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Abstract

In a previous paper, we studied the ergodic properties of an Euler scheme of a stochastic differential
equation with a Gaussian additive noise in order to approximate the stationary regime of such an equation.
We now consider the case of multiplicative noise when the Gaussian process is a fractional Brownian motion
with Hurst parameter H > 1/2 and obtain some (functional) convergence properties of some empirical
measures of the Euler scheme to the stationary solutions of such SDEs.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic Differential Equations (SDEs) driven by a fractional Brownian motion (fBm) have
been introduced to model random evolution phenomena whose noise has long range dependence
properties. Indeed, beyond the historical motivations in Hydrology and Telecommunication for
the use of fBm (highlighted e.g. in [24]), recent applications of dynamical systems driven by this
process include challenging issues in Finance [14], Biotechnology [27] or Biophysics [18,19].
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As a consequence, SDEs driven by fBm have been widely studied in a finite-time horizon during
the last decades, and the reader is referred to [26,6] for nice overviews on this topic.

In a somehow different direction, the study of the long-time behavior (under some stability
properties) for fractional SDEs has been developed by Hairer (see [15,16]) and Hairer and
Ohashi [17], who built a way to define stationary solutions of these a priori non-Markov processes
and to extend some of the tools of the Markovian theory to this setting. See also [1,7,13] for
another setting called random dynamical systems. The current article fits into this global aim, and
starts from the following observation: the knowledge of the stationary regime being important
for applications and essentially inaccessible in an explicit form, we propose to build and study
a procedure for its approximation in the case of SDEs driven by fBm with a Hurst parameter
H > 1/2. This paper is following a similar previous work for SDEs driven by more general
noises but in the specific additive case (see [5]).

More precisely, we deal with an Rd -valued process (X t )t≥0 which is a solution to the
following SDE

d X t = b(X t )dt + σ(X t )d B H
t (1)

where b : Rd
→ Rd and σ : Rd

→ Md,q are (at least) continuous functions, and where Md,q is
the set of d ×q real matrices. In (1), (B H

t )t≥0 is a q-dimensional H -fBm and for the sake of sim-
plicity we assume 1

2 < H < 1, which allows in particular to invoke Young integration techniques
in order to define stochastic integrals with respect to B H . Compared to [5] we handle here a fairly
general diffusion coefficient σ , instead of the constant one considered previously. Classically the
noise is called multiplicative in this setting, whereas it is called additive when σ is constant.

Under some Hölder regularity assumptions on the coefficients (see Section 2 for details),
(strong) existence and uniqueness hold for the solution to (1) starting from x0 ∈ Rd . Classically
for any stochastic differential equation, a natural question arises: if we assume that some
Lyapunov assumptions hold on the drift term, does it imply that (X t )t≥0 has some convergence
properties to a steady state when t → +∞?

This question implies in particular to define rigorously a concept of steady state. For equation
(1), this work has been done in [17]: using the fact that, owing to the Mandelbrot representation,
the evolution of the fBm can be represented through a Feller transition on a functional space
S , the authors show that a solution to (1) can be built as the first coordinate of a homogeneous
Markov process on the product space Rd

× S . As a consequence, stationary regimes associated
with (1) can be naturally defined as the first projection of invariant measures of this Markov
process. Furthermore, the authors of [17] develop some specific theory on strong Feller and
irreducibility properties to prove uniqueness of invariant measures in this context.

In the current article, our aim is to propose a way to approximate numerically the stationary
solutions to Eq. (1). To this end, we study some empirical occupation measures related to
an Euler type approximation of (1) with step γ > 0. We show that, under some Lyapunov
assumptions, this sequence of empirical measures converges almost surely to the distribution of
the stationary solution of the discretized equation (denoted by νγ ) and that, when γ → 0+, νγ

converges in turn to the distribution of the stationary solution of (1). This approach is the same
as in [5]. However, the introduction of multiplicative noise has some important consequences
on the techniques for proving the long-time stability of the Euler scheme. In particular, the
main difficulty is to show that the long-time control of the dynamical system can be achieved
independently of γ . In [5], this problem has been solved with the help of explicit computations
for an Ornstein–Uhlenbeck type process. Because the noise is multiplicative the computations
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of [5] are not feasible anymore and we use specific tools to obtain uniform controls of discretized
integrals with respect to the fBm. Before going more precisely to the heart of the matter, let us
mention that the numerical approximation of the stationary regime by occupation measures of
Euler schemes is a classical problem in a Markov setting including diffusions and Lévy driven
SDEs (see e.g. [31,20–22,28,29]).

2. Framework and main results

This section is first devoted to specify the setting under which our computations will be
performed. Namely, we give an account on differential equations driven by fractional Brownian
motion and their related ergodic theory. Once this framework is recalled, we shall be able to state
our main results.

