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Abstract

In this article, we give sharp bounds for the Euler discretization of the Lévy area associated to a d-
dimensional fractional Brownian motion. We show that there are three different regimes for the exact root
mean square convergence rate of the Euler scheme, depending on the Hurst parameter H ∈ (1/4, 1). For
H < 3/4 the exact convergence rate is n−2H+1/2, where n denotes the number of the discretization
subintervals, while for H = 3/4 it is n−1√log(n) and for H > 3/4 the exact rate is n−1. Moreover, we
also show that a trapezoidal scheme converges (at least) with the rate n−2H+1/2. Finally, we derive the
asymptotic error distribution of the Euler scheme. For H ≤ 3/4 one obtains a Gaussian limit, while for
H > 3/4 the limit distribution is of Rosenblatt type.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let B = (B(1), . . . , B(d)) be a d-dimensional fractional Brownian motion (fBm) with Hurst
parameter H ∈ (1/4, 1) indexed by R, i.e. B is composed of d independent centered Gaussian
processes with continuous sample paths and covariance function given by

RH (s, t) =
1
2

(
|s|2H

+ |t |2H
− |t − s|2H

)
, s, t ∈ R.
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For an arbitrary T > 0, a typical stochastic differential equation (SDE) on [0, T ] driven by B
can be written as

Yt = a +
∫ t

0
σ(Ys) dBs, t ∈ [0, T ], (1)

where a ∈ Rm is a given initial condition and σ : Rm
→ Rm,d is sufficiently smooth. During the

last years, the rough paths theory has allowed to handle several aspects of differential equations
like (1), ranging from existence and uniqueness results (see [8,16] for equations of type (1)
and [4,11,21] for extensions to other kinds of systems) to density estimates [5] or ergodic
theorems [12].

It is also important, and in fact at the very core of the rough path analysis, to derive good
numerical approximations for fractional differential equations like (1). This problem has so far
been considered in three types of situations: (i) When H > 1/2, it is proved independently
in [7] and [18] that the Euler scheme associated to Eq. (1), based on the grid {iT/n; i ≤ n},
converges with the rate n−(2H−1)+ε for arbitrarily small ε > 0. The exact rate of convergence of
the Euler scheme is computed in [20] in the particular case of a one-dimensional equation. (ii) In
the Brownian case H = 1/2, there exists a huge amount of literature on approximation schemes
for SDEs, and we just send the interested reader to the references [14,17] for an overview of the
topic. (iii) For 1/3 < H < 1/2, the rough path strategy in order to solve Eq. (1), see e.g. [8,9,16],
tells us that one should use at least a Milstein-type scheme in order to approximate its solution.
Moreover, it can be easily seen that for H < 1/2 the standard Euler scheme does not converge for
stepsizes going to zero, even in the one-dimensional case. Indeed, consider the one-dimensional
SDE

dX t = X t dBt , X0 = 1,

whose exact solution is given by X t = exp(Bt ). The Euler approximation of this equation at
t = 1 is given by

X (n)1 =

n−1∏
k=0

(1+ (B(k+1)/n − Bk/n)).

So, for n ∈ N sufficiently large and using a Taylor expansion, we have

X1 − X (n)1 = exp(B1)− exp
(n−1∑

k=0

log(1+ (B(k+1)/n − Bk/n))
)

= exp(B1)− exp
(

B1 −
1
2

n−1∑
k=0

|B(k+1)/n − Bk/n|
2
+ ρn

)
,

where ρn
a.s.
−→ 0 for n→∞ for H > 1/3. Now, it is well known that

n−1∑
k=0

|B(k+1)/n − Bk/n|
2 a.s.
−→∞

for H < 1/2, so we have X (n)1
a.s.
−→ 0. However, Milstein-type schemes are known to be

convergent for such a one-dimensional equation; see [10].
For general multi-dimensional equations of type (1), a Milstein-type scheme is studied in [7]:

set Y 0 = a, and for a grid given by tk = kT/n, k = 0, . . . , n − 1, let
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Y tk+1 = Y tk +

d∑
i=1

σ (i)(Y tk )(B
(i)
tk+1
− B(i)tk )

+

d∑
i, j=1

D(i)σ ( j)(Y tk )

∫ tk+1

tk
(B(i)s − B(i)tk ) dB( j)

s , (2)

for k = 0, . . . , n − 1, where D(i) is the differential operator
∑m

l=1 σ
(i)
l ∂xl . Davie then proves

that this scheme has convergence rate n−(3H−1)+ε, and this result has been extended in [8] in an
abstract setting to higher order schemes for a rough path with a given regularity.

The above Milstein-type scheme (2) requires knowledge of the iterated integrals

X (i, j)
t =

∫ t

0
B(i)s dB( j)

s , t ∈ [0, T ], i, j = 1, . . . , d, (3)

whose explicit distribution is unknown for i 6= j . Thus discretization procedures for (3) are
crucial for an implementation of this numerical method. This has already been addressed in [6],
where dyadic linear approximations of the fBm B are used in order to define a Wong–Zakai-type
approximation X̂n of X . In the last reference, the process X̂n is shown to converge almost surely
in p-variation distance, and the (non-sharp) error bound

E|X̂n
T − XT |

2
≤ C · 2−n(4H−1)/2

is also determined. The current article takes up this kind of program, and we consider the
approximation of

XT =

∫ T

0
B(1)s dB(2)s (4)

by the Euler and a trapezoidal scheme based on equidistant discretizations.
For the approximation of (4) the standard Euler method has the explicit expression

Xn
T =

n−1∑
i=0

B(1)iT/n

(
B(2)(i+1)T/n − B(2)iT/n

)
. (5)

The results we obtain for the Euler scheme are then of two kinds. First, we determine the exact
L2-convergence rate.

Theorem 1. Let XT defined by (4) and its Euler approximation Xn
T given by expression (5). Let

α1(H) = c0 + 2
∞∑

k=1

ck and α2(H) =
H2(2H − 1)
4(4H − 3)

,

where the constants c0, ck will be defined below by (23) and (24). Then
∑
∞

k=1 ck is a convergent
series for H ∈ (1/4, 3/4) and

E|XT − Xn
T |

2
=


α1(H) · T

4H
· n−4H+1

+ o(n−4H+1) for H ∈ (1/4, 3/4),
9

128
· T 3
· log(n)n−2

+ o(log(n)n−2) for H = 3/4,

α2(H) · T
4H
· n−2

+ o(n−2) for H ∈ (3/4, 1).
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In the case H = 1/2, i.e. for the approximation of the Wiener Lévy area, the above result is
well known and can be obtained by straightforward computations. In particular, one can easily
check that α1(1/2) = 1

2 , which means that we recover the classical result for Brownian motion.
The convergence rate breaks up into several regimes which are reminiscent of the cases

obtained in [23] concerning weighted quadratic variations of the one-dimensional fBm. In
particular, the convergence rate does not improve for H > 3/4, i.e. is equal to n−1 independently
of H . Finally, note that our study starts obviously at H = 1/4+, since the Lévy area is not even
defined for H ≤ 1/4.

Using a trapezoidal rule for the approximation of the integral leads to the following scheme,
which coincides with the Wong–Zakai approximation used in [6]:

X̂n
T =

1
2

n−1∑
i=0

(
B(1)iT/n + B(1)(i+1)T/n

) (
B(2)(i+1)T/n − B(2)iT/n

)
. (6)

This trapezoidal scheme avoids the “breakdown” of the convergence rate of the Euler scheme for
H ≥ 3/4.

Theorem 2. Let H > 1/4. Then there exists a constant C(H) > 0 such that

E|XT − X̂n
T |

2
≤ C(H) · T 4H

· n−4H+1.

We strongly suppose that the trapezoidal scheme has exact root mean square convergence rate
n−2H+1/2. Moreover, we suppose that this rate is the best possible. In other words, we conjecture
that the conditional expectation of XT given BT/n, B2T/n, . . . , BT satisfies

E
∣∣XT − E(XT | BT/n, B2T/n, . . . , BT )

∣∣2 ≥ c(H) · T 4H
· n−4H+1,

where c(H) > 0.
The third result in this article is a refinement of Theorem 1, meaning that we obtain a limit

theorem for the asymptotic error distribution of the Euler scheme.

Theorem 3. Let XT , Xn
T and α1(H), α2(H) defined as above. Moreover, let Z be a standard

normal random variable. Then:

(1) Case 1/4 < H ≤ 3/4. Here the following central limit theorems hold:

lim
n→∞

n2H−1/2 (XT − Xn
T )

L
=

√
α1(H)T

2H
· Z for H ∈ (1/4, 3/4),

and

lim
n→∞

n(log(n))−1/2 (XT − Xn
T )

L
=

3

4
√

8
T 3/2
· Z

for H = 3/4.
(2) Case H > 3/4. Let R1 and R2 be two independent Rosenblatt processes (see Section 5 for a

definition). Then it holds

lim
n→∞

n (XT − Xn
T )

L
=

√
2α2(H)T

2H
· (R1 − R2).

Let us say a few words about the methodology we have adopted in order to prove Theorem 3.
It should be mentioned first that we have used the analytic approximations introduced in [26] in
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order to define the Lévy area X , which allows us to use some elegant complex analysis methods
for moments estimates in this context. Then, for H ∈ (1/4, 3/4), the central limit type results are
obtained through the criterion introduced in [24] for random variables in a fixed chaos. For this
we control the fourth moments of X with the help of (Feynman) diagrams. For the case H ≥ 3/4
we proceed in a different way. Here the trapezoidal approximation of XT performs better than
the Euler method. Expressing the difference between both schemes as the difference of quadratic
variations for two independent one-dimensional fBms, thanks to a simple geometrical trick given
in [22], one obtains the limit theorems for H ≥ 3/4 using the limit results for quadratic variations
of fBm; see e.g. [3,23] and the references therein. (We use a similar trick also to compute the
mean square convergence rate of the Euler scheme for H ≥ 3/4). In particular, this leads to the
Rosenblatt-type limit distribution for H > 3/4. For the trapezoidal scheme, whose error seems
to behave like the second order quadratic variations of fBm, see e.g. [2], a central limit theorem
could be also derived using the criterion in [24], but we omit this here for the sake of conciseness.

