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Abstract In this note, we present a new and simple method which allows to get a
priori bounds on rough partial differential equations. The technique is based on a
weak formulation of the equation and a rough version of Gronwall’s lemma. The
method is presented on a simple linear example, but might be generalized to a wide
number of situations.
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1 Introduction

This paper proposes to review a recent method allowing to get a priori estimates for
rough partial differential equations, taken from [6]. Our aim here is to show how
to implement the technique on a simple example. Namely, we shall consider the
following noisy heat equation on an interval Œ0; �� � R

d for � > 0 and a spatial
dimension d � 1:

@tut.x/ D �

2
ut.x/C

1X

iD1
ˇiut.x/ei.x/dwi

t; (1.1)

where� stands for the Laplace operator, feiI � 1g is an orthonormal basis of L2.Rd/

and fˇiI � 1g is a family of coefficients satisfying some summability conditions
(see Hypothesis 2.4 below). In Eq. (1.1), fwiI � 1g is also a family of noises,
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interpreted as p-variation paths with p < 3, which can be lifted to a rough path
w (see Hypothesis 2.3 for a more complete definition).

The recent activity on existence and uniqueness results for rough PDEs has been
thriving. A lot of this activity concerns situations which require renormalization
techniques and a way to handle pathwise products of distributions [10, 12, 13]. Here
we are concerned with a different context, for which the noise is smooth enough
in space, so that the solution of (1.1) is directly expected to be a function and the
integrals with respect to w are usual rough paths integrals. This situation does not
require the whole regularity structure machinery, and one advantage of this reduced
setting is that more information on the solution is available. We are concerned in
this paper about a priori estimates, which can be either seen as a crucial step in
the proof of existence of solutions, or as a first piece of valuable information about
the solution. Furthermore, we believe that a priori estimates exhibit the core of the
pathwise methods for stochastic PDEs, even though many more technical steps have
to be performed in order to get existence and uniqueness results.

Let us summarize some of the (unrelated) approaches leading to estimates of
equations like (1.1).

1. The references [2, 11] handle stochastic PDEs by considering random flows
(induced by a finite dimensional rough path) which change the stochastic PDE
into a deterministic PDE with random coefficients. A priori bounds are then
potentially obtained by composing bounds on deterministic PDEs and estimates
on rough flows. This possibility has not been fully exploited yet, and might lead
to nontrivial considerations.

2. In [5, 9], a variant of the rough paths theory is introduced in order to cope
with PDEs of the form (1.1), considered in the mild sense. This involves some
lengthy and intricate considerations on twisted increments of the form Oıfts D
ft � St�s fs, where S designates the heat semi-group and f is a generic L2.Rd/-
valued function. However, this formalism yields a priori estimates for (1.1),
especially when one considers related numerical schemes as in [4].

3. For linear equations like (1.1), Feynman-Kac representations for the solution are
available. This gives raise to explicit moment computations for ut.x/, for a fixed
couple .t; x/ 2 RC � R

d. Many cases of Gaussian noises have been examined in
this context, and we refer to [3] for a situation which is close to ours, namely a
rough noise in time which is smooth in space.

Let us highlight again the fact that we only recall here results concerning smooth
noises in space. In cases like [10, 12, 13] where renormalization is needed, the mere
existence of moments for the renormalized solution is still an open problem (to the
best of our knowledge).

With these preliminary considerations in mind, the main point of the current
paper is to show that the variational approach to rough PDEs, introduced in [1, 6],
provides a handy way to obtain L2.Rd/ (and more generally L˛.Rd/) estimates on
the solution. The main advantages of this new setting are the following:

1. The variational formulation is convenient at an algebraic and analytic level, when
compared with the other methods mentioned above.
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2. Unlike Feynman-Kac representations, the variational approach is not restricted
to linear equations (though generalizations require a nontrivial extra work).

We shall illustrate this point of view with the simple model (1.1), for which we
shall deduce L˛-estimates in a detailed way. It should be noticed that variational
methods have been considered previously in [15] for pathwise PDEs driven by
a fractional Brownian motion. With respect to this reference, our computations
are restricted to linear cases. However, [15] only considers fBm’s with a Hurst
parameter H > 1

2
, while we are concerned with a true rough case (corresponding to

1
3
< H � 1

2
for fBm).

Our article is structured as follows: in Sect. 2 we introduce some notations and
the variational method framework, and we also present our first a priori estimate
in Proposition 2.8. This estimate (adapted from [6, Theorem 2.5]) is valid for
general linear equations, and will be suitable for our stochastic heat equation with
multidimensional noise. Then in Sect. 3 we prove our main a priori bounds, namely
Theorems 3.5 and 3.9 for the solution of Eq. (1.1), both in L2.Rd/ and L˛.Rd/ norms.
Finally, Sect. 4 is devoted to the application of our abstract results to equations
driven by fractional Brownian motion. A first example concerns a bounded domain,
which enables us to compare our result with those of [15], while a second example
deals with the whole space R

d:

2 Rough Variational Framework

As mentioned above, our framework relies on a variational formulation of the heat
equation, which is algebraically quite convenient. In this section we first recall some
basic vocabulary about algebraic integration, then we give the main general results
needed for the rough heat equation (1.1).

2.1 Notions of Algebraic Integration

First of all, let us recall the definition of the increment operator, denoted by ı. If g
is a path defined on Œ0;T� and s; t 2 Œ0;T� then we set ıgst WD gt � gs. Whenever g
is a 2-index map defined on Œ0;T�2, we define ıgsut WD gst � gsu � gut. The norm of
the element g in the Banach space E will be written as N ŒgI E�. For two quantities
a and b the relation a .x b means a � cxb, for a constant cx depending on a
multidimensional parameter x.