2.1. FBm and Hölder spaces

For some fixed H ∈ ( 1
2 , 1), we consider (Ω ,F,P) the canonical probability space associated

with the fractional Brownian motion indexed by R with Hurst parameter H . That is, Ω = C0(R)
is the Banach space of continuous functions vanishing at 0 equipped with the supremum norm, F
is the Borel sigma-algebra and P is the unique probability measure on Ω such that the canonical
process B H

= {B H
t = (B H,1

t , . . . , B H,q
t ), t ∈ R} is a fractional Brownian motion with Hurst

parameter H . In this context, let us recall that B H is a q-dimensional centered Gaussian process
such that B H

0 = 0, whose coordinates are independent and satisfy

E


B H, j
t − B H, j

s

2


= |t − s|2H , for s, t ∈ R. (2)

In particular it can be shown, by a standard application of Kolmogorov’s criterion, that B H admits
a continuous version whose paths are θ -Hölder continuous for any θ < H .

Let us be more specific about the definition of Hölder spaces of continuous functions. Namely,
our driving process B H lies in a space Cθ defined as follows: we denote by Cθ (R+,Rd) the set
of functions f : R+ → Rd such that

∀T > 0, ∥ f ∥θ,T = sup
0≤s<t≤T

| f (t)− f (s)|

(t − s)θ
< +∞,

where the Euclidean norm is denoted by | · |. We recall that Cθ (R+,Rd) can be made into a
non-separable complete metric space, whenever endowed with the distance δθ defined by

δθ ( f, g) =


N∈N

2−N


1 ∧


sup

0≤t≤N
∥ f (t)− g(t)∥ + ∥ f − g∥θ,N


,

where x∧y = min(x, y) ∀x, y ∈ R. However, since separable spaces are crucial for convergence
in law issues, we will work in fact with a smaller space C̄θ (R+,Rd): we say that a function f in
Cθ (R+,Rd) belongs to C̄θ (R+,Rd) if

∀ T > 0, ωθ,T ( f, δ) := sup
0≤s<t<T,0≤|t−s|≤δ

| f (t)− f (s)|

|t − s|θ
δ→0
−−→ 0. (3)

C̄θ (R+,Rd) is a closed separable subspace of Cθ (R+,Rd).
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2.2. Differential equations driven by fBm

We recall now some results on existence and uniqueness of solutions of the stochastic
differential equation (1) starting from a deterministic point.

When B H is a fractional Brownian motion with Hurst parameter H > 1/2, equations of the
form (1) are classically solved by interpreting the stochastic integral

 t
0 σ(Xu) d B H

u as a Young
integral (see e.g. [12]). The usual set of assumptions on the coefficients b and σ are then of
Lipschitz and boundedness types.

Specifically, we recall the following definition of a (1 + α)-Lipschitz function:

Definition 1. Let σ : Rd
→ Md,q be a C 1 function and 0 < α < 1. We say that σ is (1 + α)-

Lipschitz if the following norm is finite:

∥σ∥1+α = sup
x∈Rd

∥Dσ(x)∥ + sup
x,y∈Rd

|Dσ(x)− Dσ(y)|

|x − y|α
. (4)

With this definition the basic existence and uniqueness result in a finite horizon [0, T ] for
T > 0 for pathwise equations driven by θ -Hölder functions with θ > 1/2 can be found in [6,23].
Nevertheless in this article we are searching for stationary solutions, which have to be defined
on R+. Moreover we use ergodic results that require some damping effect of the continuous
drift coefficient b. In order to quantify this notion, let us now introduce a long-time stability
assumption (C). Namely, let E Q(Rd) denote the set of Essentially Quadratic functions, that is
C 2-functions V : Rd

→ (0,∞) such that

lim inf
|x |→+∞

V (x)

|x |2
> 0, |∇V | ≤ C

√
V and D2V is bounded.

Note that any element V ∈ E Q(Rd) is continuous, and thus attains its positive minimum v > 0
so that, for any A, r > 0, there exists a real constant CA,r such that A + V r

≤ CA,r V r .
With these notions in mind, our standing assumptions on the coefficients b and σ are

summarized as:

(C) The map σ is assumed to be a bounded Lipschitz continuous function. Moreover we suppose
that there exists V ∈ E Q(Rd) such that
(i) ∀x ∈ Rd

|b(x)|2 ≤ V (x),
(ii) and such that for β ∈ R and α > 0 the following relation holds:

∀x ∈ Rd
⟨∇V (x), b(x)⟩ ≤ β − αV (x).

Proposition 1. Let us suppose that in addition to assumption (C), b is Lipschitz continuous and
that σ is (1 + α)-Lipschitz with α > 1

H − 1. Then

(i) For any deterministic function B ∈ Cθ (R+,Rq) with θ > 1
2 , and any x0 ∈ Rd , there exists a

unique solution X ∈ Cθ (R+,Rd) of

X t = x0 +

 t

0
b(Xu)du +

 t

0
σ(Xu)d Bu, (5)

where the integrals are interpreted in the Riemann–Stieltjes sense.
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(ii) Let us set X ≡ Φ(x0, B), so that Φ(x0, B) satisfies

Φ(x0, B)t = x0 +

 t

0
b(Φ(x0, B)s)ds +

 t

0
σ(Φ(x0, B)s)d Bs .

Then the so-called Itô map Φ is continuous from Rd
× Cθ (R+,Rq) into Cθ (R+,Rd).

