we can apply the
Gronwall-type Lemma 4.13 to the above inequality to show that

sup
ε>0

‖uε‖Zp
T

< ∞.

Step 4: u is an element of Zp
T . Recall once again that we have decom-

posed ‖u‖Zp
T

according to relation (4.1). We now bound ‖u(t, ·)‖Lp(	×R) and
N ∗

1
2 −H,p

u(t) in this decomposition.

Since uε converges to u in X
1
2 −H

T a.s., we have uε(t, x) → u(t, x) a.s. for each
(t, x) ∈ R+ ×R. Thus, by Fatou’s lemma,

∥∥u(t, ·)∥∥Lp(	×R) =
(

E
∫
R

lim
ε→0

∣∣uε(t, x)
∣∣p dx

) 1
p

≤ lim
ε→0

(
E

∫
R

∣∣uε(t, x)
∣∣p dx

) 1
p ≤ C.

Therefore, we conclude that supt∈[0,T ] ‖u(t, ·)‖Lp(	×R) is finite. On the other
hand, for each x and h we have |uε(t, x +h)−uε(t, x)|2 → |u(t, x +h)−u(t, x)|2
a.s., so by Fatou’s lemma again we obtain∫

|h|≤1

∥∥u(t, · + h) − u(t, ·)∥∥2
Lp(	×R)|h|2H−2 dh

≤
∫
|h|≤1

lim
ε→0

∥∥uε(t, · + h) − uε(t, ·)
∥∥2
Lp(	×R)|h|2H−2 dh

≤ lim
ε→0

∫
|h|≤1

∥∥uε(t, · + h) − uε(t, ·)
∥∥2
Lp(	×R)|h|2H−2 dh.
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The desired bound on N ∗
1
2 −H,p

u(t) is obtained from the inequality above, by han-

dling the integral on the domains |h| ≤ 1 and |h| > 1. In the latter case, we simply
bound ‖u(t, · + h) − u(t, ·)‖2

Lp(	×R) by 2‖u(t, ·)‖Lp(	×R). By doing so, we con-
clude that

sup
t∈[0,T ]

N ∗
1
2 −H,p

u(t) = sup
t∈[0,T ]

∫
R

∥∥u(t, · + h) − u(t, ·)∥∥2
Lp(	×R)|h|2H−2 dh < ∞.

Together with the previous estimate on ‖u(t, ·)‖Lp(	×R), we conclude that u ∈ Zp
T .
�

We now state a convergence result for stochastic integrals, with respect to the
approximating noise Wε .

LEMMA 4.16. Let un(t, x) be a solution to the equation

un(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)σ
(
un(s, y)

)
Wn(ds, dy),

where we have set Wn = Wεn [recall that Wε is defined by (4.22)] for a sequence
{εn, n ≥ 1} satisfying limn→∞ εn = 0. We assume the following conditions:

(i) with probability one, un converges to u in X
1
2 −H

T ,
(ii) supn ‖un‖Xβ,p

T

< ∞, with 1
2 − H < β < H and p > 2

H
.

Then the process u belongs to X
1
2 −H,2
T . Furthermore, for any fixed t ≤ T and

x ∈ R, the random variable �n(t, x) = ∫ t
0

∫
R

pt−s(x − y)σ (un(s, y))Wn(ds, dy)

converges a.s. to �(t, x) = ∫ t
0

∫
R

pt−s(x − y)σ (u(s, y))W(ds, dy), as n → ∞.

PROOF. We focus on the convergence part and decompose the difference
�(t, x) − �n(t, x) into (�(t, x) − �n,1(t, x)) + (�n,1(t, x) − �n(t, x)), where

�n,1(t, x) =
∫ t

0

∫
R

pt−s(x − y)σ
(
u(s, y)

)
Wn(ds, dy).

Now we note that �(t, x) − �n,1(t, x) can be expressed as∫ t

0

∫
R

pt−s(x − y)σ
(
u(s, y)

)
W(ds, dy)

−
∫ t

0

∫
R

[(
pt−s(x − ·)σ (

u(s, ·))) ∗ ρεn

]
(y)W(ds, dy),

and thus

E
∣∣�(t, x) − �n,1(t, x)

∣∣2
= CE

∫ t

0

∫
R

∣∣e− εn|ξ |2
2 − 1

∣∣2∣∣F(
pt−s(x − ·)σ (

u(s, ·)))(ξ)
∣∣2|ξ |1−2H dξ ds.
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The latter quantity obviously converges to 0 as εn goes to 0 because of the finite-
ness of

E
∫ t

0

∫
R

∣∣F(
pt−s(x − ·)σ (

u(s, ·)))(ξ)
∣∣2|ξ |1−2H dξ ds,

which can be seen by an application of Fatou’s lemma (as in Step 4 of the proof of
Lemma 4.15).

It remains to show that limn→∞ E|�n,1(t, x)−�n(t, x)|2 = 0. However, similar
to (4.28), we have

E
[∣∣�n,1(t, x) − �n(t, x)

∣∣2] ≤ E
∣∣∣∣
∫ t

0

∫
R

pt−s(x − y)fn(s, y)W(ds, dy)

∣∣∣∣2,
where we have set fn = σ(un) − σ(u). Furthermore, appealing to Proposi-

tion A.14, we see that fn converges to 0 in X
1
2 −H

T . We will verify that fn sat-
isfies the conditions (C1)–(C3) of Lemma 4.17 below. Indeed, (C1) is verified
by assumption (i). (C2) is verified by assumption (ii) and the estimate (3.14).
(C3) is readily assumption (ii). Then an application of Lemma 4.17 completes the
proof. �

LEMMA 4.17. Suppose that {fn,n ≥ 1} is a sequence of stochastic processes
belonging to X

β,p
T with 1

2 − H < β < H and p > 2
H

. Assume that the following
conditions hold:

(C1) With probability one, fn converges uniformly to 0 over compact sets of
[0, T ] ×R.