In the sequel, given an interval I we call control on I (and denote it by !) any
continuous superadditive map on�I WD f.s; t/ 2 I2 W s � tg, that is, any continuous
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map ! W �I ! Œ0;1/ such that, for all s � u � t,

!.s; u/C !.u; t/ � !.s; t/:

Given a control! on an interval I D Œa; b�, we will use the notation !.I/ WD !.a; b/.
For a fixed time interval I, a parameter p > 0, a Banach space E and any continuous
function g W I ! E we define the norm

N ŒgI Vp
1 .II E/� WD sup

.ti/2P.I/

 
X

i

jıgtitiC1
jp

! 1
p

;

where P.I/ denotes the set of all partitions of the interval I. In this case,

!g.s; t/ D N ŒgI Vp
1 .Œs; t�I E/�p

defines a control on I. We denote by Vp
2 .II E/ the set of continuous two-index maps

g W I � I ! E for which there exists a control ! such that

jgstj � !.s; t/
1
p

for all s; t 2 I. We also define the space Vp
2;loc.II E/ of maps g W I � I ! E such that

there exists a countable covering fIkgk of I satisfying g 2 Vp
2 .IkI E/ for any k.

The following result is often referred to as sewing lemma in the literature, and is
at the core of our approach to generalized integration.

Lemma 2.1 Fix an interval I, a Banach space E and a parameter � > 1. Consider
a function h W I3 ! E such that h 2 Im ı and for every s < u < t 2 I,

jhsutj � !.s; t/� ; (2.1)

for some control ! on I. Then there exists a unique element ƒh 2 V
1
�

2 .II E/ such
that ı.ƒh/ D h and for every s < t 2 I,

j.ƒh/stj � C� !.s; t/
� ; (2.2)

for some universal constant C� .
Our computations also hinge on the following rough version of Gronwall’s

lemma, borrowed from [6, Lemma 2.7].

Lemma 2.2 Fix a time horizon T > 0 and let Q W Œ0;T� ! Œ0;1/ be a path such
that for some constants C;L > 0, � � 1 and some controls !1; !2 on Œ0;T�, one has

ıQst � C
�

sup
0�r�t

Qr

�
!1.s; t/

1
� C !2.s; t/; (2.3)
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for every s < t 2 Œ0;T� satisfying !1.s; t/ � L. Then it holds

sup
0�t�T

Qt � 2 exp .c�;L !1.0;T// �
n
Q0 C sup

0�t�T

�
!2.0; t/ exp .�c�;L !1.0; t//

�o
;

for a strictly positive constant c�;L.

2.2 Linear Equations with Distributional Drifts

In this section we shall first generalize Eq. (1.1), and consider the following:

dgt D �.dt/C
1X

iD1
ˇigteidwi

t; (2.4)

where � is a distributional-valued measure. Before we give a rigorous meaning to
this equation, let us label our hypothesis on the coefficients. We start by a rough
path assumption for each couple of components of the driving noise w:

Hypothesis 2.3 Let p 2 Œ2; 3/ be given. We assume that the family fwiI i � 1g is
such that there exist increments w1;i;w2;ij satisfying the two following properties:

(i) Algebraic condition: For each i; j � 1 and 0 � s � u � t � � , Chen’s relation
holds true:

ıw1;i
st D 0; and ıw2;ij

sut D w1;i
su w1;j

ut : (2.5)

(ii) Analytic condition: For all i; j � 1, we have

N Œw1;iI Vp
2 .Œs; t�/� < 1; and N Œw2;ijI Vp=2

2 .Œs; t�/� < 1:

The rough variational setting introduced in [1, 6] uses the concept of scale.
A scale is defined as a sequence

�
En; k�kn

�
n2N0 of Banach spaces such that EnC1

is continuously embedded into En. Besides, for n 2 N0 we denote by E�n the
topological dual of En. For the heat equation (1.1), we will consider the scale
En D Wn;1.

Having the concept of scale in mind, the noise w should also fulfill the following
hypothesis as an infinite dimensional object:

Hypothesis 2.4 Recall that the scale En is given by En D Wn;1. We assume that
fˇiI � 1g is a family of positive coefficients satisfying

P
i�1 ˇi < 1. Consider an

orthonormal basis feiI � 1g of L2.Rd/, composed of bounded functions. The noise
w is such that fwiI � 1g is a family of p-variation paths with p < 3, whose first and
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second order increments w1;i;w2;ij are such that!w1 and !w2 below are two controls
on Œ0; ��:

!w1.s; t/ �
 1X

iD1
ˇi .1C jeijE1/ N Œw1;iI Vp

2 .Œs; t�/�

!p

(2.6)

!w2.s; t/ �
0

@
1X

i;jD1
ˇiˇjjeijE1 jejjE1 N Œw2;ijI Vp=2

2 .Œs; t�/�

1

A
p=2

: (2.7)

We can now give a more formal definition of solution to our Eq. (2.4), in terms
of expansions of the increments up to a regularity order greater than 1:

Definition 2.5 Let p 2 Œ2; 3/ and fix an interval I � Œ0; ��. Let� be a distributional-
valued measure lying in V1

1 .II E�1/. A path g W I ! E�0 is called solution (on I) of

Eq. (2.4) provided there exists q < 3 and g\ 2 V
q
3

2;loc.I;E�1/ such that we have:

ıgst.'/ D
1X

iD1
ˇigs.ei'/w1;i

st C ı�st.'/C
1X

i;jD1
ˇiˇjgs.eiej'/w

2;ij
st C g\st.'/; (2.8)

for every s; t 2 I satisfying s < t and every ' 2 E1.