Remark 1. Proposition 1 is not completely standard, when b is not bounded, and we have not
been able to find a specific reference giving an equivalent statement in the literature. Namely the
case of bounded smooth coefficients b and σ is handled e.g. in [6,23]. If we move to the case of
a dissipative coefficient b, an existence and uniqueness result is available in [17]. Nevertheless,
this result also assumes that the derivatives of b are bounded. Assumption (C)(i) implies that b is
sublinear. With the boundedness and Lipschitz assumption on σ assumed in (C), the proof of the
existence of a global solution of this stochastic equation and of the continuity of the Itô map is a
consequence of Young and Gronwall inequalities.

2.3. Ergodic theory for SDEs driven by fBm

We can now define the solution of the stochastic differential equation starting from a random
variable X0. Since the Itô map of Proposition 1 is used in the following definition we have to
suppose that in addition to assumption (C), b is Lipschitz continuous and that σ is (1 + α)-
Lipschitz with α > 1

H − 1.

Definition 2. Let B H be a fractional Brownian motion with H > 1
2 . A process (X t )t∈R+

is called
a solution of Eq. (1) driven by B H starting at X0, if for every 1/2 < θ < H < 1, (X t )t∈R+

is
almost surely Cθ (R+,Rd)-valued and if X = Φ(X0, B H ), almost surely.

We now have all the tools to define rigorously a stationary solution to the SDEs driven by
fBm. In the following definition and further on we use the notation θt : ω → ω(t + ·) for every
t ≥ 0 for the time-shift.

Definition 3. Let (X t )t≥0 denote an Rd -valued solution to (1) in the sense of Definition 2. Let ν
denote the distribution of (X t )t≥0 on Cθ (R+,Rd). Then, ν is called a stationary solution of (1)
if it is invariant under the time-shift. Such a stationary solution is called adapted, if for 0 ≤ t the
processes (Xs)0≤s≤t and (B H

s )s≥t are conditionally independent given (B H
s )s≤t .

Please note that there is an abuse of language in the preceding definition. The distribution of a
process (X t )t≥0 on Cθ (R+,Rd) cannot determine alone if (X t )t≥0 is a solution of (1) in the sense
of Definition 2. We need the distribution of the pair (X t , B H )t≥0 to know if X = Φ(X0, B H ),
almost surely. In particular it is not possible to take X0 independent of (B H )t≥0 in general as
remarked in Proposition 5 of [5]. Nevertheless we consider as in Definition 2.4 in [17] that two
distributions (X1

t , (B
H )t≥0) and (X2

t , (B
H )t≥0) on Cθ (R+,Rd) × Cθ (R+,Rq) solutions of (1)

are equivalent if the distribution of X1 and of X2 is the same. These definitions are the same
as definitions in [17] that come from Stochastic Dynamical Systems (SDS). In particular, we
require adaptedness of solutions. Compared to Random Dynamical Systems (RDS) (see [1] for
an introduction), this property is specific to SDS and is strongly linked to the fact that for such
dynamical systems, one can associate a Markovian structure (with an enlargement of the space).
Here, the main consequence is that the uniqueness of the stationary solution can be obtained
through the criteria of uniqueness of the invariant distribution of this associated Markov process.
Such results will be stated later.
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Let γ be a positive number, we will now discretize equation (1) as follows, for every n ≥ 0,

Y γt = Y γnγ + (t − nγ )b(Y γnγ )+ σ(Y γnγ )(B
H
t − B H

nγ ) ∀t ∈ [nγ, (n + 1)γ ). (6)

We set

tγ = max{γ k, γ k ≤ t, k ∈ N}.

In fact, we will usually write t instead of tγ in the sequel. The discretization of (1) can also be in-
troduced with the following discretization Φγ

: Rd
×Cθ (R+,Rq) → Cθ (R+,Rd) of the Itô map:

Φγ (x0, B)t := x0 +

 t

0
b(Φγ (x0, B)sγ )ds +

 t

0
σ(Φγ (x0, B)sγ )d Bs . (7)

Please note that the definition of Φγ does not involve any Riemann integration but only finite
sums and that

Y γ = Φγ (Y γ0 , (B
H
t )t≥0) a.s. (8)

We now define stationary adapted solutions of (6) in the spirit of Definition 3.

Definition 4. Let B H denote a fractional Brownian motion with H > 1/2 and let Xγ be defined
by Xγ = Φγ (Xγ0 , (B

H
t )t≥0). The distribution νγ of Xγ on Cθ (R+,Rd) is then called an adapted

solution of (6) if the processes (Xγs )0≤s≤t and (B H
s )s≥t are conditionally independent given

(B H
s )s≤t . We will say that νγ is stationary if it is invariant by the shift maps (θkγ )k∈N.

Note that in this definition, there is a slight abuse of language since we do not require the
invariance by the shift maps θt for every t ≥ 0, but only when t = kγ, k ∈ N.

Let us introduce the following uniqueness assumption for νγ and ν:

(Sγ ) (γ ≥ 0): There is at most one adapted stationary solution to (1) (resp. to (8)) if γ = 0
(resp. if γ > 0).

For (S0), we refer to Theorem 1.1 of [17]. When γ > 0, we have the following proposition:

Proposition 2. Let H ∈ (1/2, 1). Assume that d = q and that b and σ are C 2-functions. Assume
that σ is invertible and that supx∈Rd σ−1(x) < +∞. Then, (Sγ ) holds for every γ > 0.