The remainder of this article is structured as follows. Integrals with respect to the fractional
Brownian motion will always be understood as limits of analytic integrals as in [26]. We thus
recall the definition of the analytic fBm, as well as some preliminaries in Section 2. Section 3
contains the proofs of Theorems 1 and 2. The proof of Theorem 3 is given in Sections 4 and 5.

2. Definition of the analytic FBM and preliminaries

This section is devoted to recall the definition of the fractional Brownian motion introduced
in [26], and to state some of the properties of this process which will be used in what follows. All
the random variables introduced here will be defined on a complete probability space (U ,F ,P),
without any further mention (notice the unusual notation U for our probability space, due to
the fact that the letter Ω will serve for the complex domains we consider in what follows). The
following kernels will also be essential for our future computations. Here and in what follows,
R and = stand respectively for the real and imaginary part of a complex number.

Definition 4 (η-Regularized Power Functions). For β ∈ R \ Z and η > 0 let

[x]±,βη = (±ix + η)β and [x]βη = 2R[x]±,βη = [x]+,βη + [x]−,βη .

Then, for η > 0 and x, y ∈ R, define K ′,±(η; x, y) as

K ′,±(η; x, y) =
H(1− 2H)

2 cosπH
(±i(x − y)+ η)2H−2

=
H(1− 2H)

2 cosπH
[x − y]±,2H−2

η .

Set also

K ′(η; x, y) := 2RK ′,±(η; x, y) = K ′,+(η; x, y)+ K ′,−(η; x, y).

Note that the above kernels are well defined on our prescribed domain R∗+ × R× R.

2.1. Definition of the analytic fBm

The article [26] introduces the fractional Brownian motion as the real part of the trace on R of
an analytic process Γ (called: analytic fractional Brownian motion [25]) defined on the complex
upper-half plane Π+ = {z ∈ C; =(z) > 0}. This is achieved by first noticing that the kernel
K ′(η) is positive definite and represents (for every fixed η > 0) the covariance of a real-analytic
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centered Gaussian process with real time parameter t . The easiest way to see this is to make use
of the following explicit series expansion: for k ≥ 0 and z ∈ Π+, set

fk(z) = 2H−1

√
H(1− 2H)

2 cosπH

√
Γ (2− 2H + k)

Γ (2− 2H)k!

(
z + i

2i

)2H−2 ( z − i
z + i

)k

, (7)

where Γ stands for the usual Gamma function. Then these functions are well defined on Π+,
and it can be checked that one has∑

k≥0

fk

(
x + i

η1

2

)
fk

(
y + i

η2

2

)
= K ′,−

(
1
2
(η1 + η2) ; x, y

)
.

Define more generally a Gaussian process with time parameter z ∈ Π+ as follows:

Γ ′(z) =
∑
k≥0

fk(z)ξk (8)

where (ξk)k≥0 are independent standard complex Gaussian variables, i.e. E[ξ jξk] = 0, E[ξ j ξ̄k] =

δ j,k . The Cayley transform z 7→ z−i
z+i maps Π+ to D, where D stands for the unit disk of the

complex plane. This allows us to prove trivially that the series defining Γ ′ is a random entire
series – i.e. a series of the form

∑
k≥0 ak zkξk , see [13] – which may be shown to be analytic on

the unit disk. Hence the process Γ ′ is analytic on Π+. Furthermore note that, restricting to the
horizontal line R+ i η2 , the following identity holds true:

E[Γ ′(x + iη/2)Γ ′(y + iη/2)] = K ′,−(η; x, y).

One may now integrate the process Γ ′ over any path γ : (0, 1) → Π+ with endpoints
γ (0) = 0 and γ (1) = z ∈ Π+ ∪ R (the result does not depend on the particular path but only
on the endpoint z). The result is a process Γ which is still analytic on Π+, and let us stress the
(obvious) fact that Γ ′ is the derivative of Γ on Π+. Furthermore, one may retrieve the fractional
Brownian motion by considering the real part of the boundary value of Γ on R. Another way to
look at it is to define Γt (η) := Γ (t + iη) as a regular process living on R, and to remark that the
real part of Γ (η) converges when η → 0 to fBm. In the following Proposition, we give precise
statements which summarize what has been said until now:

Proposition 5 (See [26,25]). Let Γ ′ be the process defined on Π+ by relation (8).

(1) Let γ : (0, 1)→ Π+ be a continuous path with endpoints γ (0) = 0 and γ (1) = z, and set
Γz =

∫
γ

Γ ′u du. Then Γ is an analytic process on Π+. Furthermore, as z runs along any path

in Π+ going to t ∈ R, the random variables Γz converge almost surely to a random variable
called again Γt .

(2) The family {Γt ; t ∈ R} defines a centered Gaussian complex-valued process whose paths are
almost surely κ-Hölder continuous for any κ < H. Its real part Bt := 2RΓt has the same
law as fBm.

(3) The family of centered Gaussian real-valued processes Bt (η) := 2RΓt+iη converges a.s. to
Bt in α-Hölder norm for any α < H, on any interval of the form [0, T ] for an arbitrary
constant T > 0. Its infinitesimal covariance kernel EB ′x (η)B

′
y(η) is K ′(η; x, y).
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2.2. Definition of the Lévy area

Let us describe a natural possible definition of the Lévy area associated to Γ . Since the process
Bt (η) := 2RΓt+iη is a smooth one, one can define the following integral in the Riemann sense
for all 0 ≤ s < t and η > 0:

Ast (η) =

∫ t

s
dB(2)u1

(η)

∫ u1

s
dB(1)u2

(η). (9)

It turns out that A(η) converges in some Hölder spaces, in a sense which can be specified as
follows. Let T be an arbitrary positive constant, C j be the set of continuous complex-valued
functions defined on [0, T ] j , and for µ > 0, define a space Cµ2 of µ-Hölder functions on [0, T ]2

by

‖ f ‖µ := sup
s,t∈[0,T ]

| fst |

|t − s|µ
and Cµ2 (V ) =

{
f ∈ C2(Ω; V ); ‖ f ‖µ <∞

}
. (10)

The µ-Hölder semi-norm for a function g ∈ C1 is then defined by setting hst = gt − gs as an
element of C2, and ‖g‖µ := ‖h‖µ in the sense given by (10).

According to [26,25], the Lévy area A of B can then be defined in the following way:

Proposition 6. Let T > 0 be an arbitrary constant, and for s, t ∈ [0, T ]2, η > 0, define Ast (η)

as in Eq. (9). Consider also 0 < γ < H. Then:

(1)For any p ≥ 1, the couple (B(η),A(η)) converges when η → 0 in L p(Ω; Cγ1 ([0, T ];R) ×
C 2γ

2 ([0, T ]2;R)) to a couple (B,A), where B is a fractional Brownian motion.
(2)The increment A satisfies the following algebraic relation:

Ast −Asu −Aut =
(
B(2)t − B(2)u

) (
B(1)u − B(1)s

)
,

for s, u, t ∈ [0, T ].

Notice that the algebraic property (2) in Proposition 6 is the one which qualifies A to be a
reasonable definition of the Lévy area of B.

It will be essential for us to estimate the moments of A. For this we will use the following
definition:

Definition 7. For η > 0 and a1, a2 ∈ R, let us define the function Ka1,a2(η; ·, ·) on R× R by

Ka1,a2(η; x1, x2) =

∫ x1

a1

dy1

∫ x2

a2

dy2 K ′(η; y1, y2). (11)

Notice then that, invoking the conventions of Definition 4, we have

Ka1,a2(η; x1, x2) =
1

4 cos(πH)

(
[x1 − x2]

2H
η − [x1 − a2]

2H
η − [a1 − x2]

2H
η

+ [a1 − a2]
2H
η

)
. (12)

We also state the classical Wick lemma for further use.
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Proposition 8. Let Z = (Z1, . . . , Z2N ) be a centered Gaussian vector. Then

E[Z1 · · · Z2N ] =
∑

(i1,i2),...,(i2N−1,i2N )

N∏
j=1

E[Zi2 j Zi2 j+1 ] (13)

where the sum ranges over the (2N − 1)!! = 1 · 3 · 5 · · · (2N − 1) couplings of the indices
1, . . . , 2N.

We can now give the announced expression for the moments of A(η) (recall that A(η) is defined
by (9)):

Lemma 9. Let N ≥ 1 and {si , ti ; i ≤ 2N } be a family of real numbers satisfying si < ti . Then

E

[
2N∏
j=1

As j ,t j (η)

]
=

∫ t1

s1

dx1 · · ·

∫ t2N

s2N

dx2N

×

∑
(i1,i2),...,(i2N−1,i2N )

∑
( j1, j2),...,( j2N−1, j2N )

N∏
k=1

K ′(η; xi2k−1 , xi2k )

×

N∏
k=1

Ks j2k−1 ,s j2k
(η; x j2k−1 , x j2k ). (14)

Proof. By definition of the approximation A(η), we have

E

[
2N∏
j=1

As j ,t j (η)

]
=

2N∏
j=1

∫ t j

s j

dx j

∫ x j

s j

dy j E
[

B ′(1)x1
(η)B ′(2)y1

(η) · · · B ′(1)x2N
(η)B ′(2)y2N

(η)
]
. (15)

Our claim follows then from a direct application of Proposition 5 point (3), Proposition 8 and
Definition 7. �

Remark 10. As a side result of our Theorem 2, we also obtain that the fractional Lévy area A
constructed by analytic approximation (see Proposition 6) coincides with the one constructed
in [6] by linear interpolations of the fBm B, and thus also with the area obtained by Malliavin
calculus techniques as in e.g. [21].