Remark 2.6 On top of (2.5), we will use the following expressions for ıgst:

ıgst.'/ D
1X

iD1
ˇigs.ei'/w1;i

st C g].'/; (2.9)

where g] is a V
p
2

2 .E�1/ increment satisfying:

g]st.'/ D ıgst.'/ �
1X

iD1
ˇigs.ei'/w1;i

st D ı�st.'/C
1X

i;jD1
ˇiˇjgs.eiej'/w

2;ij
st C g\st.'/:

(2.10)

Remark 2.7 Equation (2.8) is expressed as an expansion along the increments of
wi. However, according to [7, Theorem 4.10], a solution u of (2.8) also solves the
following integral equation (which has to be interpreted in the rough paths sense in
time and weak sense in space):

ıgst D � .Œs; t//C
1X

iD1
ˇiei

Z t

s
grdwi

r: (2.11)
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Furthermore, a change of variable formula (see [7, Proposition 5.6]) holds for g
verifying (2.11). Namely, for h 2 C3.R/ we have (still in the weak rough paths
sense):

ıh.g/st D
Z t

s
h0.gr/ �.dr/C

1X

iD1
ˇiei

Z t

s
h0.gr/ gr dwi

r: (2.12)

2.3 A General Estimate for Linear Equations

The following proposition gives our first a priori estimate for the solution to
Eq. (2.4). It should be seen as an adaptation of [6, Theorem 2.5] to our current
context.

Proposition 2.8 Let p 2 Œ2; 3/ and fix an interval I � Œ0;T�. Let w be a rough
path verifying Hypothesis 2.3 and 2.4. Consider a path � 2 V1

1 .II E�1/ such that for
every ' 2 E1, there exists a control !� verifying

jı�st.'/j � !�.s; t/ k'kE1 : (2.13)

Let g be a solution on I of Eq. (2.4), with the following additional hypothesis: g is

controlled over the whole interval I, that is we have g\ 2 V
q
3

2 .II E�1/ for q < 3.
Moreover let Sg

t D sups�t kgskE�0 , and consider the following control:

!I.s; t/ � !�.s; t/
�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/

�
CSg

t

�
2!

1=p
w1 .s; t/!

2=p
w2 .s; t/C!4=p

w2 .s; t/
�
:

(2.14)

Then there exists a constant L D Lp > 0 (independent of I) such that if

!w1.s; t/C !2w2.s; t/ � L;

then for all s; t 2 I such that s < t, we have:

kg\stkE�1 .p !I.s; t/: (2.15)

Proof Let !\.s; t/ be a regular control such that kg\stkE�1 � !\.s; t/
3
q for any s; t 2 I

such that s < t. We divide this proof in several steps.

Step 1: An Algebraic Identity Let ' 2 E1 be such that k'kE3 � 1. We first show
that

ıg\sut.'/ D
1X

iD1
ˇig

]
su.ei'/w1;i

ut C
1X

i;jD1
ˇiˇjıgsu.eiej'/w

2;ij
ut � K1

sut C K2
sut; (2.16)
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where g] was defined in (2.10). Indeed, owing to (2.8), we have

g\st D ıgst.'/ �
1X

iD1
ˇigs.ei'/w1;i

st � ı�st.'/ �
1X

i;jD1
ˇiˇjgs.eiej'/w

2;ij
st :

Applying ı on both sides of this identity and recalling Chen’s relations (2.5) as well
as the fact that ıı D 0 we thus get

ıg\sut.'/ D
1X

iD1

ˇiıgsu.ei'/w1;i
ut C

1X

i;jD1

ˇiˇjıgsu.eiej'/w
2;ij
ut �

1X

i;jD1

ˇiˇjgs.eiej'/w1;i
su w

1;j
ut :

Plugging relation (2.10) again into this identity, we end up with our claim (2.16).

Step 2: Bound for K1 In order to bound the term g]su.ei'/ in K1, we invoke
decomposition (2.10), which yields:

g]su.ei'/ D ı�su.ei'/C
1X

j;kD1
ˇjˇkgs.eiejek'/w2;kl

su C g\su.ei'/;

and hence:

jg]su.ei'/j

�
2

4!�.s; t/jeijE1CSg
u

1X

j;kD1
ˇjˇkjeijE0 jejjE0 jekjE0!

2=p
w;jk.s; u/C!3=p

\ .s; u/jeijE1

3

5 j'jE1:

Therefore, thanks to our assumption (2.7), we have:

jg]su.ei'/j �
h
!�.s; u/C Sg

u !
2=p
w2 .s; u/C !

3=p
\ .s; u/

i
jeijE1 j'jE1: (2.17)

Plugging this identity into the definition of K1, we have thus obtained:

jK1
sutj � j'jE1

h
!�.s; u/C Sg

u !
2=p
w2 .s; u/C !

3=p
\ .s; u/

i 1X

iD1
ˇijeijE1!

1=p
w1;i.u; t/

� j'jE1

h
!�.s; u/C Sg

u !
2=p
w2 .s; u/C !