(C2) For every R > 0, supn sups,t∈[0,T ],|x|≤R E|fn(t, x) − fn(s, x)|p ≤ C|t −
s|p H

2 .
(C3) supn ‖fn‖Xβ,p

T

≤ M , where M is a finite number.

Then for every t ≤ T and x ∈R the random variable Yn(t, x) defined by

Yn(t, x) =
∫ t

0

∫
R

pt−s(x − y)fn(s, y)W(ds, dy)

converges to 0 in L2(	).

PROOF. We first observe that Proposition A.9 asserts that fn belongs to

X
1
2 −H,2
T . Next, we show that {fn,n ≥ 1} is relatively compact and converges

to 0 in X
1
2 −H,2
T . For this purpose, we verify the three conditions (1)–(3) of

Proposition A.13. Condition (2) in Proposition A.13 is evident from (C2). Con-
dition (3) in Proposition A.13 follows from the following inequality, where



MULTIPLICATIVE STOCHASTIC HEAT EQUATION 4599

δ ≤ 1:∫
|y|≤δ

∥∥f (t, x + y) − f (t, x)
∥∥2
L2(	)|y|2H−2 dy

≤
(

sup
|y|≤1

∥∥f (t, x + y) − f (t, x)
∥∥2
L2(	)|y|−2β

)∫
|y|≤δ

|y|2β+2H−2 dy.

In fact, the first factor on the right-hand side of the above inequality is uniformly
bounded in (t, x) ∈ [0, T ] × R because of inequality (A.1) and the fact that fn

is bounded in X
β,2
T by condition (C3). Taking into account that β > 1/2 − H , the

second factor converges to zero as δ tends to zero. To verify condition (1) in Propo-
sition A.13, we fix t, x and note that (C1) implies that fn(t, x) converges almost
surely to 0. On the other hand, E|fn(t, x)|p is uniformly bounded, where p > 2.
These two facts imply that {fn(t, x)} converges to 0 in L2(	), thus condition (1)
in Proposition A.13 is verified. Furthermore, condition (C1) ensures that 0 is the
only possible limit point of {fn} in X

1/2−H,2
T . We conclude that fn converges to 0

in X
1/2−H,2
T .

Let us now prove that Yn(t, x) converges to 0 in L2(	). Applying (3.3), we get
E|Yn(t, x)|2 ≤ C(J1(t) + J2(t)) with

J1(t) =
∫ t

0

∫
R

∫
R

∣∣pt−s(x − y − z) − pt−s(x − y)
∣∣2Ef 2

n (s, y + z)|z|2H−2 dy dzds

and

J2(t) =
∫ t

0

∫
R

∫
R

∣∣pt−s(x − y)
∣∣2E

∣∣fn(s, y + z) − fn(s, y)
∣∣2|z|2H−2 dy dzds.

Now for every fixed ε > 0 we choose R > 0 sufficiently large such that∫ t

0

∫
|y|>R

[∣∣pt−s(y)
∣∣2 + [

N 1
2 −H

pt−s(y)
]2]

dy ds < ε.

With this choice of R, we choose n so that

sup
s∈[0,T ],|y|≤R

Ef 2
n (s, y)+ sup

s∈[0,T ],|y|≤R

∫
R

E
∣∣fn(s, y+z)−fn(s, y)

∣∣2|y|2H−2 dy < ε.

By making a shift in y, we end up with

J1(t) =
∫ t

0

∫
R

∫
R

∣∣pt−s(x − y) − pt−s(x − y + z)
∣∣2Ef 2

n (s, y)|z|2H−2 dy dzds

≤
∫ t

0
sup

|y|≤R

Ef 2
n (s, y)

∫
|y−x|≤R

[
N 1

2 −H
pt−s(x − y)

]2
dy ds

+ sup
r∈[0,T ],w∈R

Ef 2
n (r,w)

∫ t

0

∫
|y−x|>R

[
N 1

2 −H
pt−s(x − y)

]2
dy ds

≤ Cε + CM

∫ t

0

∫
|y|>R

[
N 1

2 −H
pt−s(y)

]2
dy ds.
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Similarly,

J2(t) ≤ Cε + CM

∫ t

0

∫
|y|>R

p2
t−s(y) dy ds.

Then E|Yn(t, x)|2 ≤ Cε for n sufficiently large. This implies the result. �

4.5. Proof of the moment bounds. In this subsection, we prove Theorem 4.7
and Proposition 4.8.

PROOF OF THEOREM 4.7. We will apply Proposition 3.5, in particular, the
estimate (3.12) by taking f to be the solution u to equation (1.1), and combine it
with the mild formulation of the solution. For every fixed ε > 0, by noticing that
‖pt ∗ u0‖Xp

T,θ,ε
≤ ‖u0‖ε , we get the following bound:

‖u‖Xp
T,θ,ε

≤ ‖u0‖ε

+ C0‖σ‖Lip
√

p‖u‖Xp
T,θ,ε

(
κ

H
2 − 1

2 θ−H
2 + ε−1κ− 1

4 θ− 1
4 + εκH− 3

4 θ
1
4 −H )

.

We optimize the formula above by choosing ε = κ
1
4 −H

2 θ− 1
4 +H

2 , in order to obtain

‖u‖Xp
T,θ,ε

≤ ‖u0‖ε + 3C0‖σ‖Lip
√

p‖u‖Xp
T,θ,ε

κ
H
2 − 1

2 θ−H
2 ,

then choose θ = θ0 so that 3C0‖σ‖Lip
√

pκ
H
2 − 1

2 θ−H
2 = 1

2 , that is,

θ0 = (6C0)
2
H p

1
H κ1− 1

H ‖σ‖
2
H

Lip and take

ε = ε0 := (6C0)
1− 1

2H κ
1

4H
− 1

2 p
1
2 − 1

4H ‖σ‖1− 1
2H

Lip .