The proof, which is an application of [16], is done in the Appendix.
Let us now focus on the construction of the approximation. We denote by (X̄γt )t≥0 the

continuous-time Euler scheme defined by X̄γ0 = x ∈ Rd and for every n ≥ 0

X̄γt = X̄γnγ + (t − nγ )b(X̄γnγ )+ σ(X̄γnγ )(B
H
t − B H

nγ ) ∀t ∈ [nγ, (n + 1)γ ). (9)

The process (X̄γt )t≥0 is a solution to (6) such that X̄γ0 = x . In order to alleviate the notations
and, when it is not confusing, we will usually write X̄ t instead of X̄γt . Now, we define a sequence
of random probability measures (P(n,γ )(ω, dα))n≥1 on C̄θ (R+,Rd) with θ < H (recall that
C̄θ (R+,Rd) is defined at (3)) by

P(n,γ )(ω, dα) =
1
n

n
k=1

δX̄γ
γ (k−1)+·

(ω)(dα)

where δ denotes the Dirac measure and where, for every s ≥ 0, X̄γs+· := (X̄γs+t )t≥0 denotes the
s-shifted process.
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We are now able to state the main theorem of this article:

Theorem 1. Let 1/2 < θ < H < 1 and assume (C). If (Sγ ) holds for every γ > 0,

(i) then there exists γ0 > 0 such that, for every γ ∈ (0, γ0),

lim
n→+∞

P(n,γ )(ω, dα) = νγ (dα) a.s. when n → +∞,

where the convergence is for the weak topology induced by C̄θ (R+,Rd) and where νγ is the
stationary solution of (6).

(ii) If additionally, b is Lipschitz continuous, σ is (1 + α)-Lipschitz with α > 1
H − 1 and if (S0)

holds, then

lim
γ→0

νγ (dα) = ν(dα) a.s.

where the convergence is for the weak topology induced by C̄θ (R+,Rd) and where ν denotes
the adapted stationary solution of (1).

Remark 2. Note that some extensions can be deduced from the proof of this theorem. First,
remark that this result implies in particular that

lim
γ→0+

lim
n→+∞

P(n,γ )
0 (ω, dy) = ν0(dy) a.s.

where

P(n,γ )
0 (ω, dy) =

1
n

n
k=1

δX̄γ
(k−1)γ (dy)

and ν0(dy) denotes the initial distribution of the stationary solution ν of (1). This marginal pro-
cedure will be numerically tested in Section 6.

Also note that some extensions can be deduced from the proof of this theorem. First, when
uniqueness fails for the stationary solutions, the preceding result is replaced by

Theorem 2. Assume (C).

1. Then, there exists γ0 > 0 such that for every γ ∈ (0, γ0), (P(n,γ )(ω, dα))n≥1 is a.s. tight
on C̄θ (R+,Rd), for every 1/2 < θ < H < 1. Furthermore, every weak limit is a stationary
adapted solution of (6).

2. If additionally, b is Lipschitz continuous, σ is (1 + α)-Lipschitz with α > 1
H − 1, set

U ∞,γ (ω) := {weak limits of (P(n,γ )(ω, dα))}.

Then there exists γ1 ∈ (0, γ0) such that (U ∞,γ (ω))γ≤γ1 is a.s. tight in C̄θ (R+,Rd), and any
weak limit when γ → 0 of (U ∞,γ (ω))γ≤γ1 is an adapted stationary solution of (1).

Remark 3. From the very definition of weak convergence, the preceding assertions imply
that the convergence of (P(n,γ )(ω, dα))n,γ holds for bounded continuous functionals F :

C̄θ (R+,Rd) → R. In fact, this convergence can be extended for arbitrary T > 0 to some
non-bounded continuous functionals F : C̄θ ([0, T ],Rd) → R. Actually, setting G(α) =

supt∈[0,T ] V (αt ), we easily deduce from inequality (11) of Propositions 4 and 5 that

sup
γ≤γ0

lim sup
n→+∞

P(n,γ )(ω,G p) < +∞ a.s.

for every p > 0. By a uniform integrability argument, it follows
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Proposition 3. The convergence properties of (P(n,γ )(ω, dα)) extend to continuous functionals
F : C̄θ ([0, T ],Rd) → R such that there exists a constant C such that for every α ∈ C̄θ ([0, T ],

Rd),

|F(αt , 0 ≤ t ≤ T )| ≤ C sup
t∈[0,T ]

V p(αt )

with T > 0 and p > 0.

Remark 4. A third natural extension of Theorem 1 consists in handling the case of an irregular
fractional Brownian motion B with Hurst index 1/4 < H < 1/2. This extension is presumably
within the reach of our technology on differential systems driven by fBm, but requires a huge
amount of technical elaboration. Indeed, to start with, Eq. (1) has to be defined thanks to rough
paths techniques whenever H < 1/2, and we refer to [12] for a complete account on rough
differential equations driven by Gaussian processes in general and fractional Brownian motion
in particular. More importantly, as it will be observed in the next sections, our main result
heavily relies on some thorough estimates performed on the discretized version (6) of Eq. (1).
When H > 1/2 this discretization procedure is based on an Euler type scheme, but the case
H < 1/2 involves the introduction of some Lévy area correction terms of Milstein type (see [8])
or products of increments of B H if one desires to deal with an implementable numerical scheme
(cf. [9]). This new setting has tremendous effects on the proof of Propositions 4 and 5. For sake
of conciseness, we have thus decided to stick to the case H > 1/2, and defer the rough case to a
subsequent publication.