2.3. Analytic preliminaries

We gather here some elementary integral estimates which turn out to be essential for our
computations. The first one concerns the behavior of the kernel Ka1,a2 given in Definition 4
when |a1 − x1|, |a2 − x2| are of order 1 and |x1 − x2| is large.

Lemma 11. Assume η, |x1 − a1|, |x2 − a2| ≤ 1 and |x1 − x2|, |a1 − x2|, |a2 − x1|, |a1 − a2| are
bounded from below by a positive constant C. Then

|Ka1,a2(η; x1, x2)| ≤ C (min(|x1 − x2|, |a1 − x2|, |a2 − x1|, |a1 − a2|))
2H−2 .

Proof. The proof is elementary using the integral expression (12) for Ka1,a2 . �

We shall also need to estimate convolution integrals of the form
∫ t

0 K ′(η; z, u) f (u) du or∫ t
0 Ka,b(η; z, u) f (u) du. The following lemma gives a precise answer when f is analytic on a
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neighborhood of (a, b) for two given constants a, b ∈ R, and multivalued with a power behavior
near a and b.

Lemma 12 (See [27]). Fix two real constants a, b with a < b, and let f be a function in
L1([a, b],C). Define another function φ by φ : z 7→

∫ b
a (−i(z − u))β(u − a)γ f (u) du with

γ > −1 and β + γ ∈ R \ Z. Then:
(1) Assume f is analytic in a (complex) neighborhood of s ∈ (a, b). Then φ has an analytic

extension to a complex neighborhood of s.
(2) Assume f is analytic in a complex neighborhood of a. Then φ may be written on a small

enough neighborhood of a as the multivalued function

φ(z) = (z − a)β+γ+1 F(z)+ G(z) (16)

where both F and G are analytic.
(3) More precisely, the following continuity property holds: let Ω be a complex neighborhood of
[a, b] and ε ∈ (0, 1/2). If f is analytic on a relatively compact domain Ω̃ containing the
closure Ω̄ of Ω , then φ extends analytically to the cut domain Ωcut := Ω \ ((a+R−)∪ (b+
R+)) and writes (z − a)β+γ+1 F(z)+ G(z) on B(a, ε(b − a)) (F,G analytic) with

sup
Ωcut\(B(0,ε(b−a))∪B(b,ε(b−a)))

|φ|, sup
B(a,ε(b−a))

|F |, sup
B(a,ε(b−a))

|G| ≤ C sup
Ω̃

| f | (17)

for some constant C which does not depend on f .

Proof. Points (1) and (2) follow directly from [27], Lemmas 3.2 and 3.3. Point (3) may be
shown very easily by following the proof of the above two lemmas step by step and using the
analyticity of f . Note that (under the hypotheses of (3)) φ is analytic on the larger domain
Ω̃ \ ((a + R−) ∪ (b + R+)), but the method of contour deformation used in the proof gives
a bound for φ(z) which goes to infinity when z comes closer and closer to the boundary of Ω̃
(hence the need for the relatively compact inclusion of Ω into Ω̃ ). �

We shall also need the following elementary lemma. Here and later on, we will write x . y
for x, y ∈ R, if there exists a constant C > 0 such that x ≤ C · y.

Lemma 13. Let α, β > −1 and 0 < a < b < 1. Then:∫ 1

0
|t − a|α|t − b|β dt . 1+ |a − b|α+β+1. (18)

Proof. Let σa(b) = max(0, 2a − b) and σb(a) = min(1, 2b − a). Split the above integral
into

∫ σa(b)
0 +

∫ a
σa(b)
+
∫ b

a +
∫ σb(a)

b +
∫ 1
σb(a)

. We show that the integral over each subinterval is

. 1 + |a − b|α+β+1 (by symmetry, it is sufficient to check this for the three first subintervals
only). Now, a simple study of the function t 7→ |t − a|/|t − b| shows that c < |t−a|

|t−b| < C on
[0, σa(b)], so∫ σa(b)

0
|t − a|α|t − b|β dt .

∫ σa(b)

0
(t − b)α+β dt . (b − a)α+β+1

+ bα+β+1. (19)

If α + β + 1 < 0, resp. α + β + 1 > 0, then this is . (b − a)α+β+1, resp. . 1. On [σa(b), a],
one has c < |t−b|

b−a < C this time, so∫ a

σa(b)
|t − a|α|t − b|β dt . (b − a)α+β+1. (20)
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Finally,
∫ b

a |t − a|α|t − b|β dt = Γ (α+1)Γ (β+1)
Γ (α+β+2) (b − a)α+β+1, where Γ is the Gamma

function. �

3. Mean square error computations

This section is devoted to prove Theorems 1 and 2. We will start with the error of the Euler
scheme for H ∈ (1/4, 3/4), then we will consider the trapezoidal scheme and we will conclude
with the error of the Euler scheme for H ∈ (3/4, 1). Throughout this section and the remainder
of this article, we will use extensively the self-similarity or scaling property of fBm, i.e. for any
c > 0 the process

B̃(i)· = cH B(i)
·/c (21)

is again an fBm, and the stationarity property, that is for any h ∈ R the process

B̃(i)· = B(i)
·+h − B(i)h (22)

is an fBm. As a consequence we have e.g. that∫ t

s
(B(1)u − B(1)s ) dB(2)s

L
=

∫ t−s

0
B(1)u dB(2)s

L
= (t − s)2H

∫ 1

0
B(1)u dB(2)s ,

0 ≤ s ≤ t ≤ T .

3.1. Some moment estimates

The preliminary results we need for the proof of Theorem 1 are summarized in the following
Lemma:

Lemma 14. Let Ak,k+1 =
∫ k+1

k (B(1)s − B(1)k ) dB(2)s , k ∈ N, be the iterated integrals obtained by
applying Proposition 6. Define

c0 = E
[∣∣A0,1

∣∣2] and ck = E
[

A0,1 Ak,k+1
]
.

Then we have

c0 =
H

2

(
β(2H, 2H)+

1
4H − 1

)
, (23)

and

ck =
H

4(4H − 1)
((k + 1)4H

− 2k4H
+ (k − 1)4H )

−
1
4

k2H ((k + 1)2H
− 2k2H

+ (k − 1)2H )

+
H

2

∫ k+1

k
(|x − 1|2H

|x |2H−1
− |x |2H

|x − 1|2H−1) dx . (24)

Proof. Both identities are obtained thanks to the same kind of considerations. Furthermore,
relation (23) is obtained in [1, Theorem 34] or [26]. We thus focus on identity (24).
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Recall that ck can be obtained as a limit of ck(η) when η→ 0, where ck(η) is given by:

ck(η) := E

[∫ 1

0
B(1)s (η) dB(2)s (η)

∫ k+1

k

(
B(1)s (η)− B(1)k (η)

)
dB(2)s (η)

]
= E

[
A0,1(η)Ak,k+1(η)

]
.

We can thus apply identity (14) with N = 1, s1 = 0, t1 = 1, s2 = k, t2 = k + 1, use expression
(12) for the kernel K , and let η→ 0 in order to obtain:

ck =
1
2
γH

∫ k+1

k

∫ 1

0
|s1 − s2|

2H−2
(

s2H
1 − k2H

− |s1 − s2|
2H
+ |s2 − k|2H

)
ds2 ds1

:= ck,1 + ck,2 + ck,3 + ck,4,

with γH := H(2H − 1). It should be noticed here that, since we are integrating on the rectangle
[0, 1] × [k, k + 1] with k ≥ 1, the limits as η → 0 can be taken without much care about
singularities of our kernels [x]βη for negative β’s. Moreover, direct calculations yield

ck,1 =
1
2
γH

∫ k+1

k

∫ 1

0
s2H

1 |s1 − s2|
2H−2 ds2 ds1

=
H

2

∫ k+1

k
s2H

1 (s2H−1
1 − |s1 − 1|2H−1) ds1

=
1
8
((k + 1)4H

− k4H )−
H

2

∫ k+1

k
x2H
|x − 1|2H−1 dx

and

ck,2 = −
1
2
γH k2H

∫ k+1

k

∫ 1

0
|s1 − s2|

2H−2 ds2 ds1

= −
1
2

k2H E
[
(B(1)k+1 − B(1)k )B(1)1

]
= −

1
4

k2H ((k + 1)2H
− 2k2H

+ (k − 1)2H ).