Plugging this choice into the above inequality gives the bound

‖u‖Xp
T,θ0,ε0

≤ 2‖u0‖ε0

from which our claims are easily deduced by noticing that the constant C0 does
not depend on T . �

PROOF OF PROPOSITION 4.8. Applying Itô isometry to equation (2.12), we
see that

(4.31) E
∣∣u(t, x)

∣∣2 = ∣∣pt ∗ u0(x)
∣∣2 + c1,H E

∫ t

0

∥∥pt−s(x − y)σ
(
u(s, y)

)∥∥2

Ḣ
1
2 −H

ds.

Let us recall the well-known Sobolev embedding inequality

‖g‖
Ḣ

1
2 −H

≥ c‖g‖
L

1
H

, ∀g ∈ Ḣ
1
2 −H(R).
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Hence, together with our assumption on σ , it follows that there exists some positive
constant b such that

E
∣∣u(t, x)

∣∣2 ≥ ∣∣pt ∗ u0(x)
∣∣2 + bσ 2∗ E

∫ t

0

∥∥pt−s(x − ·)u(s, ·)∥∥2

L
1
H (R)

ds.

Since 2H < 1, applying Jensen’s inequality we see that

∥∥pt−s(x − ·)u(s, ·)∥∥2

L
1
H (R)

=
(∫

R

p
1
H

−1
t−s (x − y)

∣∣u(s, y)
∣∣ 1

H pt−s(x − y)dy

)2H

≥
∫
R

p3−2H
t−s (x − y)

∣∣u(s, y)
∣∣2 dy.

It follows that

E
∣∣u(t, x)

∣∣2 ≥ ∣∣pt ∗ u0(x)
∣∣2 + bσ 2∗

∫ t

0

∫
R

p3−2H
t−s (x − y)E

∣∣u(s, y)
∣∣2 dy ds.

Iterating the previous inequality yields

(4.32) E
∣∣u(t, x)

∣∣2 ≥ ∣∣pt ∗ u0(x)
∣∣2 +

∞∑
n=1

(
bσ 2∗

)n
In(t, x).

In the above, we have adopted the notation

In(t, x) =
∫
Tn(t)

∫
Rn

p3−2H
t−sn

(x − yn) · · ·p3−2H
s2−s1

(y2 − y1)
∣∣ps1u0(y1)

∣∣2 dȳ ds̄,

where Tn(t) = {(s1, . . . , sn) ∈ [0, t]n : 0 < s1 < · · · < sn < t} and dȳ = dy1 · · ·dyn,
ds̄ = ds1 · · ·dsn. Note that for every x, z ∈ R and a, b > 0, the following identity
holds:∫

R

p3−2H
a (x − y)p3−2H

b (y − z) dy = (3 − 2H)−
1
2

(
2πκab

a + b

)H−1
p3−2H

a+b (x − z).

We thus can compute In(t, x) by integrating yj ’s in descending order starting from
yn. This procedure yields

In(t, x) = (3 − 2H)−
n−1

2

×
∫
Tn(t)

(
t − sn

t − s1

n∏
j=2

2πκ(sj − sj−1)

)H−1

(4.33)

×
∫
R

p3−2H
t−s1

(x − y1)
∣∣ps1u0(y1)

∣∣2 dy1 ds̄.
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On the other hand, for every fixed R > 0, applying Jensen’s inequality, we see that∫
R

p3−2H
t−s1

(x − y1)
∣∣ps1u0(y1)

∣∣2 dy1

≥ p1−2H
t−s1

(R)

∫
|x−y1|<R

p2
t−s1

(x − y1)
∣∣ps1u0(y1)

∣∣2 dy1(4.34)

≥ p1−2H
t−s1

(R)R−1
(∫

|x−y1|<R
pt−s1(x − y1)ps1 ∗ u0(y1) dy1

)2
.

The integral on the right-hand side can be rewritten as

pt ∗ u0(x) −
∫
|x−y1|≥R

pt−s1(x − y1)ps1 ∗ u0(y1) dy1.

Since u0 is bounded, we see that |ps1 ∗ u0(y1)| ≤ ‖u0‖L∞ , and hence∣∣∣∣
∫
|x−y1|≥R

pt−s1(x − y1)ps1 ∗ u0(y1) dy1

∣∣∣∣
≤ ‖u0‖L∞

∫
|y|>R

pt−s1(y) dy

= ‖u0‖L∞π− 1
2

∫
|z|> R√

2κ(t−s1)

e−z2
dz.

For every fixed ε in (0,1), we now choose R = M
√

2κ(t − s1) where M is such
that e−(1−2H)M2

M−1 = ε. It follows that

p1−2H
t−s1

(R)R−1 = πH− 1
2
(
2κ(t − s1)

)H−1
e−(1−2H)M2

M−1

and∣∣∣∣
∫
|x−y1|<R

pt−s1(x − y1)ps1 ∗ u0(y1) dy1

∣∣∣∣ ≥ ∣∣pt ∗ u0(x)
∣∣ − ‖u‖∞e−M2

M−1.

Together with (4.34), we see that∫
R

p3−2H
t−s1

(x − y1)
∣∣ps1u0(y1)

∣∣2 dy1

≥ ce−M2
M−1(

κ(t − s1)
)H−1(∣∣pt ∗ u0(x)

∣∣ − e−M2
M−1‖u0‖L∞

)2

for some universal constant c. Hence, upon combining the previous estimate and
(4.33), we arrive at

In(t, x) ≥ εcnκ(H−1)n
∫
Tn(t)

n+1∏
j=2

(sj − sj−1)
H−1 ds̄

(∣∣pt ∗ u0(x)
∣∣ − ε‖u0‖L∞

)2
,
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where sn+1 = t and c is some universal constant. It is elementary to compute

∫
Tn(t)

n+1∏
j=2

(sj − sj−1)
H−1 ds̄ = (H)ntnH

(nH + 1)
.