The sequel of the paper is built as follows. The next three sections are devoted to the proof
of Theorem 1. In Section 3, we prove some preliminary results for the long-time stability of
(P(n,γ )(ω, dα))n , when γ > 0. It is important to note that the controls established in this section
are independent of γ in order to obtain in the sequel a long-time control that does not explode
when γ → 0. Then, in Section 4, we obtain some tightness properties for (P(n,γ )(ω, dα)) (in n
and γ ) and, in Section 5, we prove that the weak limits of this sequence are adapted stationary
solutions. Eventually, in Section 6, we test numerically our algorithm for the approximation of
the invariant distribution of a particular fractional SDE.

Note that in the proofs below, non-explicit constants are usually denoted by C or CT (if a
dependence to T needs to be emphasized) and may change from line to line.

3. Evolution control of (X̄γ
t ) in a finite horizon

The main aim of this part is to obtain a finite-time control of V (X̄γT ) in terms of V (X̄γ0 ) which
is independent of γ . This is the purpose of the first part of Proposition 4. In order to obtain some
functional convergence results, we state in the second part a result about the finite-time control
of the Hölder semi-norm of X̄γ .

Proposition 4. Let T > 0. Assume (C). Then,
(i) For every p ≥ 1, there exist γ0 > 0, ρ ∈ (0, 1) and a polynomial function Pp,θ : R → R

such that for every γ ∈ (0, γ0],

V p(X̄γT ) ≤ ρV p(x)+ Pp,θ (∥B H
∥θ,T ). (10)

Furthermore,

sup
t∈[0,T ]

V p(X̄γt ) ≤ C


V p(x)+ Pp,θ (∥B H
∥θ,T )


. (11)
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(ii) For every θ ∈ ( 1
2 , H), T > 0, and γ ∈ (0, γ0]

sup
0≤s<t≤T

|X̄γt − X̄γs |

(t − s)θ
≤ CT


V (x)+ P̃θ (∥B H

∥θ,T )

, (12)

where P̃ is another real valued polynomial function.

The proof of this result is achieved in Section 3.2. Before, we focus in Section 3.1 on the
control of increments of some discretized equations with non-bounded coefficients driven by B H .

3.1. Technical lemmas

Let us recall that, for every t ≥ 0, tγ = γ max{k ∈ N, γ k ≤ t}. In the sequel, we will usually
write t instead of tγ .

In the following lemmas, we will use the following notation: for any element (x(t))t≥0 of
C(R+,Rd) and T > 0, θ > 0, γ > 0, we define

∥x∥
s,t
θ,γ = sup

s≤u≤v≤t

|x(vγ )− x(uγ )|

(vγ − uγ )
θ

,

where we set by convention 0
0 = 0.

Lemma 1. Assume that b is a sublinear function, i.e. there exists C > 0 such that for every
x ∈ Rd , |b(x)| ≤ C(1 + |x |). Then, for every T > 0, there exists a constant C > 0 such that for
every s, t ∈ [0, T ] with s ≤ t , for every γ > 0, for every θ ∈ (0, H)

|X̄γt | ≤


|X̄γs | + C(t − s)+ ∥Z̄γ ∥

s,t
θ,γ (t − s)θ


exp(C(t − s))

where

Z̄γt =

 t

0
σ(X̄γs )d B H

s .

Proof. First, from the very definition of (X̄γt )t≥0, we have for every s, t ∈ [0, T ] with s ≤ t :

X̄γt = X̄γs +

 t

s
b(X̄γu )du + Z̄γt − Z̄γs . (13)

The function b being sublinear, we deduce that

|X̄γt | = |X̄γs | + ∥Z̄γ ∥
s,t
θ,γ (t − s)θ + C

 t

s
(1 + |X̄γu |)du.

Setting gs(v) = |X̄s+v|, it follows that for every v ∈ [0, t − s],

gs(v) ≤ a + C
 v

0
gs(u)du

with a = |X̄γs | + ∥Z̄γ ∥
s,t
θ,γ (t − s)θ + C(t − s). The result follows from Gronwall’s lemma. �

The control of B H -integrals is usually based on the so-called sewing lemma (see e.g. [6,11])
which leads to a comparison of

 t
s f (xu)d B H

u with f (xt )(B H
t − B H

s ). The following lemma can
be viewed as a discretized version of such results:
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Lemma 2. Assume that b is a sublinear function. Let γ0 > 0 and ( fγ )γ∈(0,γ0] be a family of
functions from R+ × Rd to Md,q such that there exists r ≥ 0 such that for every T > 0, there
exists CT > 0 such that ∀γ ∈ (0, γ0],

∀(s, x), (t, y) ∈ [0, T ] × Rd ,

∥ fγ (t, y)− fγ (s, x)∥ ≤ CT (1 + |x |
r
+ |y|

r )(|t − s| + |y − x |).
(14)

Let (H̄γ
t )t≥0 be defined by

∀t ≥ 0, H̄γ
t =

 t

0
fγ (s, X̄γs )d B H

s .