Finally, we have

ck,3 = −
1
2
γH

∫ k+1

k

∫ 1

0
|s1 − s2|

4H−2 ds2 ds1

= −
γH

2(4H − 1)

∫ k+1

k
(s4H−1

1 − |s1 − 1|4H−1) ds1

= −
2H − 1

8(4H − 1)
((k + 1)4H

− 2k4H
− (k − 1)4H )

and

ck,4 =
1
2
γH

∫ k+1

k

∫ 1

0
|s2 − k|2H

|s1 − s2|
2H−2 ds2 ds1

=
H

2

∫ 1

0
|s2 − k|2H (|k + 1− s2|

2H−1
− |k − s2|

2H−1) ds2

=
1
8
(−k4H

+ (k − 1)4H )+
H

2

∫ k+1

k
|x − 1|2H

|x |2H−1 dx .
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Hence, putting together our elementary calculations for ck,1, . . . , ck,4, expression (24) follows
easily. �

3.2. Proof of Theorem 1 for H ∈ (1/4, 3/4)

The case H = 1/2 is well known, thus we omit this case. Note that we can decompose the
error of the Euler scheme as XT − Xn

T =
∑n

i=1 J n
i , with random variables J n

i defined by

J n
i =

∫ (i+1)T/n

iT/n
(B(1)s − B(1)i/n) dB(2)s = A(iT )/n,(i+1)T/n, i = 0, . . . , n − 1,

where Ast is obtained as the L2-limit of Ast (η) according to Proposition 6. In particular,
E[|XT − Xn

T |
2
] =

∑
i, j E[J n

i J n
j ], which means that we are first reduced to study the quantities

E[J n
i J n

j ] in terms of i, j and n. Towards this aim, one can first remark that, since fBm is self-
similar, we have

E[J n
i J n

j ] = T 4H n−4H E[Ai,i+1 A j, j+1]. (25)

Moreover, as in the proof of Lemma 9, for |i − j | > 1 it holds:

E
[

Ai,i+1(η)A j, j+1(η)
]
=

∫ i+1

i

∫ j+1

j

∫ s1

i

∫ s2

j
K ′(η; s1, s2)

× K ′(η; u1, u2) du2 du1 ds2 ds1.

Since we are away from the diagonal, one can take safely the limit η → 0 in the expression
above, which gives:

E
[

Ai,i+1 A j, j+1
]
= H2(2H − 1)2

×

∫ i+1

i

∫ j+1

j

∫ s1

i

∫ s2

j
|u1 − u2|

2H−2
|s1 − s2|

2H−2 du2 du1 ds2 ds1. (26)

Note that the above expression implies that

E
[

Ai,i+1 A j, j+1
]
> 0.

Step 1: Diagonal terms. For the diagonal terms, i.e. for i = j , we have by stationarity of the
increments that

E
[∣∣Ai,i+1

∣∣2] = E
[∣∣A0,1

∣∣2] .
So (25) gives

n−1∑
i=0

E
[
|J n

i |
2
]
= T 4H

· E
[∣∣A0,1

∣∣2] · n−4H+1. (27)

Step 2: Secondary diagonal terms. For the secondary diagonal terms, we have again by
stationarity of the increments of fBm that

E
[

Ai,i+1 Ai+1,i+2
]
= E

[
A0,1 A1,2

]
.
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Hence it follows

n−1∑
i, j=0,|i− j |=1

E
[
J n

i J n
i+1

]
= 2T 4H

· E
[

A0,1 A1,2
]
· (n − 1)n−4H . (28)

Step 3: Close to diagonal terms. Now we consider the terms, which are in a ”log(n)-vicinity” of
the diagonal terms, i.e.∑

0≤i, j≤n−1
1<|i− j |≤log(n)

E
[
J n

i J n
i+1

]
= T 4H

· n−4H
·

∑
0≤i, j≤n−1

1<|i− j |≤log(n)

E
[

Ai,i+1 A j, j+1
]
.

Using the stationarity of the fBm we have∑
0≤i, j≤n−1

1<|i− j |≤log(n)

E
[

Ai,i+1 A j, j+1
]
= 2

∑
0≤i, j≤n−1

1<i− j≤log(n)

E
[

A0,1 Ai− j,i− j+1
]

=

blog(n)c∑
k=2

(n − k)E
[

A0,1 Ak,k+1
]
.

Thus ∑
0≤i, j≤n−1

1<|i− j |≤log(n)

E
[
J n

i J n
i+1

]
= T 4H

· n−4H+1
·

blog(n)c∑
k=2

E
[

A0,1 Ak,k+1
]

− T 4H
· n−4H+1

·

blog(n)c∑
k=2

k

n
E
[

A0,1 Ak,k+1
]
.

From Eq. (26) we have that

E
[

A0,1 Ak,k+1
]

= H2(2H − 1)2
∫ 1

0

∫ k+1

k

∫ s1

0

∫ s2

k
|u1 − u2|

2H−2
|s1 − s2|

2H−2 du2 du1 ds2 ds1.

An application of the mean value theorem for k > 1 gives

1
4

H2(2H − 1)2|k + 1|4H−4
≤ E

[
A0,1 Ak,k+1

]
≤

1
4

H2(2H − 1)2|k − 1|4H−4.

Consequently, we have

1
4

H2(2H − 1)2
blog(n)c+1∑

k=3

|k|4H−4
≤

blog(n)c∑
k=2

E
[

A0,1 Ak,k+1
]

≤
1
4

H2(2H − 1)2
blog(n)c−1∑

k=1

|k|4H−4,

and notice that
∑
∞

k=1 |k|
4H−4 <∞ since H < 3/4. So,

∑blog(n)c
k=2 E

[
A0,1 Ak,k+1

]
converges as

n→∞, and setting S =
∑
∞

k=2 E
[

A0,1 Ak,k+1
]
=
∑
∞

k=2 ck we end up with

blog(n)c∑
k=2

E
[

A0,1 Ak,k+1
]
= S + o(1).
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Moreover, we have

0 ≤
blog(n)c∑

k=2

k

n
E
[

A0,1 Ak,k+1
]
≤

log(n)
n

S = O(log(n)n−1).

Consequently, we have derived that

∑
0≤i, j≤n−1

1<|i− j |≤log(n)

E
[

J n
i J n

j

]
= 2T 4H

· n−4H+1
·

∞∑
k=2

E
[

A0,1 Ak,k+1
]
+ o(n−4H+1). (29)

Step 4: Off-diagonal terms. Now, it remains to consider the off-diagonal terms, i.e. the terms
with |i − j | > log(n). We show that these terms are asymptotically negligible for H < 3/4.
Proceeding as in the previous steps, we have∑

0≤i, j≤n−1
|i− j |>log(n)

E
[
J n

i J n
i+1

]
= T 4H

· n−4H
·

∑
0≤i, j≤n−1
|i− j |>log(n)

E
[

Ai,i+1 A j, j+1
]

and

0 ≤ E
[

Ai,i+1 A j, j+1
]
≤ H2(2H − 1)2

(∫ i+1

i

∫ j+1

j
|s1 − s2|

2H−2 ds1 ds2

)2

.

Since |i − j | > 1, the mean value theorem gives

0 ≤ E
[

Ai,i+1 A j, j+1
]
≤ H2(2H − 1)2||i − j | − 1|4H−4,

and we obtain

∑
0≤i, j≤n−1
|i− j |>log(n)

||i − j | − 1|4H−4
= 2

n−1∑
i=0

i−dlog(n)e∑
j=0

|i − j − 1|4H−4

= 2
n−1∑
i=0

i−1∑
j=dlog(n)e−1

j4H−4

≤ 2n
n−1∑

j=blog(n)c

j4H−4.

Since H < 3/4, we have

n−1∑
j=blog(n)c

j4H−4
≤

∞∑
j=blog(n)c

j4H−4
= O(log(n)4H−3).

Hence it follows∑
0≤i, j≤n−1
|i− j |>log(n)

E
[

J n
i J n

j

]
= o(n−4H+1). (30)
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Step 5: The asymptotic constant. Combining (27)–(30) and using Lemma 14 now gives

E[|XT − Xn
T |

2
] = T 4H

· n−4H+1

(
c0 + 2

∞∑
k=1

ck

)
+ o(n−4H+1),

which finishes the proof of Theorem 1 for H ∈ (1/4, 3/4).

3.3. Proof of Theorem 2

Here we omit again the case H = 1/2, which is well known. Recall that the trapezoidal
scheme is given by

X̂n
T =

1
2

n−1∑
i=0

(
B(1)iT/n + B(1)(i+1)T/n

)(
B(2)(i+1)T/n − B(2)iT/n

)
.

Thus, applying again the scaling property of fBm, the mean square error of the trapezoidal
scheme is given by

E|XT − X̂n
T |

2
= T 4H

· n−4H
·

n−1∑
i=0

n−1∑
j=0

EÃi,i+1 Ã j, j+1

with

Ãi,i+1 =
1
2

∫ i+1

i
(B(1)i+1 + B(1)i − 2B(1)s ) dB(2)s

for i, j = 0, 1, . . . , n − 1. We will use a similar decomposition as for the Euler scheme, i.e.

E|XT − X̂n
T |

2
= T 4H

· n−4H (I1(n)+ I2(n)+ I3(n))

with

I1(n) =
n−1∑
i=0

E
[
|Ãi,i+1|

2
]
,

I2(n) =
n−1∑

i=0, j=0,|i− j |=1

E
[

Ãi,i+1 Ã j, j+1
]
,

I3(n) =
n−1∑

i=0, j=0,|i− j |>1

E
[

Ãi,i+1 Ã j, j+1
]
.

Moreover, note that as in the proof of Lemma 14, using Lemma 9 and moreover letting η → 0
and applying dominated convergence, we obtain for |i − j | > 1 that

E
[

Ãi,i+1 Ã j, j+1
]
= γH

∫ i+1

i

∫ j+1

j
θi, j (s1, s2)|s1 − s2|

2H−2 ds2 ds1 (31)

with γH = H(2H − 1) and

θi, j (s1, s2) =
1
4

E(2B(1)s1
− B(1)i − B(1)i+1)(2B(1)s2

− B(1)j − B(1)j+1)

for s1 ∈ [i, i + 1], s2 ∈ [ j, j + 1].