Therefore, together with (4.32), we obtain

E
∣∣u(t, x)

∣∣2 ≥ ε
(∣∣pt ∗ u0(x)

∣∣ − ε‖u0‖L∞
)2

∞∑
n=0

(
cb(H)

)n (σ
2
H∗ κ1− 1

H t)nH

(nH + 1)
.

We now recall the asymptotic
∞∑

n=0

zn

(1 + an)
= 1

a
exp

(
z

1
a
) + O

(|z|−1)
as z → ∞,

which can be found, for example, in [8], page 208. Together with the previous
estimate, this yields:

(4.35) E
∣∣u(t, x)

∣∣2 ≥ Cε
(
pt ∗ u0(x) − ε‖u0‖L∞

)2
eLσ

2
H∗ κ

1− 1
H t .

By choosing ε = |pt∗u0(x)|
3‖u0‖L∞ , we conclude the proof. �

APPENDIX

In this Appendix we gather the results about the space–time function spaces
and probability measures on X

β
T . These function spaces are defined in Sections 3.1

and 4.2.

A.1. Space–time function spaces. Let us start by noting that the notation
NB,(δ)

β f (x), defined in (4.3), gives information of the Hölder continuity of the
function f . Indeed, suppose, for instance, that a function f has modulus of con-
tinuity |h|βω(h) at x, for any |h| ≤ δ. Then [NB,(δ)

β f (x)]2 is bounded above by

2
∫ δ

0 ω2(h)h−1 dh. Thus, for NB,(δ)
β f (x) to be finite, it is sufficient that ω2(h)h−1

is integrable near 0. On the other hand, if NB,(δ)
β f is bounded over a domain, the

following proposition asserts that f is necessarily Hölder continuous.

PROPOSITION A.1. Let I be a nonempty open interval of R and δ ∈ (0,∞].
Let f be a function on R such that supx∈Ī N

B,(δ)
β f (x) is finite. Then

(A.1) sup
x∈I,|y|≤ δ

3 ∧dist(x,∂I )

‖f (x + y) − f (x)‖
|y|β ≤ c(β) sup

x∈Ī

NB,(δ)
β f (x)

for some finite constant c(β) which depends only on β .
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PROOF. For every x ∈ I and positive R, R ≤ δ, we denote fx,R =
1

2R

∫ R
−R f (y + x)dy. We first estimate ‖f (x) − fx,R‖ as follows:∥∥f (x) − fx,R

∥∥
≤ 1

2R

∫ R

−R

∥∥f (x) − f (x + y)
∥∥dy

(A.2)

≤ 1

2R

(∫ R

−R

∥∥f (x) − f (x + y)
∥∥2|y|−1−2β dy

) 1
2
(∫ R

−R
|y|1+2β dy

) 1
2

≤ Rβ

2
√

1 + β
sup
x∈Ī

NB,(δ)
β f (x).

Let us now fix x ∈ I and y ∈ R such that |y| ≤ δ/3 ∧ dist(x, ∂I ). We also choose
R = |y|. It follows from triangle inequality that∥∥f (x + y) − f (x)

∥∥
(A.3)

≤ ∥∥f (x + y) − fx+y,R

∥∥ + ‖fx+y,R − fx,R‖ + ∥∥f (x) − fx,R

∥∥.
For the second term, we apply Minkowski’s inequality to get

‖fx+y,R − fx,R‖ ≤ 1

4R2

∫ R

−R

∫ R

−R

∥∥f (x + y + z) − f (x + w)
∥∥dzdw,

and invoking Cauchy–Schwarz’s inequality this yields

‖fx+y,R − fx,R‖

≤ 1

4R2

∫ R

−R

(∫ R

−R

∥∥f (x + y + z) − f (x + w)
∥∥2|y + z − w|−2β−1 dz

) 1
2

×
(∫ R

−R
|y + z − w|2β+1 dz

) 1
2
dw.

Notice that because of the restrictions on the variables, the domain of integration
above satisfies |y + z − w| ≤ 3R ≤ δ and x + w ∈ Ī . Hence,

‖fx+y,R − fx,R‖ ≤ Cβ sup
y∈Ī

NB,(δ)
β f (y)Rβ.

We can now conclude our proof as follows: the first and third terms on the right-
hand side of (A.3) are estimated in (A.2). Combining these estimates within (A.3)
yields (A.1). �

Now we turn to the results about the function spaces Xβ
T (B) and X

β
T , which are

defined in Definitions 3.3 and 4.2, respectively.

PROPOSITION A.2. X
β
T (B) is a Banach space.
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PROOF. Let {fn} be a Cauchy sequence in X
β
T (B). Since the space Cb([0, T ]×

R;B) of bounded continuous functions from [0, T ] × R to B is complete, there
exists a bounded continuous function f : [0, T ] ×R → B such that

lim
n→∞ sup

t∈[0,T ],x∈R
∥∥fn(t, x) − f (t, x)

∥∥ = 0.

For any ε > 0, there exists n0 > 0 such that

sup
x∈R

NB
β (fn − fm)(t, x) < ε

for all m,n ≥ n0. It follows from Fatou’s lemma that

NB
β (fn − f )(t, x) ≤ lim inf

m→∞ NB
β (fn − fm)(t, x) ≤ ε

for every t ∈ [0, T ], x ∈R and n ≥ n0. This implies that

lim
n→∞ sup

t≤T ,x∈R
NB

β (fn − f )(t, x) = 0

which means fn converges to f in X
β
T (B). �

PROPOSITION A.3. X
β
T is a complete metric space.

PROOF. Let {fn} be a Cauchy sequence in X
β
T . Since the space Cuc([0, T ] ×

R) is complete, there exists a continuous function f : [0, T ] × R → R such that
for all compact intervals I ,

lim
n→∞ sup

t∈[0,T ],x∈I

∣∣fn(t, x) − f (t, x)
∣∣ = 0.