3=p
\ .s; u/

i
!
1=p
w1 .u; t/: (2.18)
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Step 3: Bound for K2 and ıg\ The main term to treat for K2 is the increment ıgsu.
To this aim, we resort to decomposition (2.9). This yields:

K2
sut D

1X

i;j;kD1
ˇiˇjˇk gs.eiejek'/w1;k

su w2;ij
ut C

1X

i;jD1
ˇiˇj g].eiej'/w

2;ij
ut � K21

sut C K22
sut:

Furthermore, we have:

jK21
sutj � Sg

t j'jE0

 1X

kD1
ˇkjekjE0!

1=p
w1;k.s; u/

!0

@
1X

i;jD1
ˇiˇjjeijE0 jejjE0!

2=p
w2;ij.u; t/

1

A

� Sg
t j'jE0!

1=p
w1 .s; u/ !

2=p
w2 .u; t/:

In order to handle K22, we elaborate slightly on our estimate (2.17) in order to get:

jK22
sutj � j'jE1

h
!�.s; u/C Sg

u !
2=p
w2 .s; u/C !

3=p
\ .s; u/

i
0

@
1X

i;jD1

ˇiˇjjeijE1 jejjE1!
2=p
w2;ij.u; t/

1

A

� j'jE1

h
!�.s; u/C Sg

u !
2=p
w2 .s; u/C !

3=p
\ .s; u/

i
!
2=p
w2 .u; t/:

Hence, gathering our estimates on K21 and K22 we end up with:

jK2
sutj � j'jE1

h
Sg

t

�
!
1=p
w1 .s; u/C !

2=p
w2 .s; u/

�
C !�.s; u/C !

3=p
\ .s; u/

i
!
2=p
w2 .u; t/:

(2.19)

We can now easily conclude for the increment ıg\: plugging (2.18) and (2.19)
into (2.16), we get:

ˇ̌
ˇıg\sut.'/

ˇ̌
ˇ � j'jE1

n �
!�.s; u/C Sg

u !
2=p
w2 .s; u/

�
!
1=p
w1 .u; t/

C
�
!�.s; u/C Sg

t

�
!
1=p
w1 .s; u/C !

2=p
w2 .s; u/

��
!
2=p
w2 .u; t/

C !
3=p
\ .s; u/

�
!
1=p
w1 .u; t/C !

2=p
w2 .u; t/

� o
:

Otherwise stated, with our definition (2.14) in mind, we have obtained:

ˇ̌
ˇıg\sut.'/

ˇ̌
ˇ � j'jE1

n
!I.s; t/C !

3=p
\ .s; t/

�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/

�o
: (2.20)

Step 4: Conclusion It is readily checked, thanks to the fact that !�, !w1 , !w2

and !\ are controls, plus [8, Exercise 1.9], that !I is a control as well as

!
3=p
\ .s; t/.!1=p

w1 .s; t/C !
2=p
w2 .s; t//. One can thus apply Lemma 2.1 to relation (2.20)
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and get:

ˇ̌
ˇg\st.'/

ˇ̌
ˇ � cp j'jE1

n
!I.s; t/C !

3=p
\ .s; t/

�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/

�o
:

We now take I such that cp .!
1=p
w1 .s; t/C !

2=p
w2 .s; t// � 1

2
. We obtain:

kg\stkE�1 � 2cp!I.s; t/;

which ends our proof. ut
Remark 2.9 In order to apply Proposition 2.8 to the heat equation (1.1), we shall
consider a measure � defined by �.Œ0; t�/ D R t

0
�us ds. It is worth noting that for

a noisy equation like (1.1), we cannot assume that �us is properly defined. This is
why we consider �.Œ0; t�/ as an element of E�1 and perform our computations with
distributional increments.

3 L2 and L˛ Type Estimates

Let us now go back to Eq. (1.1), for which we will derive some a priori estimates
in L2.Rd/ and L˛.Rd/. We start by giving some basic properties of our linear heat
equation.

3.1 Preliminary Considerations

Let us begin by giving a precise meaning to Eq. (1.1), as a particular case of rough
PDE in the weak sense.

Definition 3.1 Let w be a rough path satisfying Hypothesis 2.3 and 2.4. Consider
the following equation:

dut.x/ D 1

2
�ut.x/C

1X

iD1
ˇiut.x/eidwi

t: (3.1)

We interpret this system as in Definition 2.5, with a measure � given by

�.Œs; t// D
Z t

s
�ur dr:

As mentioned in the introduction, we are only focusing here on a priori estimates
for the heat equation, which are representative of the methods at stake without being
too technical. To this aim, we label the following assumption, which prevails until
the end of the article:
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Hypothesis 3.2 One can construct a path u on Œ0; �� which solves (3.1) according
to Definition 3.1. In addition, u can be obtained as a limit of a sequence of functions
u", where u" solves:

du"t .x/ D 1

2
�u"t .x/C

1X

iD1
ˇiu

"
t .x/eidw";it : (3.2)

In (3.2), the family fw";it I " > 0; i � 1g is a sequence of smooth functions converging
to w. Recalling our notations (2.6) and (2.7), we also assume that:

lim
"!0

!w1�w1;" .0; �/C !w2�w2;" .0; �/ D 0:

Remark 3.3 Since we assume that u is obtained as a limit of smoothed paths u" (see
Hypothesis 3.2), all the remaining computations have to be understood as follows:
we first derive our relations for u", and we then take limits as " ! 0. This step will
often be implicit for sake of conciseness.

With Hypothesis 3.2 in hand, we now derive the equation followed by the path
u2 as a first step towards L2 estimates.