238 A. Neuenkirch et al. / Stochastic Processes and their Applications 120 (2010) 223–254

Step 1: Diagonal terms. For the diagonal terms, i.e. for i = j , we have by stationarity of the
increments of fBm that

I1(n) = n · E
[
|Ã0,1|

2
]
= O(n). (32)

Step 2: Secondary diagonal terms. For the secondary diagonal terms it holds

I2(n) = 2(n − 1) · E
[

Ã0,1 Ã1,2
]
= O(n). (33)

Step 3: Off-diagonal terms. Again stationarity gives

I3(n) =
n−1∑

i=0, j=0,|i− j |>1

E
[

Ãi,i+1 Ã j, j+1
]

= 2
n−1∑
i=0

i−2∑
j=0

E
[

Ã0,1 Ãi− j,i− j+1
]

= 2
n∑

k=2

(n − k)E
[

Ã0,1 Ãk,k+1
]
. (34)

Now (31) gives

E
[

Ã0,1 Ãk,k+1
]
= γH

∫ 1

0

∫ k+1

k
θ0,k(s1, s2)|s1 − s2|

2H−2 ds2 ds1.

Setting

R1
0,k = {s1, s2 ∈ [0, 1] × [k, k + 1] : θ0,k(s1, s2) ≥ 0},

R2
0,k = {s1, s2 ∈ [0, 1] × [k, k + 1] : θ0,k(s1, s2) < 0},

an application of the mean value theorem yields∫ 1

0

∫ k+1

k
θ0,k(s1, s2)|s1 − s2|

2H−2 ds2 ds1

= |k + ξ1|
2H−2

∫ ∫
R1

0,k

θ0,k(s1, s2) ds2 ds1 + |k + ξ2|
2H−2

∫ ∫
R2

0,k

θ0,k(s1, s2) ds2 ds1

with ξ1, ξ2 ∈ (−1, 1). Thus∫ 1

0

∫ k+1

k
θ0,k(s1, s2)|s1 − s2|

2H−2 ds2 ds1 = |k|
2H−2

∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1 + ρk,

where

|ρk | ≤ |2H − 2| · |k − 1|2H−3
·

∫ 1

0

∫ k+1

k
|θ0,k(s1, s2)| ds2 ds1.

Inserting this into (34) gives

I3(n) = 2γH

n∑
k=2

(n − k)|k|2H−2
∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1 + 2γH

n∑
k=2

(n − k)ρk .



A. Neuenkirch et al. / Stochastic Processes and their Applications 120 (2010) 223–254 239

Now note that θi, j can be bounded as follows: We have∣∣θi, j (s1, s2)
∣∣ ≤ 1

4

(
E|(Bs1 − Bi )+ (Bs1 − Bi+1)|

2
)1/2

×

(
E|(Bs2 − B j )+ (Bs2 − B j+1)|

2
)1/2

≤
1
4

((
E|Bs1 − Bi |

2
)1/2
+

(
E|Bs1 − Bi+1|

2
)1/2

)
×

((
E|Bs2 − B j |

2
)1/2
+

(
E|Bs2 − B j+1|

2
)1/2

)
and therefore

sup
s1∈[i,i+1],s2∈[ j, j+1]

∣∣θi, j (s1, s2)
∣∣

≤ sup
s1∈[i,i+1],s2∈[ j, j+1]

1
4

(
|s1 − i |H + |s1 − i − 1|H

) (
|s2 − j |H + |s2 − j − 1|H

)
≤ 1

for all i, j ∈ N. Hence

|ρk | ≤ 2|k − 1|2H−3

and ∣∣∣∣∣2γH

n∑
k=2

(n − k)ρk

∣∣∣∣∣ ≤ 4n
∞∑

k=1

k2H−3.

Since
∑
∞

k=1 k2H−3 <∞, it follows

2γH

n∑
k=2

(n − k)ρk = O(n). (35)

It remains to consider

2γH

n∑
k=2

(n − k)|k|2H−2
∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1. (36)

From [19] (see Appendix A) we know that∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1 = −

1
8
·

(
2|k|2H

+ |k + 1|2H
+ |k − 1|2H

)
+

1
2(2H + 1)

·

(
|k + 1|2H+1

− |k − 1|2H+1
)

+
1

2(2H + 1)(2H + 2)
·

(
2|k|2H+2

− |k + 1|2H+2
− |k − 1|2H+2

)
.

A Taylor expansion up to order 5 of the right-hand side of the above equation yields∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1 = O(|k − 1|2H−3)
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and thus
∞∑

k=2

|k|2H−2

∣∣∣∣∣
∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1

∣∣∣∣∣ <∞.
This allows us to control the sum in (36), i.e.∣∣∣∣∣2γH

n∑
k=2

(n − k)|k|2H−2
∫ 1

0

∫ k+1

k
θ0,k(s1, s2) ds2 ds1

∣∣∣∣∣ = O(n). (37)

So, combining this with (35) we have

I3(n) = O(n). (38)

Step 4: The error bound. Combining (32), (33) and (38) now gives

E[|XT − X̂n
T |

2
] ≤ C(H) · T 4H

· n−4H+1,

which is the assertion of Theorem 2.

3.4. Proof of Theorem 1 for H ∈ [3/4, 1)

Here the following relation will be very helpful: For the difference between the Euler and the
trapezoidal scheme we have

Xn
T − X̂n

T = −
1
2

n−1∑
i=0

(B(1)(i+1)T/n − B(1)iT/n)(B
(2)
(i+1)T/n − B(2)iT/n).

Since

E|XT − X̂n
T |

2
= O(n−4H+1)

due to Theorem 2, it follows(
E|XT − Xn

T |
2
)1/2
=

(
E|Xn

T − X̂n
T |

2
)1/2
+ O(n−2H+1/2). (39)

By scaling we have

E|Xn
T − X̂n

T |
2
=

T 4H

4
· n−4H

· E

∣∣∣∣∣n−1∑
i=0

(B(1)i+1 − B(1)i )(B(2)i+1 − B(2)i )

∣∣∣∣∣
2

.

Moreover,

E

∣∣∣∣∣n−1∑
i=0

(B(1)i+1 − B(1)i )(B(2)i+1 − B(2)i )

∣∣∣∣∣
2

=
1
4

n−1∑
i=0

n−1∑
j=0

(
|i − j − 1|2H

− 2|i − j |2H
+ |i − j + 1|2H

)2
.

So, we have to analyze the behavior of

n−4H
·

n−1∑
i=0

n−1∑
j=0

(
|i − j − 1|2H

− 2|i − j |2H
+ |i − j + 1|2H

)2
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in detail. We can rewrite this sum as

n−4H
·

n−1∑
i=0

n−1∑
j=0

(
|i − j − 1|2H

− 2|i − j |2H
+ |i − j + 1|2H

)2

= 2n−4H+1
+ 2n−4H

n−1∑
i=0

i−1∑
j=0

(
|i − j − 1|2H

− 2|i − j |2H
+ |i − j + 1|2H

)2

= O(n−4H+1)+ 2n−4H
n−1∑
k=2

(n − k)
(
|k − 1|2H

− 2|k|2H
+ |k + 1|2H

)2
.

Hence,

E|Xn
T − X̂n

T |
2
=

T 4H

8
· n−4H

n−1∑
k=2

(n − k)
(
|k − 1|2H

− 2|k|2H
+ |k + 1|2H

)2

+ O(n−4H+1). (40)

Moreover,

n−4H
n−1∑
k=2
(n − k)

(
|k − 1|2H

− 2|k|2H
+ |k + 1|2H

)2
= n

n−1∑
k=2

(
1− k

n

) (∣∣∣ k−1
n

∣∣∣2H
− 2

∣∣ k
n

∣∣2H
+

∣∣∣ k+1
n

∣∣∣2H
)2

.

A Taylor expansion up to order 4 gives∣∣∣∣k − 1
n

∣∣∣∣2H

− 2

∣∣∣∣ kn
∣∣∣∣2H

+

∣∣∣∣k + 1
n

∣∣∣∣2H

= 2H(2H − 1)

∣∣∣∣ kn
∣∣∣∣2H−2

· n−2
+ ρk · n

−2H

with

|ρk | = O(|k − 1|2H−4)

for k > 1. Therefore

n
n−1∑
k=2

(
1−

k

n

)(∣∣∣∣k − 1
n

∣∣∣∣2H

− 2

∣∣∣∣ kn
∣∣∣∣2H

+

∣∣∣∣k + 1
n

∣∣∣∣2H
)2

= 4H2(2H − 1)2 · n−2
n−1∑
k=2

(
1−

k

n

) ∣∣∣∣ kn
∣∣∣∣4H−4

·
1
n
+ n−4H+1

·

n−1∑
k=2

ρ̃k,

where

|ρ̃k | = O(|k − 1|4H−6).

We have

∞∑
k=2

|ρ̃k | <∞
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and thus

n
n−1∑
k=2

(
1−

k

n

)(∣∣∣∣k − 1
n

∣∣∣∣2H

− 2

∣∣∣∣ kn
∣∣∣∣2H

+

∣∣∣∣k + 1
n

∣∣∣∣2H
)2

= 4H2(2H − 1)2 · n−2
n−1∑
k=2

(
1−

k

n

) ∣∣∣∣ kn
∣∣∣∣4H−4

·
1
n
+ O(n−4H+1).

Combining this with (40) gives

E|Xn
T − X̂n

T |
2
=

T 4H

2
H2(2H − 1)2 · n−2

n−1∑
k=2

(
1−

k

n

) ∣∣∣∣ kn
∣∣∣∣4H−4

·
1
n
+ O(n−4H+1). (41)

Now assume that H > 3/4. It holds

n−1∑
k=2

(
1−

k

n

) ∣∣∣∣ kn
∣∣∣∣4H−4

·
1
n
=

∫ 1

0
(1− x) x4H−4 dx + o(1).