Let us fix a compact interval I = [−N,N], and ε > 0. There exists n0 > 0 such
that

sup
t∈[0,T ],x∈I

N (1)
β (fn − fm)(t, x) < ε

for all m,n ≥ n0. It follows from Fatou’s lemma that

N (1)
β (fn − f )(t, x) ≤ lim inf

m→∞ N (1)
β (fn − fm)(t, x) ≤ ε,

for every t ∈ [0, T ], x ∈ I and n ≥ n0. This implies that N (1)
β (fn −f ) converges to

0 uniformly on [0, T ]× I . In addition, from (4.4), it follows that N (1)
β fn converges

to N (1)
β f uniformly on [0, T ] × I , thus the continuity of N (1)

β fn implies that of

N (1)
β f .
It remains to check that f satisfies the condition (ii) of Definition 4.2. For every

ε > 0 and |h| ≤ 1, choose n sufficiently large so that

sup
t∈[0,T ],x∈[N−1,N+1]

N (1)
β (fn − f )(t, x) < ε.
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Applying Minkowski’s inequality, for every (t, x) ∈ [0, T ] × [−N,N], we have

N (1)
β (τhf − f )(t, x)

≤ N (1)
β (τhf − τhfn)(t, x) +N (1)

β (τhfn − fn)(t, x) +N (1)
β (fn − f )(t, x)

≤ 2ε +N (1)
β (τhfn − fn)(t, x).

Since fn belongs to X
β
T , limh→0 supt∈[0,T ],x∈[−N,N]N

(1)
β (τhfn − fn)(t, x) = 0

which implies f belongs to X
β
T . �

The next results give some characterizations of the space X
β
T .

LEMMA A.4. Let f : [0, T ] × R → R be a continuous function such that
t �→ N (1)

β f (t, x) is continuous for every fixed x. Suppose in addition that, for
every R > 0,

lim
δ↓0

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy = 0.

Then N (1)
β f is continuous and f belongs to X

β
T .

PROOF. Fix R,ε > 0, and choose δ such that

sup
t∈[0,T ],x∈[−R−1,R+1]

∫ δ

−δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy < ε.

Then for every t ∈ [0, T ], x ∈ [−R,R] and |h| ≤ 1,[
N (1)

β (τhf − f )(t, x)
]2

≤ 2ε + sup
t∈[0,T ],x∈[−R−1,R+1]

2
∣∣τhf (t, x) − f (t, x)

∣∣2 ∫
|y|>δ

|y|−2β−1 dy.

Since f is continuous, limh→0 supt∈[0,T ],x∈[−R−1,R+1] |τhf (t, x) − f (t, x)| = 0.

Together with the previous estimate, this yields limh→0 supt∈[0,T ],x∈[−R,R]N
(1)
β ×

(τhf − f )(t, x) = 0 which on one hand, together with (4.4) implies the continuity
of N (1)

β f . On the other hand, it obviously implies f ∈ X
β
T . �

PROPOSITION A.5. Let φ ∈ C∞(R) be supported in [−1,1], such that∫
R

φ(x) dx = 1 and 0 ≤ φ ≤ 1. Set φn(x) = nφ(nx). Then:

(1) If f ∈ X
β
T , then f ∗ φn → f in X

β
T as n → ∞, where ∗ denotes the convo-

lution with respect to the space variable.
(2) C0,1([0, T ] × R), that is, the space of functions which are continuous in

time and continuously differentiable in space, is dense in X
β
T .
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(3) Suppose that f is a continuous function on [0, T ] × R such that t �→
N (1)

β f (t, x) is finite and continuous in time for every fixed x ∈ R. Then f belongs

to X
β
T if and only if for every R > 0

(A.4) lim
δ↓0

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy = 0.

PROOF. We denote fn = f ∗ φn. To show (1), we observe that

fn(t, x + y) − fn(t, x) − f (t, x + y) + f (t, x)

=
∫
R

[
τhf (t, x + y) − τhf (t, x) − f (t, x + y) + f (t, x)

]
φn(h)dh

and hence, for every x ∈ [−R,R], applying Jensen’s inequality, we get∫ 1

−1

∣∣fn(t, x + y) − fn(t, x) − f (t, x + y) + f (t, x)
∣∣2|y|−2β−1 dy

≤
∫
R

∫ 1

−1

∣∣τhf (t, x + y) − τhf (t, x) − f (t, x + y)

+ f (t, x)
∣∣2|y|−2β−1φn(h)dhdy

≤ sup
r∈[0,T ],z∈[−R−1,R+1]

sup
|h|≤ 1

n

[
N (1)

β (τhf − f )(r, z)
]2

.

By assumption f belongs to X
β
T . Therefore, owing to condition (ii) in Defini-

tion 4.2, this integral converges to 0 when n → ∞. This proves item (1).
To show (2), we first prove that X

β
T contains C0,1([0, T ] × R). Indeed, if g is

a function in C0,1([0, T ] × R), by dominated convergence theorem, it is easy to
show that N (1)

β g(t, x) is finite and continuous in time for every fixed x. Moreover,
for every R > 0, we have

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

∣∣g(t, x + y) − g(t, x)
∣∣2|y|−2β−1 dy

(A.5)
≤ sup

x∈[−R,R],t∈[0,T ]
∣∣∂xg(t, x)

∣∣2 ∫
|y|≤δ

|y|1−2β dy.

Since limδ→0
∫
|y|≤δ |y|1−2β dy = 0, Lemma A.4 implies that g belongs to X

β
T . We

have thus proved that C0,1 ⊂ X
β
T . Together with item (1), this yields item (2).