Proposition 3.4 Let u be the solution of Eq. (3.1) alluded to in Hypothesis 3.2. We
also set

ft D kutk2L2 C
Z t

0

krurkL2dr; and Sf
t D sup

s�t
fs: (3.3)

Then the following holds true:

(i) Let �2 be the E�1-valued measure defined as:

ı�2st. / D �
Z t

s
jruj2. /dr �

Z t

s
.urrur/.r /dr: (3.4)

Then we have:

!�2.s; t/ � 3

2

Z t

s
kruk2L2dr C 1

2

Z t

s
kuk2L2dr � 3

2

Z t

s
kruk2L2dr C .t � s/Sf

t

2
;

(3.5)

provided the quantity above is finite.
(ii) The squared path u2 admits the following representation:

ıu2st. / D ı�2st. /C
1X

iD1

2ˇiu
2
s .ei /w1;i

st C
1X

jD1

1X

iD1

4u2s . eiej/ˇiˇjw
2;ij
st Cu2;\st . /;

(3.6)
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where  is a generic test function, and where u2;\ is an element of V
q
3

2 for a
certain q < 3.

(iii) The increment f satisfies the following relation: for 0 � s < t � � we have

ıfst D 2

1X

iD1
u2s .ei/ˇiw1;i

st C 4

1X

iD1

1X

jD1
u2s .eiej/ˇiˇjw

2;ij
st C u2;\st .1/; (3.7)

where 1 designates the function defined on R
d and identically equal to 1.

Proof With Remark 3.3 in mind, let us divide our proof in several steps.

Proof of (i) Similarly to [6, Remark 2.6], and working in the scale En D Wn;1.Rd/,
we have

j.ı�2/st. /j�
Z t

s
kruk2L2drk kL1 C

�Z t

s
kruk2L2dr

� 1
2
�Z t

s
kuk2L2dr

� 1
2

k kW1;1 ;

(3.8)

Invoking now Young’s inequality (namely AB � A˛

˛
C Bˇ

ˇ
for two positive numbers

A;B with 1
˛

C 1
ˇ

D 1) we get our claim (3.5).

Proof of (ii) According to Definitions 2.5 and 3.1, the solution of Eq. (3.1) can be
decomposed as:

ıust. / D
1X

iD1
ˇius.ei /w1;i

st C
1X

i;jD1
ˇiˇius.eiej /w

2;ij
st Cı�st. /Cu\st. /: (3.9)

As mentioned in Remark 2.7, u can also be seen as a solution to the integral
equation (2.11), for which the change of variable formula (2.12) holds true.
Applying this relation (written in its weak form) to h.z/ D z2, we obtain:

ıu2st. / D 2

Z t

s
�ur.ur / dr C 2

1X

iD1
ˇi

Z t

s
u2r .ei /dwi

r;

so that an integration by parts in the first integral above yields:

ıu2st. / D �2
Z t

s
jruj2. / dr � 2

Z t

s
.urrur/.r / dr C 2

1X

iD1
ˇi

Z t

s
u2r .ei / dwi

r:

(3.10)

We now expand the rough integral in (3.10) along the increments of w. We end up

with relation (3.6), for a certain remainder u2;\ 2 V
q
3

2 .E�1/.
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Proof of (ii) Relation (3.7) is simply obtained from (3.6) by considering a sequence
of test functions f nI n � 1g such that limn!1  n D 1 and limn!1 r n D 0. ut

3.2 A Priori Estimate in L2

With Proposition 3.4 in hand, we can now derive the main estimate of this section.

Theorem 3.5 Suppose w fulfills Hypothesis 2.3 and 2.4, and let u be the solution of
Eq. (3.1) given in Hypothesis 3.2. For 0 � s < t � � , set:

!1.s; t/ D !w1.s; t/C !2w2.s; t/C !w1.s; t/ !2w2.s; t/C !4w2.s; t/: (3.11)

Then the following L2 norm estimate for the solution u holds true:

Sf
� D sup

0�t��

�
kurk2L2 C

Z t

0

krurk2L2dr

�
� 2 exp

�
cp!1.0; �/

� ku0k2L2 ; (3.12)

where cp is a strictly positive constant.

Remark 3.6 Notice that kurk2L2 and
R t
0

krurk2L2dr are positive. Therefore rela-
tion (3.12) implies that both terms are bounded from above.

Proof of Theorem 3.5 Recall that we have obtained the following decomposition in
Proposition 3.4:

ıu2st. / D ı�2st. /C
1X

iD1
2ˇiu

2
s .ei /w1;i

st C
1X

jD1

1X

iD1
4u2s . eiej/ˇiˇjw

2;ij
st C u2;\st . /;

(3.13)

If we now set g D u2 and �g D �2, we can recast (3.13) as:

ıgst. / D ı�
g
st. /C

1X

iD1
2ˇi gs.ei /w1;i

st C
1X

jD1

1X

iD1
4 gs. eiej/ˇiˇjw

2;ij
st C g\st. /:

This equation is of the same form as (2.8), and thus we can apply Proposition 2.8
directly. We get the following bound for g\st, which is valid whenever !1.s; t/ C
!22.s; t/ � Lp (recall that p is the regularity index of w):

kg\stkE�1 � cp!I.s; t/; or equivalently ku2;\st kE�1 � cp !I.s; t/; (3.14)
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where the control !I is defined by:

!I.s; t/ � !�2.s; t/
�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/

�
CSu2

t

�
2!

1=p
w1 .s; t/!

2=p
w2 .s; t/C !