Since ∫ 1

0
(1− x) x4H−4 dx =

1
(4H − 2)(4H − 3)

,

the assertion of the theorem for H > 3/4 follows from (39). It remains to consider the case
H = 3/4. Here we have

T 4H

2
H2(2H − 1)2 · n−2

n−1∑
k=2

(
1−

k

n

) ∣∣∣∣ kn
∣∣∣∣4H−4

·
1
n
=

9
128

T 3
· n−2

n−1∑
k=2

1
k
+ O(n−2).

Since

n−1∑
k=2

1
k
= c − 1+ log(n)+ o(1),

where c stands for the Euler–Mascheroni constant, we obtain

E|Xn
T − X̂n

T |
2
=

9
128

T 3
· n−2 log(n)+ O(n−2),

which together with (39) completes the proof.

4. Asymptotic error distribution of the Euler scheme: H < 3/4

Let us first explain the strategy we have adopted in order to obtain our central limit theorem
for the difference XT − Xn

T of the Lévy area and its Euler approximation in the case H < 3/4.
First, recall that the random variable XT − Xn

T can be expressed as

XT − Xn
T =

n∑
i=1

J n
i , with J n

i ,
∫ (i+1)T/n

iT/n
(B(1)s − B(1)i/n) dB(2)s .

With this expression in hand, it can be seen in particular that XT − Xn
T is still an element of the

second chaos of our underlying fBm B.
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Let us then recall the following limit theorem for random variables in a fixed finite Gaussian
chaos, which can be found in [24, Theorem 1]:

Proposition 15. Fix p ≥ 1. Let {Zn; n ≥ 1} be a sequence of centered random variables
belonging the pth chaos of a Gaussian process, and assume that

lim
n→∞

E[Z2
n] = 1. (42)

Then Zn converges in distribution to a centered Gaussian random variable if and only if the
following condition is met:

lim
n→∞

E[Z4
n] = 3. (43)

This is the criterion we shall adopt in order to get our central limit theorem. The second order
condition (42) is simply a normalization step, so that the essential point is to analyze the fourth
order moments of XT − Xn

T in order to prove condition (43). It should be stressed at this point
that [24, Theorem 1] contains in fact a series of equivalent statements for condition (43), based
either on assumptions on the Malliavin derivatives of the random variables Zn , or on purely
deterministic criteria concerning the kernels defining the multiple integrals under consideration.
These alternative criteria yield arguably some shorter computations, but we preferred to stick to
the fourth order moment for two main reasons: (i) The computations we perform in this context
are more intuitive, and in a sense, easier to follow. (ii) As we shall explain below, the fourth order
computations lead to some visual representations in terms of graphs, and we will able to show
easily that the CLT is equivalent to have the sum of the connected diagrams tending to 0. As we
shall see, this latter criterion is really analogous to [24, Theorem 1, Condition (ii)].

In the remainder of this section, we check condition (43) for XT − Xn
T , rescaled according to

Theorem 1, in order to get a central limit theorem for our approximation. We shall first explain
the basics of our diagrammatical method of computation and show how to reduce our problem
to the analysis of connected diagrams. Then we split our study into regular and singular terms.

4.1. Reduction of the problem

Owing to Theorem 1, it is enough for our purposes to show that limn→∞ E[Z4
n] = 3, where

Zn = n2H−1/2T−2H [α1(H)]−1/2
n∑

i=1

J n
i . (44)

Furthermore, the self-similarity of fBm implies that

E[Z4
n] = (α1(H)n)

−2 E

( n∑
i=1

Ii

)4
 ,

where Ii = Ai,i+1 is the Lévy area between i and i + 1. Now, the most naive idea one can have
in mind is to write Zn as limη→0 Zn(η), where Zn is obtained by considering regularized areas
based on B(η), and then expand E[Z4

n(η)] as

E[Z4
n(η)] = (α1(H)n)

−2
n∑

i1,...,i4=1

E

[
4∏

j=1

Ii j (η)

]
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4 4

2 2

33

1 1

Fig. 1. Two examples of diagrams.

= (α1(H)n)
−2

4∏
j=1

(∫ i j+1

i j

dx j

∫ x j

i j

dy j

)
E

[
4∏

j=1

B ′(1)x j
(η)

]
E

[
4∏

j=1

B ′(2)y j
(η)

]
, (45)

where we have used formula (15) with N = 2 in order to get the last equality.
We apply now Wick’s formula (14) in order to get an expression for the expected

values above, and this is where our diagrammatical representation can be useful. Indeed,
E[
∏4

j=1 B ′(1)x j (η)]E[
∏4

j=1 B ′(2)y j (η)] is the sum of 9 different terms, connecting the xi ’s two by
two according to formula (14), and also the yi ’s two by two. Each term may be represented by
a four-point diagram in the following way. Draw a simple line, resp. a dashed line between i
and j if xi and x j , resp. yi and y j are connected. This procedure yields 9 different graphs, whose
typical examples are given at Fig. 1. Moreover, the reader can then check easily that diagrams fall
into two types: connected ones (6) and disconnected ones (3). Furthermore, up to permutations
of the indices, there is only one disconnected diagram, namely the first diagram of Fig. 1. One
checks immediately that the corresponding integral is E[Ii1(η)Ii2(η)]E[Ii3(η)Ii4(η)]. Write also
the total contribution of the 6 connected diagrams as E[Ii1(η)Ii2(η)Ii3(η)Ii4(η)](c), where (c)
stands for connected. Thanks to our graphical representation, it is then straightforward to prove
the following: for arbitrary constants ci , i = 1, . . . , n, we have

E

( n∑
i=1

ci Ii (η)

)4
− 3 E2

( n∑
i=1

ci Ii (η)

)2
 = E

( n∑
i=1

ci Ii (η)

)4

(c)

. (46)

Hence our condition (43) is satisfied for Zn defined by (44) if and only if the right-hand side of
Eq. (46) goes to zero for ci = n−1/2 (ci is in fact independent of i). It should be stressed at that
point that the latter condition (which is what we call connected diagrams go to 0) is an analogue
of criterion (ii) in [24, Theorem 1], but is obtained here without Malliavin calculus tools. This
terminology is inspired by the Feynman diagram analysis in the context of quantum field theory;
see e.g. [15].

Let us set now Z̃n(η) =
∑n

i=1 Ii (η). With the above considerations in mind, we are reduced
to show that

lim
n→∞

lim
η→0

1

n2 E
[

Z̃4
n(η)

]
(c)
= 0. (47)

This relation will be first proved for H ∈ (1/2, 3/4). In that case one may consider directly the
situation where η = 0, that is the infinitesimal covariance kernel (x, y) 7→ H(2H − 1)|x −
y|2H−2, since it is locally integrable. The proof requires only a few lines of computations. Each
diagram in E[Z̃4

n(η)](c) splits into regular terms – which are also well defined for H < 1
2 – and

singular terms – which diverge when H < 1
2 . As we shall see, the bounds given for the non-

singular terms also hold true for H < 1
2 . Then we shall see how to bound the singular terms for
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43

1 2

Fig. 2. Typical connected diagram.

arbitrary H by replacing the ill-defined kernel H(2H − 1)|x − y|2H−2 with its regularization
K ′(η; x, y). This step is of course only needed in the case H < 1

2 , but computations are equally
valid in the whole range H ∈ (1/4, 3/4). In other words, the barrier H = 1

2 is largely artificial
(the proofs of the two cases are actually mixed, and one could also have written a general proof,
at the price of some more technical calculations).

Before we enter into these computational details, let us reduce our problem a little bit more:
recall again that we wish to prove relation (47) for Z̃n(η) =

∑n
i=1 Ii (η). As explained above,

we evaluate E[Z̃4
n(η)](c) with 6 different connected diagrams. Let us focus on the term, which

will be called T , corresponding to the diagram given at Fig. 2 (the other ones can be treated in
a similar manner). Now, starting from expression (45), taking into account the fact that we are
considering the particular diagram given at Fig. 2 and integrating over the internal variables y,
we end up with T = n−2 ∑n

i1,...,i4=1 I(i1,...,i4), where (recalling that the kernel K is defined by
Eq. (11))

I(i1,...,i4) :=

∫ i1+1

i1

dx1 · · ·

∫ i4+1

i4

dx4

× K ′(η; x1, x2)K
′(η; x3, x4)Ki1,i3(η; x1, x3)Ki2,i4(η; x2, x4). (48)

The latter expression yields naturally a notion of regular terms and singular terms: split the
set of indices {1, . . . , n}4 into A1 ∪ A2, where

A2 = {(i1, . . . , i4) | 1 ≤ i1, . . . , i4 ≤ n, |i1 − i3|, |i2 − i4| ≤ 1},

A1 = {1, . . . , n}4 \ A2. (49)

Regular terms, resp. singular terms are those for which |i1− i2|, |i3− i4| ≥ 2, resp. |i1− i2| ≤ 1
or |i3− i4| ≤ 1. Split accordingly the sets of indices A j , j = 1, 2 into A j,reg∪ A j,sing, and denote

T j,reg =
∑

(i1,...,i4)∈Areg
j

I(i1,...,i4) and T j,sing =
∑

(i1,...,i4)∈Asing
j

I(i1,...,i4). (50)

It remains to prove that T j,reg = o(n2) and T j,sing = o(n2), for j = 1, 2. These two steps will be
performed respectively at Sections 4.2 and 4.3.



246 A. Neuenkirch et al. / Stochastic Processes and their Applications 120 (2010) 223–254

4.2. Regular terms and case H > 1/2

This section is devoted to the study of T j,reg, and also of T j,sing for H > 1/2. In both cases, one
is allowed to take limits as η→ 0 without much care, by a standard application of the dominated
convergence theorem. We skip this elementary step, and consider directly our expressions for
η = 0.