The sufficiency of (3) is in fact the content of Lemma A.4. We focus on the
necessity of (A.4). Assume that f belongs to X

β
T . Fix R > 0, ε > 0 and choose g

in C0,1 so that

sup
t∈[0,T ],x∈[−R,R]

N (1)
β (f − g)(t, x) < ε.
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Then for every δ > 0 we have

sup
t∈[0,T ],|x|≤R

∫ δ

−δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy

(A.6)

≤ 2ε2 + 2 sup
t∈[0,T ],|x|≤R

∫ δ

−δ

∣∣g(t, x + y) − g(t, x)
∣∣2|y|−2β−1 dy.

Since g is C0,1, the last term converges to 0 when δ ↓ 0 [see relation (A.5)]. Due
to the fact that ε can be chosen arbitrarily small, this implies that f satisfies the
condition (A.4). �

COROLLARY A.6. X
β
T is a Polish (complete and separable) space.

PROOF. Completeness comes from Proposition A.3. For separability, we in-
voke Proposition A.5(2) and the fact that the functions in C0,1([0, T ] ×R) can be
approximated by polynomials with rational coefficients, using a truncation argu-
ment. �

REMARK A.7. The space which satisfies only condition (i) in Definition 4.2
would be too big and fails to be separable. Analogous situations occur frequently
in analysis. In the study of Morrey spaces, this fact was first observed by Zorko
in [16]. The continuity of spatial translations with respect to a norm is sometimes
called Zorko condition.

PROPOSITION A.8. The inclusion X
β
T ⊂ Xα

T holds continuously for β > α.

PROOF. Suppose f belongs to X
β
T . Fix n ≥ 1. By Proposition A.1, we see that

sup
t∈[0,T ],|x|≤n

∣∣f (t, x + y) − f (t, x)
∣∣ ≤ C sup

t∈[0,T ],|x|≤n+1
N (3)

β f (t, x)|y|β

for every |y| ≤ 1. Hence, for every t ≤ T , |x| ≤ n and α < β we have∫
|y|≤1

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2α−1 dy ≤ C sup

t∈[0,T ],|x|≤n+1
N (3)

β f (t, x),

which is a finite quantity. The continuity of (t, x) �→ ∫
|y|≤1 |f (t, x + y) −

f (t, x)|2|y|−2α−1 dy follows at once from dominated convergence theorem. �

We state an analogous result for Xβ,p
T without proof.

PROPOSITION A.9. The inclusion X
β,p
T ⊂ X

α,q
T holds continuously for β > α

and p ≥ q .
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A.2. Compactness criteria. In the current subsection, we derive compactness
criteria for X

β
T and X

β
T (B). We first recall some well-known definitions and facts.

An ε-cover of a metric space is a cover of the space consisting of sets of diameter
at most ε. A metric space is called totally bounded if it admits a finite ε-cover
for every ε > 0. It is well known that a metric space is compact if and only if it
is complete and totally bounded. The following lemma is the key ingredient for
many compactness results.

LEMMA A.10. Let X be a metric space. Assume that, for every ε > 0, there
exists a δ > 0, a metric space W , and a mapping � : X → W such that �(X) is
totally bounded, and for all x, y ∈ X with d(�(x),�(y)) < δ, we have d(x, y) <

ε. Then X is totally bounded.

The proof of this lemma is elementary; we refer readers to Lemma 1 in [12] for
details. The following result provides sufficient conditions for relative compact-
ness in X

β
T .

PROPOSITION A.11. A set F in X
β
T is relatively compact if:

[A1] supf ∈F |f (0,0)| is finite.
[A2] For every fixed x ∈ R, {f (·, x) : f ∈ F} is equicontinuous in time.
[A3] For every R > 0,

lim
δ↓0

sup
f ∈F

sup
t∈[0,T ]x∈[−R,R]

∫ δ

−δ

|f (t, x + y) − f (t, x)|2
|y|1+2β

dy = 0.

PROOF. Suppose that F satisfies the three conditions. We first observe that
condition [A3] together with (A.1) implies the following equicontinuity property.
For every R > 0 and ε > 0, there exists η > 0 such that

sup
t∈[0,T ]

∣∣f (t, x) − f (t, y)
∣∣ < ε

whenever f ∈ F and x, y ∈ [−R,R] satisfy |x − y| < η. Together with [A2], this
implies equicontinuity for F in (t, x) ∈ [0, T ] × [−R,R]. Indeed, take N to be a
sufficiently large integer, and set xi = −R + j

N
R, j = 0,1, . . . ,2N . According to

[A2], {f (·, xi) : f ∈ F} is equicontinuous in time, uniformly for j = 0,1, . . . ,2N .
By writing∣∣f (t, x) − f (s, x)

∣∣
≤ ∣∣f (t, x) − f (t, xi)

∣∣ + ∣∣f (t, xi) − f (s, xi)
∣∣ + ∣∣f (s, xi) − f (s, x)

∣∣,
where xi is chosen in such a way that |x − xi | < η, this shows the uniformity in x.



4610 Y. HU ET AL.

Fix now R > 0 and ε > 0. From [A3], we can choose a positive number δ1 =
δ1(ε), such that δ1 < 1 and

2 sup
f ∈F

sup
t∈[0,T ],x∈[−R,R]

∫ δ1

−δ1

|f (t, x + y) − f (t, x)|2
|y|1+2β

dy < ε2.

We now choose δ2 ≤ ε satisfying

2(3δ2)
2
∫
|y|>δ1

dy

|y|1+2β
< ε2.

By the equicontinuity, we can also choose a positive number η = η(ε), η < 1, such
that

(A.7)
∥∥f (t, x) − f (s, y)

∥∥ < δ2,

whenever f ∈ F and (t, x), (s, y) ∈ [0, T ] × [−R − 2,R + 2] satisfy |t − s| +
|x − y| < η. Since [0, T ] × [−R − 2,R + 2] is compact, we can find a finite set
of points {(ta, xi) : 1 ≤ a, i ≤ n} in [0, T ] × [−R − 2,R + 2] such that for every
(t, x) ∈ [0, T ]×[−R−1,R+1], there is some (ta, xj ) so that |t − ta|+ |x −xj | <
η and [xj − 1, xj + 1] ⊂ [−R − 2,R + 2].