4=p
w2 .s; t/

�
;

(3.15)

and where we recall that we have set:

Su2
t D sup

s�t
ju2s jE�0 D sup

s�t
jusj2L2 :

Let us now go back to (3.13), and apply this relation to  D 1 (notice that the
function 1 obviously sits in E1). It is readily checked from (3.4) that:

ı�2st.1/ D �
Z t

s
kruk2L2dr;

and thus, with our notation (3.3) in mind, relation (3.13) becomes:

ıfst D
1X

iD1
2ˇiu

2
s .ei/w1;i

st C
1X

jD1

1X

iD1
4u2s .eiej/ˇiˇjw

2;ij
st C u2;\st .1/

Therefore, bounding ku2s kE�0 by Sf
t and invoking (3.14) in order to estimate u2;\st .1/,

we obtain:

jıfstj �
h
2!

1=p
w1 .s; t/C 4!

2=p
w2 .s; t/

i
Sf

t C cp !I.s; t/; (3.16)

where !I is given by (3.15). In order to close this expression, let us further bound
the term !�2 in the definition of !I . Namely, according to (3.5), we have

!�2.s; t/ � 3

2

Z t

s
kruk2L2dr C .t � s/Sf

t

2
� c�S

f
t ; (3.17)

where we recall that we are working on a time interval Œ0; ��. Plugging this
inequality into the definition of !I , we end up with:

!I.s; t/ � c�S
f
t

�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/C !

1=p
w1 .s; t/!

2=p
w2 .s; t/C !

4=p
w2 .s; t/

�
:

Reporting the relation above into (3.16), we get

jıfstj � c�S
f
t

�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/C !

1=p
w1 .s; t/ !

2=p
w2 .s; t/C !

4=p
w2 .s; t/

�

� c�;pSf
t !1.s; t/; (3.18)
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where !1 is the control introduced in (3.11). Recall again that inequality (3.18) is
valid when !1.s; t/C !22.s; t/ � Lp. It is thus also satisfied when !1.s; t/ � Lp.

We are now in a position to directly apply our rough Gronwall Lemma 2.2 to
(3.18), with Q D f , � D 1=p and !2 D 0. It is readily checked that !1 is a control,
and hence:

Sf
t � 2 exp

�
cp !1.0; �/

�
f0 D 2 exp

�
cp !1.0; �/

�
ku0k2L2 ; (3.19)

which ends our proof. ut

3.3 L˛ Type Estimates

In this part, we are going to derive some L˛ estimates for the solution of Eq. (3.1),
generalizing the case ˛ D 2. As the reader will notice, the method is the same as for
the L2 case, but we include some computational details for convenience.

Remark 3.7 We will handle the case of L˛ estimates for an even integer ˛, in order
to have u˛ � 0 and u˛�2 � 0 in the computations below. However, notice that other
values of ˛ can then be reached by simple interpolation methods.

We start this section with an analogue of Proposition 3.4.

Proposition 3.8 Let u be the solution of Eq. (3.1) alluded to in Hypothesis 3.2, and
consider an even integer ˛. We also set

`t D kutk˛L˛ C
Z t

0

u˛�2
r krurk2dr; and S`t D sup

s�t
`s:

Then the following holds true:

(i) Let �˛ be the E�1-valued measure defined as:

ı�˛st. / D �˛.˛ � 1/

2

Z t

s
u˛�2

r jruj2. /dr � ˛

2

Z t

s
.u˛�1

r rur/.r /dr

(3.20)

Then we have:

!�˛ .s; t/ � ˛.˛ � 1/

4

Z t

s
u˛�2

r jrurj2dr C ˛.t � s/S`t
4

; (3.21)

provided the quantity above is finite.
(ii) The path u˛ admits the following representation :

ıu˛st. / D ı�˛st. /C
1X

iD1
˛ˇiu˛s .ei /w

1;i
st C

1X

jD1

1X

iD1
˛2u˛s . eiej/ˇiˇjw

2;ij
st C u˛;\st . /

(3.22)
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where  is a generic test function, and where u˛;\ is an element of V
q
3

2 for a
certain q < 3.

(iii) The increment ` satisfies the following relation: for 0 � s < t � � we have

ı`st D ˛

1X

iD1
u˛s .ei/ˇiw1;i

st C ˛2
1X

iD1

1X

jD1
u˛s .eiej/ˇiˇjw

2;ij
st C u˛;\st .1/; (3.23)

where 1 designates the function defined on R
d and identically equal to 1.

Proof With Remark 3.3 in mind and �˛ defined in (3.21), it is readily checked that:

j.ı�˛/st. /j � ˛.˛ � 1/

2

Z t

s
u˛�2

r jrurj2drk kL1

C ˛

2

�Z t

s
u˛�2

r jrurj2dr

�1=2 �Z t

s
kurk˛L˛dr

�1=2
k kW1;1 : (3.24)

Invoking now Young’s inequality as we did in the previous L2 case, we get our claim
(3.21).

The proof of (3.22) is similar to the L2 case, except that we apply the change of
variable formula and relation (3.9) to h.z/ D z˛ . We obtain:

ıu˛st. / D ˛

Z t

s
�ur.u

˛�1
r  / dr C ˛

1X

iD1
ˇi

Z t

s
u˛r .ei /dwi

r;

so that an integration by parts in the first integral above yields:

ıu˛st. / D �˛.˛ � 1/
Z t

s
u˛�2

r jruj2. / dr � ˛

Z t

s
.u˛�1

r rur/.r / dr

C ˛

1X

iD1
ˇi

Z t

s
u˛r .ei / dwi

r: (3.25)

We now expand the rough integral in (3.10) along the increments of w. We end up
with relation (3.22), for a certain remainder u˛;\ 2 Vq=3

2 .E�1/.
As in the L2 case, relation (3.23) is simply obtained from (3.22) by considering

a sequence of test functions f nI n � 1g such that limn!1 n D 1. ut
With Proposition 3.8 in hand, we can now derive the announced estimate in L˛

type spaces.