Let us start by T1,reg, which is given by

T1,reg =
∑

|i1−i3|,|i1−i2|,|i3−i4|≥2

∫ i1+1

i1

dx1 · · ·

∫ i4+1

i4

dx4 K ′(x1, x2)K
′(x3, x4)

× Ki1,i3(x1, x3)Ki2,i4(x2, x4). (51)

We shall bound this integral by different methods in the cases H ∈ (1/2, 3/4) and H < 1
2 :

(i) Assume first H ∈ (1/2, 3/4). Whenever |s − i |, |t − j | ≤ 1, recall from Lemma 11 that
Ki, j (s, t) . |t − s|2H−2 if |i − j | ≥ 2, and s ∈ [i, i + 1], t ∈ [ j, j + 1]. In particular,
the quantity |Ki1,i3(x1, x3)| in Eq. (51) is bounded by |x1 − x3|

2H−2. We also obviously have
|K ′(x1, x2)| . |x2 − x1|

2H−2 and |K ′(x3, x4)| . |x4 − x3|
2H−2. As a consequence,

|T1,reg| ≤ 2C
∑

|i1−i3|,|i1−i2|,|i3−i4|≥2

∫ i1+1

i1

dx1 · · ·

∫ i4+1

i4

dx4 |x2 − x1|
2H−2
|x4 − x3|

2H−2

× |x1 − x3|
2H−2
|Ki2,i4(x2, x4)|.

Let us undo now the initial scaling by setting t j = x j/n. One gets

|T1,reg| . n4+3(2H−2)
∫ 1

0
dt1 · · ·

∫ 1

0
dt4 |t2 − t1|

2H−2
|t4 − t3|

2H−2

× |t3 − t1|
2H−2 Kbnt2c,bnt4c(nt2, nt4). (52)

Applying Lemma 13 to the above expression (52) and integrating successively with respect to t1
and t3 yields

|T1,reg| . n4+3(2H−2)
∫ 1

0
dt2

∫ 1

0
dt4(1+ |t2 − t4|

6H−4)Kbnt2c,bnt4c(nt2, nt4). (53)

Recall now that |Kbnt2c,bnt4c(nt2, nt4)| . min(1, (n|t2 − t4|)2H−2). Hence, one can bound this
kernel by 1 on [0, 1/n] and by (nt)2H−2 on [1/n, 1], yielding∫ 1

0
dt4 Kbnt2c,bnt4c(nt2, nt4) .

∫ 1/n

0
dt + n2H−2

∫ 1

1/n
t2H−2 dt . n−1

+ n2H−2, (54)

and also∫ 1

0
dt4|t2 − t4|

6H−4 Kbnt2c,bnt4c(nt2, nt4) .
∫ 1/n

0
t6H−4dt + n2H−2

∫ 1

1/n
t8H−6dt

. n3−6H
+ n2H−2.

Hence, multiplying by the prefactor n4+3(2H−2) from Eq. (53), one has found: |T1,reg| .
n + n8H−4

+ n6H−3 . n + n8H−4. In particular, if H < 3/4, then |T1,reg| = o(n2).
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(ii) Assume now H < 1
2 . In this case, the integrals we have been manipulating above are

divergent, so that we will use series arguments instead. Let us observe then that, under the same
conditions as in the case H ∈ (1/2, 3/4), the bound |Ki1,i3(x1, x3)| . |i1 − i3|

2H−2 holds true.
We also bound the factor |Ki2,i4(x2, x4)| by a constant in order to get

|T1,reg| .
∑

i1,i3:|i1−i3|≥2

|i1 − i3|
2H−2

( ∑
i2:|i2−i1|≥2

|i2 − i1|
2H−2

)

×

( ∑
i4:|i4−i3|≥2

|i4 − i3|
2H−2

)
.

∑
i1,i3:|i1−i3|≥2

|i1 − i3|
2H−2

= O(n).

We now leave to the reader the task of checking, with the same kind of computations, that
|T1,sing| = O(n) (provided H > 1

2 ).
Turn now to the complementary set of indices, A2: by simply bounding the kernels Ki, j (x, y)

by constants in (51), one gets

|T2,reg| .
∑

|i1−i3|,|i2−i4|≤1;|i1−i2|,|i3−i4|≥2

∫ i1+1

i1

dx1 · · ·

∫ i4+1

i4

dx4|K
′(x1, x2)||K

′(x3, x4)|

.
∑

i1,i2:|i1−i2|≥2

|i1 − i2|
2(2H−2). (55)

Hence |T2,reg| = O(n4H−2) = o(n2) when H < 3/4, which is enough for our purposes.
Finally, provided H > 1

2 , some similar elementary considerations prove that

|T2,sing| . n

(∫ 1

0
dx1

∫ 1

0
dx2|K

′(x1, x2)|

)2

= O(n), (56)

where we have used the fact that |i j − ik | = O(1) for j, k = 1, . . . , 4 if (i1, . . . , i4) ∈ A2,sing.

4.3. Singular terms in the case H < 1/2

Let us reconsider the terms T1,sing and T2,sing in (50), taking now into account the fact that we
deal with the regularized kernels K ′(η; x1, x2), K ′(η; x3, x4) instead of K ′(x1, x2), K ′(x3, x4).

In order to treat all the terms appearing in our sums in a systematic way, let us introduce a little
of vocabulary: consider any multi-index (i1, . . . , i p), p ≥ 2 (in our case p = 4). We shall say that
{i j1 , . . . , i jk }, j1 6= · · · 6= jk is a maximal contiguity subset of (i1, . . . , i p) if (up to a reordering)
i j2−i j1 = · · · = i jk−i jk−1 = 1 and il ≥ i jk+2 or≤ i j1−2 if l 6= j1, . . . , jk . Maximal contiguity
subsets define a partition of the set {i1, . . . , i p}. Then we shall write (i1, . . . , i p) ∈ Jm1,...,mq if
the lengths of the maximal contiguity subsets of (i1, . . . , i p) are m1 ≥ · · · ≥ mq .

This terminology will help us classify the terms in T1,sing ∪ T2,sing. Forgetting about the O(n)
multi-indices (i1, . . . , i4) in J4 appearing in T2,sing (according to the fact that Var(Ast (η)) is
uniformly bounded on [0, T ], proved in [26], this term contributes only O(n) to the sum), the
other singular terms are all in T1,sing and may be:

– either of type J2,1,1, with maximal contiguity subsets {{i1, i2}, {i3}, {i4}} or equivalently
{{i3, i4}, {i1}, {i2}};
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– or of type J2,2, with maximal contiguity subsets {{i1, i2}, {i3, i4}};
– or of type J3,1, with maximal contiguity subsets {{i1, i2, i3}, {i4}} or equivalent possibilities.
Let us observe that, in our iterated multiple integrals, the most serious problems of singularity

appear when the external variables x (represented by solid lines in our graphs) are contiguous.
Indeed, the internal variables y are integrated, smoothing the kernels K ′ into Ka,b. However, one
still has to cope with the highly singular kernel K ′ for the external variables. For instance, for
the graph given at Fig. 2 (which is the one we are analyzing), this kind of problem appears for
the terms of type J2,1,1 (when the maximal contiguity subset is {{i1, i2}, {i3}, {i4}}) or J2,2. But a
simple Fubini-type argument allows us to get rid of these singularities. Indeed, when η > 0, the
integral

4∏
j=1

∫ i j+1

i j

dx j K ′(η; x1, x2)K
′(η; x3, x4) ·

4∏
j=1

∫ x j

i j

dy j K ′(η; y1, y3)K
′(η; y2, y4),

corresponding to the diagram of Fig. 2, is also equal to

4∏
j=1

∫ i j+1

i j

dy j K ′(η; y1, y3)K
′(η; y2, y4) ·

4∏
j=1

∫ i j+1

y j

dx j K ′(η; x1, x2)K
′(η; x3, x4),

corresponding (up to time-reversal) to the reversed diagram obtained by exchanging full lines
with dashed lines. The important point is that this full-line dashed-line symmetry maps the above
singular diagrams of type J2,1,1 or J2,2 into regular diagrams, for which the external variables
are separated. This situation can thus be handled along the same lines as in Section 4.2, and there
only remains to estimate singular diagrams of type J3,1.

For this latter class of diagram, assume for instance (without loss of generality) that {i1, i2, i3}

is a maximal contiguity subset of (i1, . . . , i4). Then, owing to relation (12), the corresponding
integral writes E = E(i1, . . . , i4), with

E = cH

∫ i3+1

i3

dx3

∫ i1+1

i1

dx1

∫ i2+1

i2

dx2

∫ i4+1

i4

dx4 [x3 − x4]
2H−2
η [x1 − x2]

2H−2
η

×

(
[x3 − x1]

2H
η + [i3 − i1]

2H
η − [x3 − i1]

2H
η − [x1 − i3]

2H
η

)
Ki2,i4(η; x2, x4), (57)

which is the sum of 4 terms, denoted in what follows by E1, . . . , E4. The most complicated one
is a priori E1, obtained by choosing the contribution of [x3 − x1]

2H
η to the integral. Let us first

estimate this term.
Apply Lemma 12 with f (x4; u) = [u−x4]

2H−2
η , z = x1 (x4 is simply an additional parameter

here, and f fulfills the analytic assumptions of Lemma 12 because i3 and i4 are not contiguous)
and β = 2H, γ = 0: letting

φ1(x4; x1) :=

∫ i3+1

i3

dx3[x1 − x3]
2H
η [x3 − x4]

2H−2
η ,

we obtain that φ1 is analytic in x1 on a cut neighborhood Ω ′cut of [i1, i1 + 1] excluding possibly
i3 and i3 + 1 (depending on whether i3, i3 + 1 ∈ {i1, i1 + 1} or not), and one can decompose φ1
into

φ1(x4; x1) = [x1 − i3]
2H+1
η F1(x4; x1)+ G1(x4; x1) (58)
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on a neighborhood of i3 (and similarly around i3 + 1), with F1 possibly zero. The functions
φ1|Ω ′cut

, F1 and G1 are analytic and bounded by a constant times |i3 − i4|
2H−2.