Define � : F →R
n2

by

�(f ) = (
f (ta, xi) : 1 ≤ a, i ≤ n

)
.

Condition [A1] and equicontinuity imply that the image �(F) is bounded, and thus
totally bounded in R

n2
. Furthermore, consider f,g ∈ F with ‖�(f ) − �(g)‖∞ <

δ2. Resorting to the fact that for any (t, x) ∈ [0, T ] × [−R − 1,R + 1] there are
some a, j so that |t − ta| + |x − xj | < η, we can write∣∣f (t, x) − g(t, x)

∣∣
≤ ∣∣f (t, x) − f (ta, xj )

∣∣ + ∣∣f (ta, xj ) − g(ta, xj )
∣∣ + ∣∣g(ta, xj ) − g(t, x)

∣∣
≤ 3δ2,

where we bounded the first and third term on the right-hand side thanks to (A.7),
and the second one according to the fact that ‖�(f ) − �(g)‖∞ < δ2. We end up
with

sup
t∈[0,T ],x∈[−R−1,R+1]

∣∣f (t, x) − g(t, x)
∣∣ ≤ 3δ2 ≤ 3ε.

In addition, for every (t, x) ∈ [0, T ] × [−R,R] we have[
Nβ(f − g)(t, x)

]2

≤ 2 sup
h∈{f,g}

∫
|y|≤δ1

∣∣h(t, x + y) − h(t, x)
∣∣2 dy

|y|1+2β

+ 2 sup
r∈[0,T ],z∈[−R−1,R+1]

∣∣f (r, z) − g(r, z)
∣∣2 ∫

|y|>δ1

dy

|y|1+2β
≤ 2ε2.
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Therefore, by the definition of the metric on X
β
T [see (4.5)] and Lemma A.10, the

set F is totally bounded in X
β
T . �

A useful consequence of the previous proposition is the following corollary.

COROLLARY A.12. Suppose α > β . Let F be a subset of Xα
T such that F is

equicontinuous in time for every fixed x, supf ∈F |f (0,0)| < ∞ and

supf ∈F supt∈[0,T ],|x|≤R N (1)
α f (t, x) < ∞ for every positive R. Then F is relatively

compact in X
β
T .

PROOF. It suffices to check that F satisfies condition [A3]. Applying (A.1),
for δ small enough, the assumption on F implies

sup
f ∈F

sup
t∈[0,T ],|x|≤R

∣∣f (t, x + y) − f (t, x)
∣∣ ≤ C|y|α,

for all |y| ≤ δ. Hence,

sup
f ∈F

sup
t∈[0,T ],|x|≤R

∫
|y|≤δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy

≤ C

∫
|y|≤δ

|y|2(α−β)−1 dy,

which clearly implies [A3] since α > β . �

The following result provides sufficient conditions for relative compactness in
X

β
T (B). Its proof is completely analogous to that of Proposition A.11 and is omit-

ted for the sake of conciseness.

PROPOSITION A.13. Suppose that a set F in X
β
T (B) satisfies the following

properties:

(1) For every t ∈ [0, T ] and x ∈ R, F(t, x) := {f (t, x) : f ∈ F} is relatively
compact in the Banach space B .

(2) For every fixed x ∈ R, {f (·, x) : f ∈ F} is equicontinuous in time.
(3) For every R > 0, we have

lim
δ↓0

sup
f ∈F

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

‖f (t, x + y) − f (t, x)‖2

|y|1+2β
dy = 0.

Then F is relatively compact in X
β
T (B).

In order to handle the nonlinearity in equation (1.1), the following composition
rule is crucial.
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PROPOSITION A.14 (Left composition). Let σ be a Lipschitz function on
R and let f be a function in X

β
T . Suppose that for every fixed x, the map

t �→ N (1)
β σ (f )(t, x) is continuous. Then σ(f ) belongs to X

β
T . Furthermore, if fn

is a sequence converging to f in X
β
T , then for every positive R and for any δ > 0

we have

lim
n→∞ sup

t∈[0,T ],|x|≤R

N (δ)
β

(
σ(fn) − σ(f )

)
(t, x) = 0.

PROOF. We first show that σ(f ) belongs to X
β
T . For any δ > 0, we have∫

|y|≤δ

∣∣σ (
f (t, x + y)

) − σ
(
f (t, x)

)∣∣2|y|−2β−1 dy ≤ ‖σ‖2
Lip

[
N (δ)

β f (t, x)
]2

,

which together with the criterion (3) in Proposition A.5 implies that σ(f ) belongs
to X

β
T .

For the second assertion, for every positive R and any ε > 0, we can choose
δ0 > 0 and n0 > 0, so that, for any n ≥ n0,

(A.8) sup
t∈[0,T ],|x|≤R

N (δ0)
β

(
σ(fn) − σ(f )

)
(t, x) ≤ ε.

Indeed, it is easily seen that

N (δ0)
β

(
σ(fn) − σ(f )

)
(t, x) ≤ N (δ0)

β σ (fn)(t, x) +N (δ)
β σ (f )(t, x)

≤ ‖σ‖Lip
(
N (δ0)

β fn(t, x) +N (δ0)
β f (t, x)

)
≤ ‖σ‖Lip

(
N (δ0)

β (fn − f )(t, x) + 2N (δ0)
β f (t, x)

)
,

and the last term is readily bounded by ε if δ0 is chosen small enough. Now with
(A.8) in hand we obtain, for any δ > 0,

sup
t∈[0,T ],|x|≤R

N (δ)
β

(
σ(fn) − σ(f )

)
(t, x)

≤ Cε + C‖σ‖Lip sup
t∈[0,T ],|x|≤R+1

∣∣fn(t, x) − f (t, x)
∣∣(∫

|y|>δ0

|y|−2β−1 dy

) 1
2
.