Theorem 3.9 Suppose w fulfills Hypothesis 2.3 and 2.4, and let u be the solution of
Eq. (3.1) given in Hypothesis 3.2. For 0 � s < t � � , set:

!1.s; t/ D !w1.s; t/C !2w2.s; t/C !w1.s; t/ !2w2.s; t/C !4w2.s; t/: (3.26)
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Then for any even integer ˛, the following L˛ norm estimate for the solution u holds
true:

sup
0�t��

�
kurk˛L˛ C

Z t

0

u˛�2
r jrurj2dr

�
� 2 exp

�
cp!1.0; �/

� ku0k˛L˛ ; (3.27)

where cp is a strictly positive constant.

Proof Recall that we have obtained the following decomposition in Proposition 3.8:

ıu˛st. / D ı�˛st. /C
1X

iD1

˛ˇiu
˛
s .ei /w1;i

st C
1X

jD1

1X

iD1

˛2u˛s . eiej/ˇiˇjw
2;ij
st C u˛;\st . /:

(3.28)

If we now set g D u˛ and �g D �˛ , we can proceed as in Theorem 3.5 and recast
(3.13) as:

ıgst. / D
1X

iD1
˛ˇigs.ei'/w1;i

st C ı�
g
st.'/C

1X

i;jD1
˛2ˇiˇjgs.eiej'/w

2;ij
st C g\st.'/;

This equation is of the same form as (2.8), and thus we can apply Proposition 2.8
directly. We get the following bound for g\st, which is valid whenever !1.s; t/ C
!22.s; t/ � Lp;˛:

kg\stkE�1 � cp!I.s; t/; or equivalently ku˛;\st kE�1 � cp!I.s; t/; (3.29)

where the control !I is defined by:

!I.s; t/ � !�˛ .s; t/
�
!
1=p
w1 .s; t/C !

2=p
w2 .s; t/

�
C Su˛

t

�
2!

1=p
w1 .s; t/!

2=p
w2 .s; t/C !

4=p
w2 .s; t/

�
:

(3.30)

and where we recall that we have

Su˛
t D sup

s�t
ju˛s jE�0 D sup

s�t
jusj˛L˛ :

Let us now go back to (3.13), and apply this relation to  D 1 (notice that the
function 1 obviously sits in E1). It is readily checked from (3.20) that:

ı�˛st.1/ D �˛.˛ � 1/

2

Z t

s
u˛�2

r jruj2dr;
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and thus (3.13) becomes:

ı`st D
1X

iD1
˛ˇiu

˛
s .ei/w1;i

st C
1X

jD1

1X

iD1
˛2u˛s .eiej/ˇiˇjw

2;ij
st C u˛;\st .1/

Therefore, bounding ku˛s kE�0 by S`t and invoking (3.29) in order to estimate u˛;\st .1/,
we obtain:

jı`stj �
h
2!

1=p
w1 .s; t/C 4!

2=p
w2 .s; t/

i
S`t C !I.s; t/; (3.31)

where !I is given by (3.15). In order to close this expression, let us further bound
the term !�˛ in the definition of !I . Namely, according to (3.21), we have

!�˛ .s; t/ � ˛.˛ � 1/
4

Z t

s
u˛�2

r jrurj2dr C ˛.t � s/S`t
4

� c�;pS`t ;

which is the equivalent of relation (3.17) in our context. Starting from this point, we
can conclude exactly as in Theorem 3.5. ut

4 Application to Fractional Brownian Motion

This section is devoted to the application of our abstract results of Sect. 3 to
some more concrete examples of heat equations driven by an infinite dimensional
fractional Brownian motion. Though our general analysis was focused on equations
in R

d, we shall treat the case of both bounded and unbounded domains.

4.1 Equations in Bounded Domains

We first consider the case of an equation in a bounded domain D. This will enable
us to compare our hypothesis with the assumptions contained in [15] for similar
situations. Let us first label the conditions on our domain.

Hypothesis 4.1 In this section, we consider an open, bounded domain D with
smooth boundary @D, and satisfying the cone property.

On such a domain D, we wish to give conditions which are close enough to the
ones produced in [15]. This is why we consider an operator C given as follows:

Hypothesis 4.2 In the remainder of the section, C will stand for a linear, self-
adjoint, positive trace-class operator on L2.D/. This operator admits an orthonor-
mal basis .ei/i2NC

of eigenfunctions, with corresponding eigenvalues .�i/i2NC
. It
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also admits an integral representation, whose generating kernel is denoted as �.
Summarizing, for all i � 0 and for almost every x 2 D we have:

Cei.x/ D
Z

D
�.x; y/ei.y/ dy D �iei.x/: (4.1)

We can now formulate our a priori estimate in this context:

Proposition 4.3 Let D 	 R
d be a domain fulfilling Hypothesis 4.1, together with

an operator C as in Hypothesis 4.2. On D, we consider the following equation:

dut.x/ D 1

2
�ut.x/C

1X

iD1
�	i ut.x/ei.x/dBi

t; (4.2)

where .Bi
t/t2RC/i2NC is a sequence of one-dimensional, independent, identically dis-

tributed fractional Brownian motions with Hurst parameter H 2 . 1
3
; 1/, and 	 � 0

is a positive parameter. For the definition of ei and �i, we refer to Hypothesis 4.2.
In addition, we suppose that our operator C and its kernel � satisfy the following
conditions:

A� � sup
x2D

k�.x; �/kL2.D/ C kr�.x; �/kL2.D/ < 1; and
X

i�0
�	�1

i < 1: (4.3)

Then the results from Theorems 3.5 and 3.9 apply.