Apply once again Lemma 12 with f (x4; u) = φ1(x4; u), z = x2 and β = 2H − 2, γ = 0 or
(possibly) 2H + 1: letting

φ2(x4; x2) =

∫ i1+1

i1

dx1 [x2 − x1]
2H−2
η φ1(x4; x1), (59)

φ2 is analytic in x2 on a cut neighborhood Ω ′′cut of [i2, i2 + 1] excluding possibly i1 and i1 + 1,
and

φ2(x4; x2) = [x2 − i1]
2H−1
η F2(x4; x2)+ [x2 − i1]

4H
η F3(x4; x2)+ G2(x4; x2) (60)

on a neighborhood of i1 (and similarly around i1+1), with the same bounds as before for φ2|Ω ′′cut
,

F2, F3 and G2.
Finally, since φ2 is integrable with respect to x2 on [i2, i2+1] and Ki2,i4(η; x2, x4) is bounded

by C |i3 − i4|
2H−2 by Lemma 11, one gets

|E | ≤ C ′
∫ i4+1

i4

dx4 |i3 − i4|
4H−4

= C ′|i3 − i4|
4H−4. (61)

There remain 3 ‘boundary’ terms E2, E3, E4 which are easier to cope with. Consider for
instance E3 defined as

E3 =

∫ i4+1

i4

dx4

∫ i2+1

i2

dx2 Ki2,i4(η; x2, x4)

×

∫ i1+1

i1

dx1 [x2 − x1]
2H−2
η

∫ i3+1

i3

dx3 [x3 − i1]
2H
η [x3 − x4]

2H−2
η .

Applying again Lemma 12, we get

E3 = C
∫ i4+1

i4

dx4G1(x4; i1)

∫ i2+1

i2

dx2 Ki2,i4(η; x2, x4)

×

(
[x2 − i1 − 1]2H−1

η − [x2 − i1]
2H−1
η

)
,

where G1 is as in Eq. (58). Since x2 7→ [x2− i1−1]2H−1
η and x2 7→ [x2− i1]

2H−1
η are integrable

and G1, resp. Ki2,i4 is bounded by a constant times |i3− i4|
2H−2, one easily gets an upper bound

as the same form as before, namely, |E3| ≤ C |i3 − i4|
4H−4.

Thus we have that E(i1, . . . , i4) defined by (57) satisfies E(i1, . . . , i4) ≤ C |i3 − i4|
4H−4.

Finally, since
∑∑

|i3−i4|≥2 |i3−i4|
4H−4

= O(n), we obtain
∑

i1,...,i4∈J3,1
E(i1, . . . , i4) = O(n).

Let us summarize now the results we have obtained so far: we have shown, respectively at
Sections 4.2 and 4.3, that the terms T j,reg and T j,sing defined by Eq. (50) are o(n2). Going
back to the definition of T (see Eq. (48)), this also shows that this quantity is of order o(n2).
Recall now that E[Z̃4

n(η)](c) can be decomposed into 6 terms, corresponding to our connected
diagrams, each of the same kind as the particular example T we have chosen. We have thus
proved that E[Z̃4

n(η)](c) = o(n2) uniformly in η, which yields relation (47). This finishes the
proof of Theorem 3 for H < 3/4.
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5. Asymptotic error distribution of the Euler scheme: H ≥ 3/4

In this case, we derive the limit distribution in a different way, i.e. by analyzing the difference
between the trapezoidal and the Euler scheme. Recall that for T = 1 this difference is given by

1
2

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n), (62)

and we will see that, thanks to a simple geometric trick (borrowed from [22]), the latter quantity
has the same law as

1
4

n−1∑
i=0

(
|B(1)(i+1)/n − B(1)i/n|

2
− |B(2)(i+1)/n − B(2)i/n|

2
)
.

This allows us to apply easily the limit theorems for the quadratic variation of fBm, see e.g.
[3,23] and the references therein, yielding the Lemma below, in which the following distribution
appears:

Definition 16 (Rosenblatt Random Variable). A standard Rosenblatt random variable with
parameter H0 = 2H − 1 is given by

(4H − 3)1/2

4H (2H − 1)1/2

∫ 1

0

∫ 1

0

(∫ 1

max{r,s}

∂K H

∂u
(u, s)

∂K H

∂u
(u, r) du

)
dWr dWs

where W is a standard Brownian motion,

K H (t, s) = cH s1/2−H
∫ t

s
(u − s)H−3/2u H−1/2 du 1[0,t)(s)

and

cH =

(
H(2H − 1)

β(2− 2H, H − 1/2)

)1/2

.

Lemma 17. The following limits in law hold true:

(i) Let H = 3/4. Then we have
√

2n√
c1(H) log(n)

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)

L
−→ Z ,

where c1(H) = 9/16 and Z is a standard normal random variable.
(ii) Let H ∈ (3/4, 1). Then

√
2n

√
c2(H)

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)

L
−→

1
√

2
(R1 − R2),

where c2(H) = 2H2 (2H − 1) / (4H − 3) and R1 and R2 are two independent standard
Rosenblatt variables of index 2H − 1.
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Proof. (i) Let β be a fractional Brownian motion with Hurst index H and define

Vn =
1
n

n−1∑
i=0

(
|β(i+1)/n − βi/n|

2

n−2H
− 1

)
= −1+ n2H−1

n−1∑
i=0

|β(i+1)/n − βi/n|
2.

If H = 3/4 it follows from [3,23] that√
n

c1(H) log(n)
Vn

L
−→ Z , (63)

where Z is a standard normal random variable. Moreover, for H ∈ (3/4, 1) we know from
[3,23] that√

n4−4H

c2(H)
Vn

L
−→ R, (64)

where R is a standard Rosenblatt random variable with index 2H − 1.
Now let β̃ be another fractional Brownian motion with the same Hurst index as β, but

independent of β, and define

V ′n = n2H−1
n−1∑
i=0

(
|β(i+1)/n − βi/n|

2
− |β̃(i+1)/n − β̃i/n|

2
)
.

The continuous mapping theorem and (63) imply that√
n

c1(H) log(n)
V ′n

L
−→ Z1 − Z2 (65)

for H = 3/4, where Z1 and Z2 are two independent standard normal random variables. From
(64) we obtain that√

n4−4H

c2(H)
V ′n

L
−→ (R1 − R2), (66)

where R1 and R2 are two independent standard Rosenblatt random variables with index 2H − 1.
(ii) Now, set B(1) = (β+β̃)/

√
2 and B(2) = (β−β̃)/

√
2. Then B(1) and B(2) are two independent

fractional Brownian motions with the same Hurst parameter. Moreover, we have

n2H−1
n−1∑
k=0

(B(1)(k+1)/n − B(1)k/n)(B
(2)
(k+1)/n − B(2)k/n)

L
=

1
2

V ′n .

Thus, we have for H = 3/4 that

2n√
c1(H) log n

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)

L
=

√
n

c1(H) log(n)
V ′n,

and the first claim follows from (65) and the fact that Z1− Z2 has the same distribution as
√

2Z1.
Moreover, since

2n
√

c2(H)

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)

L
=

n2−2H

√
c2(H)

V ′n

the second claim follows from (66). �
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Since the trapezoidal scheme has a better convergence rate than the Euler scheme for
H ≥ 3/4, which we already used in Section 3.4, the error of the latter scheme is dominated
by (62). Thus, the asymptotic error distribution of the Euler scheme can be determined by the
above Lemma, which will be carried out in the following two subsections.

5.1. Error distribution of the Euler scheme for H = 3/4

By scaling we can assume without loss of generality that T = 1. Recall that here we have

E|X1 − Xn
1 |

2
=

9
128
· log(n)n−2

+ o(log(n)n−2)

for the error of the Euler scheme. Using the trapezoidal approximation X̂n
1 we can write

X1 − Xn
1 = X1 − X̂n

1 + X̂n
1 − Xn

1

=
1
2

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)+ ρn,

where ρn = X1 − X̂n
1 . Hence, setting κn := n[ 9

128 log(n)]−1/2, we obtain

κn(X1 − Xn
1 ) =

κn

2

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)+ κnρn .

Now note that κnρn → 0 in L2(Ω) by Theorem 2 and
√

2n√
c1(H) log n

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n)

L
−→ Z ,

where c1(H) = 9/16 by Lemma 17. Since

κn

2
=

n√
log(n)

√
32
√

9
=

n√
log(n)

√
2

√
c1(H)

,

it finally follows that

n(log(n))−1/2(X1 − Xn
1 )

L
−→

√
9

128
· Z ,

where Z is a standard normal random variable.

5.2. Error distribution of the Euler scheme for H > 3/4

Here we have

E|X1 − Xn
1 |

2
= α2(H) · n

−2
+ o(n−2)

with

α2(H) =
1
4

H2(2H − 1)
4H − 3

.
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Proceeding as above, the limit distribution of the error of the Euler scheme is determined by the
limit distribution of

n

2
√
α2(H)

n−1∑
i=0

(B(1)(i+1)/n − B(1)i/n)(B
(2)
(i+1)/n − B(2)i/n).

Since

1

2
√
α2(H)

=

√
4H − 3

H2(2H − 1)
=

√
2

√
c2(H)

,

it follows by Lemma 17 that

n

2
√
α2(H)

(X1 − Xn
1 )

L
−→

1
√

2
(R1 − R2).
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