We conclude the proof by taking the limit as n tends to infinity. �

The next lemma gives a criterion for a process in X
α,p
T to have its paths almost

surely lie in the space X
β
T for a certain value of β .

LEMMA A.15. Let f be a stochastic process in X
α,p
T with pα > 1. Assume

that for any R > 0

(A.9) sup
s,t∈[0,T ]

sup
|x|≤R

∥∥f (t, x) − f (s, x)
∥∥
Lp(	) ≤ CR|t − s|λ,
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where λ > p−1. Then f has a version f̃ such that with probability one, f̃ belongs
to X

β
T for every β < α − 1

p
.

PROOF. Since f belongs to X
α,p
T , inequality (A.1) implies

sup
t∈[0,T ]

sup
x,y∈R

‖f (t, x + y) − f (t, x)‖Lp(	)

|y|α

≤ C sup
t∈[0,T ],x∈R

∫
R

∥∥f (t, x + y) − f (t, x)
∥∥2
Lp(	)|y|−2α−1 dy.

Then by the Kolmogorov continuity criterion, f has a version f̃ such that with
probability one, f̃ satisfies

sup
s,t∈[0,T ],|x|≤R

∣∣f̃ (t, x + y) − f̃ (s, x)
∣∣ ≤ C

(|y|β ′ + |t − s|λ′)
for every R and |y| ≤ 1, where β ′ and λ′ are fixed and such that β < β ′ < α − 1/p

and λ < λ′ < λ − 1/p. This implies that a.s. N (1)
β f̃ (t, x) is finite and a.s. f̃ (t, x)

satisfies condition (A.4). The continuity of N (1)
β f̃ follows from the dominated

convergence theorem. These facts imply that f̃ belongs to X
β
T almost surely. �

A.3. Probability measures on X
β
T . This subsection is devoted to study tight-

ness of probability measures defined on X
β
T . These properties are needed in Sec-

tion 4 to show the existence of solution to equation (1.1). We have the following
result toward this aim.

THEOREM A.16. Let {Pn, n ≥ 1} be a sequence of probability measures on
X

β
T . This sequence is tight if the following three conditions hold:

(1) For each positive η, there exist a and n0 such that for all n ≥ n0:

(A.10) Pn

(
f ∈ X

β
T : ∣∣f (0,0)

∣∣ ≥ a
) ≤ η.

(2) For every x ∈ R, and every positive ε and η, there exist δ satisfying 0 < δ <

1, and n0 such that for all n ≥ n0

(A.11) Pn

(
f ∈ X

β
T : sup

s,t≤T ,|t−s|<δ

∣∣f (t, x) − f (s, x)
∣∣ ≥ ε

)
≤ η.

(3) For every R > 0, for each positive ε and η, there exist δ ∈ (0,1) and n0
such that for all n ≥ n0

Pn

(
f ∈ X

β
T : sup

t∈[0,T ],|x|≤R

∫ δ

−δ

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy ≥ ε

)
(A.12)

≤ η.
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PROOF. Without loss of generality we assume n0 = 1. For a given η > 0, we
choose a so that Pn(B

c) ≤ η for all n ≥ 1, where

B = {
f ∈ X

β
T : ∣∣f (0,0)

∣∣ < a
}
.

According to condition (3), for any integer k,N , we also choose and fix δk,N such
that Pn(A

c
k,N) ≤ η2−k−N for all n ≥ 1, where

Ak,N =
{
f ∈ X

β
T : sup

t∈[0,T ],|x|≤N

∫ δk,N

−δk,N

∣∣f (t, x + y) − f (t, x)
∣∣2|y|−2β−1 dy ≤ 1

k2

}
.

Then for each x̃ ∈ [−N,N] ∩ δk,N

3 Z, where Z is the set of integers (note that the
number of such x̃ has order N

δk,N
), we choose δ′

k,N(x̃) according to condition (2)

such that Pn(B
c
k,N(x̃)) ≤ δk,Nη2−k−N , where

Bk,N(x̃) =
{
f ∈ X

β
T : sup

t,s,≤T ,|t−s|≤δ′
k,N (x̃)

∣∣f (t, x̃) − f (s, x̃)
∣∣ ≤ 1

k2

}
.

Consider now Bk,N = ⋂
x̃∈[−N,N]∩ δk,N

3 Z
Bk,N(x̃). It is easy to see that

Pn

(
Bc

k,N

) ≤ ∑
x̃∈[−N,N]∩ δk,N

3 Z

Pn

(
Bc

k,N(x̃)
) ≤ C

N

δk,N

ηδk,N2−k−N = Cη2−k−NN.

We thus set A = ⋂
k,N(Ak,N ∩ Bk,N) ∩ B . Then according to Proposition A.11 we

see that the closure of A is compact in X
β
T , and Pn(A) ≥ 1 − Cη. This shows the

tightness of Pn. �

The following proposition states that under some moment conditions, a se-
quence of processes {un} can be regarded as a tight sequence of probability mea-
sures on the space X

β
T .

PROPOSITION A.17. Assume that α,λ ∈ (0,1) and p ≥ 1 satisfy pα > 1,
pλ > 1 and β < α − 1/p. Let {un,n ≥ 1} be a sequence of stochastic processes
such that:

(1) limδ→∞ lim supn P(|un(0,0)| > δ) = 0,
(2) for every R > 0, supn sups,t∈[0,T ],|x|≤R ‖un(t, x) − un(s, x)‖Lp(	) ≤

CR|t − s|λ,
(3) supn ‖un‖Xα,p

T
is finite.

From Lemma A.15, the law of un can be considered as a probability measure on
X

β
T . In addition, as probability measures on X

β
T , the sequence {un,n ≥ 1} is tight.

PROOF. This proposition can be easily proved using the same ideas as in the
proof of Lemma A.15 and Theorem A.16. We omit the details. �
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