Then, for every θ ∈ ( 1
2 , H), for every T > 0, there exists C̃T > 0 such that for every γ ∈ (0, γ0],

for every 0 ≤ s ≤ t ≤ T ,

|H̄γ
t − H̄γ

s − fγ (s, X̄γs )(B
H
t − B H

s )| ≤ C̃T (t − s)2θ


1 + |X̄γs |
r+1

+ (∥Z̄γ ∥
s,t−γ
θ,γ )r+1


∥B H

∥θ,T . (15)

Proof. Denoting by f̃γ,ω the (random) function on R+ a.s. defined by f̃γ,ω(s) = fγ (s, X̄γs (ω)),
we can write:

H̄γ
t − H̄γ

s − fγ (s, X̄γs )(B
H
t − B H

s ) =

 t

s
f̃γ,ω(u)− f̃γ,ω(s)d B H

u .

Let θ ∈ (1/2, H) (so that 2θ > 1). We use a classical Young estimate (see e.g. [34], Inequality
(10.9)), to get an upper bound for the left hand side of (15). Let us recall the definition of
p-variations. For every u, v ≥ 0 such that u ≤ v, for every p > 0 and for every function f : R+

→ Rd ,

Vp( f, u, v) = sup


n

i=1

| f (ti )− f (ti−1)|
p

 1
p

,

the supremum being taken over all subdivisions (ti ) of [u, v]: u = t0 < t1 < · · · < tn = v. Then
using the Young inequality we get

|H̄γ
t − H̄γ

s − fγ (s, X̄γs )(B
H
t − B H

s )| ≤ CV 1
θ
( f̃γ,ω, s, t − γ )V 1

θ
(B H , s, t) (16)

where C depends only on θ . Note that we could write V 1
θ
( f̃γ,ω, s, t −γ ) instead of V 1

θ
( f̃γ,ω, s, t)

since f̃γ,ω is constant on [t − γ, t). We now control separately the two terms on the right-hand
member.

Let T > 0. Since for every u, v ∈ [0, T ],

|B H
v − B H

u | ≤ ∥B H
∥θ,T |v − u|

θ ,

we first obtain that

V 1
θ
(B H , s, t) ≤ ∥B H

∥θ,T (t − s)θ . (17)

Second, let s, t ∈ [0, T ] such that s ≤ t and consider a subdivision (ti )ni=1 of [s, t − γ ]. By (14),
we have

| f̃γ,ω(ti+1)− f̃γ,ω(ti )| ≤ CT (1 + |X̄γti |
r
+ |X̄γti+1

|
r )(|ti+1 − ti | + |X̄γti+1

− X̄γti |).
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On the one hand, it follows from Lemma 1 that

1 + |X̄γti |
r
+ |X̄γti+1

|
r

≤ CT


1 + |X̄γs |

r
+ (∥Z̄γ ∥

s,t−γ
θ,γ )r


.

On the other hand, since b is a sublinear function, we have

|X̄γti+1
− X̄γti | ≤ CT


1 +

 ti+1

ti
|X̄γu |du + |Z̄γti+1

− Z̄γti |


.

Then, using again Lemma 1 and the definition of ∥ · ∥
s,t−γ
θ,γ , it follows that

|X̄γti+1
− X̄γti | ≤ CT


1 + |X̄γs | + ∥Z̄γ ∥

s,t−γ
θ,γ


(ti+1 − ti )+ ∥Z̄γ ∥

s,t−γ
θ,γ (ti+1 − ti )

θ .

By a combination of the previous inequalities (and by the use of the Young inequality), we obtain

| f̃γ,ω(ti+1)− f̃γ,ω(ti )| ≤ CT (1 + |X̄γs |
r+1

+ (∥Z̄γ ∥
s,t−γ
θ,γ )r+1)|ti+1 − ti |

θ .

Since


i (ti+1 − ti ) ≤ t − s, we deduce that

V 1
θ
( f̃γ,ω, s, t − γ ) ≤ CT (1 + |X̄γs |

r+1
+ (∥Z̄γ ∥

s,t−γ
θ,γ )r+1)(t − s)θ .

Finally, we plug this control and (17) into (16) and the result follows. �

In the following lemma, we make use of Lemma 2 when fγ (t, x) = σ(x). In this particular
case, we show below that we can deduce a control of the increments of Z̄γ on an interval with
random but explicit length η(ω) (which does not depend on γ ).

Lemma 3. Let γ0 be a positive number. Assume that b is a sublinear function and that σ is a
bounded Lipschitz continuous function. Then, for every θ ∈ ( 1

2 , H), for every T > 0, there exists
CT > 0, there exists a positive random variable

η(ω) :=


1
2
[(CT ∥B H (ω)∥θ,T )

−1
∧ 1]

 1
θ

(18)

such that a.s. for every 0 ≤ s ≤ t ≤ T with t − s ≤ η, for every γ ∈ (0, γ0)

|Z̄γt − Z̄γs | ≤ (t − s)θ

2∥σ∥∞ + CT (1 + |X̄γs |)ηθ


∥B H

∥θ,T

where ∥σ∥∞ = supx∈Rd ∥σ(x)∥.

Proof. For every l ≥ 0, set tl = s + γ l and Nl = ∥Z̄γ ∥
s,tl
θ,γ . Owing to the definition of ∥ · ∥

s,tl
θ,γ ,

we have

Nl+1 ≤ Nl ∨ sup
i≤l

Z̄γtl+1
− Z̄γti


(tl+1 − ti )θ

.