Proof It is well known (see e.g. [8, Chap. 15]) that any finite dimensional fractional
Brownian motion .Bi/i�N can be lifted as a rough path. It is thus enough to prove
conditions (2.6) and (2.7). We shall focus on condition (2.6), the other one being
checked with the same kind of arguments.

In order to verify (2.6), similarly to [15], we start by recasting (4.1) as:

ei.x/ D ��1
i

Z

D
�.x; y/ei.y/ dy; and rei.x/ D ��1

i

Z

D
r�.x; y/ei.y/ dy:

Hence, invoking Cauchy-Schwarz’ inequality and relation (4.3), we obtain:

jeijE1 � ��1
i A�keikL2.D/ D ��1

i A�: (4.4)

Now notice that (2.6) is ensured by the condition EŒ!
1=p
w1 .0; �/� < 1, where � is our

time horizon. Furthermore,

E

h
!
1=p
w1 .0; �/

i
D

1X

iD1
�	i .1C jeijE1/ E

�N Œw1;iI Vp
2 .Œs; t�/�

	
;
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and since EŒN Œw1;iI Vp
2 .Œs; t�/�� is uniformly bounded in i, we end up with

E

h
!
1=p
w1 .0; �/

i
� c�;w

1X

iD1
�	�1

i ;

which is a finite quantity according to our assumption (4.3). In conclusion,
Hypothesis 2.3 and 2.4 are satisfied, and Theorems 3.5 and 3.9 hold true. ut
Remark 4.4 With respect to [15], we have added here the assumption

sup
x2D

kr�.x; �/kL2.D/ < 1;

which is an artifact of our variational approach. This being said, let us recall that
our method applies to rough situations (compared to the case H > 1=2 dealt with in
[15]). We also believe that our method extends to non linear equations, with a noisy
term of the form

P1
iD1 �	i 
.ut.x//ei.x/dBi

t for a smooth coefficient 
 .

4.2 Equations in R
d

On the whole space R
d, choices of orthonormal basis of L2 are wide. For sake of

concreteness, we will stick here to a wavelet basis based on Shannon’s wavelet,
though a much more general setting can be found e.g. in [14].

Let us start by defining the L2 basis alluded to above (we refer again to [14] for
proofs of general facts on wavelets).

Lemma 4.5 Let  W R ! R be defined as

 .x/ D sin 2�.x � 1=2/

2�.x � 1=2/ � sin�.x � 1=2/

�.x � 1=2/
:

Then  2 L2.R/, and the following holds true:

(i) Let us introduce a family of scaled functions f j;kI j � 0; k 2 Zg by:

 j;k.x/ D 2� j
2  

�
x � 2jk

2j

�
: (4.5)

This family is an orthonormal basis of L2.R/.
(ii) One can obtain an orthonormal basis of L2.Rd/ by tensorizing the previous

basis of L2.R/. Namely, for all j � 0 and for n D .n1; � � � ; nd/, we denote

 j;n.x/ D 2�dj=2 

�
x1 � 2jn1

2j
; � � � ; xd � 2jnd

2j

�
:
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Then f j;n.x/g. j;n/2ZdC1 is an orthonormal basis of L2.Rd/. In addition, it is
readily checked that:

j j;kjE1 � 2
jd
2 ; (4.6)

where we recall that we work in the scale En D Wn;1.R/.

Remark 4.6 A completely correct version of Lemma 4.5 should include a so-called
father wavelet �. We omit this step for notational sake.

Under the setting of Lemma 4.5, here is our example of stochastic heat equation
on R

d:

Proposition 4.7 Consider the equation

dut.x/ D 1

2
�ut.x/C

1X

jD0

X

n2Zd

ˇj;nut.x/ j;n.x/dBj;n
t ;

where fBj;nI j � 0; n 2 Z
dg is a sequence of one-dimensional, independent,

identically distributed fractional Brownian motions with Hurst parameter H 2
. 1
3
; 1/, and fˇj;nI j � 0; n 2 Z

dg is a family of positive coefficients. We assume
that

Aˇ �
1X

jD0

X

n2Zd

2
dj
2 ˇj;n < 1: (4.7)

Then the results of Theorems 3.5 and 3.9 apply.

Proof We proceed as for Proposition 4.3, and we are easily reduced to show that
EŒ!

1=p
w1 .0; �/� is a finite quantity. In our case, we have

E

h
!
1=p
w1 .0; �/

i
D

1X

jD0

X

n2Zd

ˇj;n
�
1C j j;njE1

�
E
�N Œw1;j;nI Vp

2 .Œs; t�/�
	
:

Moreover, the coefficients EŒN Œw1;j;nI Vp
2 .Œs; t�/�� are uniformly bounded in j; n.

Hence, owing to relation (4.6), we get:

E

h
!
1=p
w1 .0; �/

i
� c ;w

1X

jD0

X

n2Zd

2
dj
2 ˇj;n D c ;w Aˇ;

where Aˇ is introduced in condition (4.7). This concludes our proof in a straightfor-
ward way. ut
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