By Lemma 2 applied with s = ti , t = tl+1 and fγ (s, x) = σ(x) (and r = 0),Z̄γtl+1
− Z̄γti


(tl+1 − ti )θ

≤


∥σ∥∞ + CT (tl+1 − ti )

θ


1 + |X̄γti | + ∥Z̄γ ∥
s,tl
θ,γ


∥B H

∥θ,T .
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By Lemma 1 and the fact that t → ∥Z̄γ ∥
s,t
θ,γ is nondecreasing, it follows that

sup
i≤l

Z̄γtl+1
− Z̄γti


(tl+1 − ti )θ

≤

∥σ∥∞ + CT


(1 + |X̄γs |)(tl+1 − s)

+ ∥Z̄γ ∥
s,tl
θ,γ (tl+1 − s)θ


∥B H

∥θ,T .

Let ρ be a positive number. If tl+1 − s ≤ ρ, we obtain that

Nl+1 ≤ Nl ∨ (αρ + βρNl)

with

αρ =

∥σ∥∞ + CT (1 + |X̄γs |)ρθ


∥B H

∥θ,T and βρ = CT ρ
θ
∥B H

∥θ,T .

Let us now set ρ = η(ω) where η(ω) is defined by (18). For this choice of ρ, we have βη ≤
1
2 .

Then, the interval [0, αη/(1 − βη)] being stable by the function x → αη + βηx , we deduce that
for every l ∈ N such that tl+1 − s ≤ η(ω),

Nl ≤
αη

1 − βη
≤ 2αη.

Note that we used that N0 belongs to [0, αη/(1 − βη)] (since N0 = 0). The result follows. �

3.2. Proof of Proposition 4

Proposition 4 is the main technical issue of our approximation result, and its proof is detailed
here for sake of completeness. We shall first focus on establishing relation (10) for p = 1. The
main difficulty is to prove that the noise component can be controlled in such a way that under
the mean-reverting assumption, we obtain a coefficient ρ which is strictly lower than 1. (See
in particular (21).) Note that this property on ρ will be crucial for the control of the sequence
(V (X̄kT ))k≥0.

Then, we generalize this result to any p > 1. Finally we handle the Hölder type bound of
Proposition 4 item (ii). We now divide our proof in several steps.

Step 1: First upper-bound for V (X̄γt ) under the mean-reverting assumption. Set ∆n = B H
γ n −

B H
γ (n−1). Owing to the Taylor formula,

V (X̄(n+1)γ ) = V (X̄nγ )+ γ ⟨∇V (X̄nγ ), b(X̄nγ )⟩ + ⟨∇V (X̄nγ ), σ (X̄nγ )∆n+1⟩

+
1
2


i, j

∂2
i, j V (ξn+1)(X̄(n+1)γ − X̄nγ )i (X̄(n+1)γ − X̄nγ ) j

where ξn+1 ∈ [X̄nγ , X̄(n+1)γ ]. Using assumption (C), Eq. (9) for X̄(n+1)γ − X̄nγ and the bound-
edness of D2V and σ , we obtain

V (X̄(n+1)γ ) ≤ V (X̄nγ )+ γ (β − αV (X̄nγ ))+ A1(n + 1)

+ C(γ 2V (X̄nγ )+ |∆n+1|
2), (19)

where

A1(n + 1) = ⟨∇V (X̄nγ ), σ (X̄nγ )∆n+1⟩.
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Set γ0 =
α

2C . For every γ ∈ (0, γ0], for every n ≥ 0, we have

V (X̄(n+1)γ ) ≤ V (X̄nγ )


1 −
α

2
γ


+ A1(n + 1)+ (βγ + C |∆n+1|
2).

Then, iterating the previous inequality yields for every s, t such that s ≤ t ,

V (X̄ t ) ≤ V (X̄s)


1 −
α

2
γ
 t−s

γ
+

t
γ

k=
s
γ

+1


1 −

α

2
γ
 t−s

γ
−k 

A1(k)+ βγ + C |∆k |
2

.

Using that log(1 + x) ≤ x for every x > −1, we deduce that

V (X̄ t ) ≤ e−
α(t−s)

2 (V (X̄s)+ |H̄γ
t − H̄γ

s |)+

t
γ

k=
s
γ

+1

(βγ + C |∆k |
2), (20)

where

H̄γ
t =

 t

0
gγ (s)⟨∇V (X̄s), σ (X̄s)d B H

s ⟩ =


i, j

 t

0
gγ (s)(∇V )i (X̄s), σi, j (X̄s)d(B

H
s )

j

with gγ (s) = (1 −
αγ
2 )

−
s
γ . We now wish to see that this relation has to be interpreted as

V (X̄ t ) ≤ e−
α(t−s)

2 V (X̄s), up to a remainder term.

Step 2: Upper bound for |H̄γ
t − H̄γ

s |. For every (i, j) ∈ {1, . . . , d} × {1, . . . , q}, set

f i, j
γ (s, x) = gγ (s)(∇V )i (x)σi, j (x). Using that supt∈[0,T ],γ∈(0,γ0]

|g′
γ (t)| < +∞, we check that

(gγ (·))γ∈(0,γ0] is a family of Lipschitz continuous functions such that supγ∈(0,γ0]
[gγ ]Lip < +∞.

Furthermore, (∇V )i and σi, j being respectively Lipschitz continuous and bounded Lipschitz

continuous functions, we deduce that ( f i, j
γ )γ∈(0,γ0] satisfies (14) with r = 1. Applying Lemma 2,

we obtain that for every θ ∈ ( 1
2 , H),

|H̄γ
t − H̄γ

s |

(t − s)θ
≤ CT


(1 + |X̄γs |)+ CT (t − s)θ (1 + |X̄γs |

2
+ (∥Z̄γ ∥

s,t−γ
θ,γ )2)


∥B H

∥θ,T .

Now, if t − s ≤ η(ω) defined by (18),

∥Z̄γ ∥
s,t−γ
θ,γ ≤


2∥σ∥∞ + CT (1 + |X̄γs |)ηθ


∥B H

∥θ,T .

Owing to the definition of η, we have a.s.

∥B H (ω)∥θ,T η
θ

≤ CT

where CT is a deterministic positive number so that

(∥Z̄γ ∥
s,t−γ
θ,γ )2 ≤ CT (∥B H

∥
2
θ,T + 1 + |X̄γs |

2).

Thus,

|H̄γ
t − H̄γ

s | ≤ CT


(1 + |X̄γs |)(t − s)θ + (t − s)2θ (1 + |X̄γs |

2
+ ∥B H

∥
2
θ,T )


∥B H

∥θ,T .

Using that |ab| ≤ 2−1(|a|
2
+ |b|

2) and that 1 + |x | ≤ C
√

V (x), we have

(1 + |X̄γs |)(t − s)θ∥B H
∥θ,T ≤ C(V (X̄γs )(t − s)2θ + ∥B H

∥
2
θ,T ).
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It follows that there exists CT > 0 such that for every ε > 0

|H̄γ
t − H̄γ

s | ≤ ε(t − s)V (X̄γs )


CT (t − s)2θ−1(1 + ∥B H

∥θ,T )

ε


+ CT (∥B H

∥
2
θ,T + (t − s)2θ∥B H

∥
3
θ,T ).

Now, we choose η̃ε ∈ (0, η)

CT (η̃ε)
2θ−1(1 + ∥B H

∥θ,T )

ε
≤ 1.

More precisely, we set η̃ε = [(CT (1 + ∥B H
∥θ,T ))

−1ε]
1

2θ−1 ∧ η. Thus, we obtain that for every
0 ≤ s ≤ t ≤ T such that t − s ≤ η̃ε,

|H̄γ
t − H̄γ

s | ≤ ε(t − s)V (X̄γs )+ CT (∥B H
∥

2
θ,T + (t − s)2θ∥B H

∥
3
θ,T ). (21)

Step 3: Contracting dynamics for V (X̄kη̃). Choose now ε0 > 0 such that there exists δ ∈ (0, 1/2)
satisfying

∀x ∈ [0, 1], e−
α
2 x (1 + ε0x) ≤ 1 − δx, (22)

and set η̃ := η̃ε0 . Plugging the two previous controls into (20), it follows that for every k ∈

{1, . . . , ⌊ T
η̃
⌋},

V (X̄kη̃) ≤ V (X̄(k−1)η̃)(1 − δαk)+ CT (1 + ∥B H
∥

3
θ,T )+

kη̃
γ

l=
(k−1)η̃
γ

+1

(βγ + C |∆l |
2),

where αk = kη̃ − (k − 1)η̃. Note that we can apply (22) since

αk ≤ 2η̃ ≤ 2η ≤ 21−
1
θ ≤ 1.

In particular, δαk ≤ 1/2. With the convention


∅
= 1, an iteration of this inequality yields for

every k ∈ {1, . . . , ⌊ T
η̃
⌋}:

V (X̄kη̃) ≤ V (x)
k

l=1

(1 − δαl)+ CT ∥B H
∥

3
θ,T

k
m=1

k
l=m+1

(1 − δαl)

+

k
m=1

k
l=m+1

(1 − δαl)

mη̃
γ

l=
(m−1)η̃
γ

+1

(βγ + C |∆l |
2).

Then, using the inequality log(1+ x) ≤ x ∀x ∈ (−1,+∞), we have for every m ∈ {0, . . . , k}

(with the convention


∅
= 0)

k
l=m+1

(1 − δαl) = exp


k

l=m+1

log(1 − δαl)


≤ exp


−

k
l=m+1

δαl


= exp(−δkη̃ + δmη̃).
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Thus
k

m=1

k
l=m+1

(1 − δαl) ≤ exp(−δkη̃)
k

m=1

exp(δη̃)m ≤ exp(δη̃ − δkη̃)
exp(kδη̃)− 1
exp(δη̃)− 1

≤
C

δη̃

where C is deterministic (and does not depend on k). Owing to the definition of η̃ (and thus from
that of η), we have

η̃−1
≤ [(CT (1 + ∥B H

∥θ,T ))
−1ε0]

−
1

2θ−1 ∨ η−1
≤ Cε0,T


1 + ∥B H

∥
1

2θ−1


.

It follows that there exists a polynomial function P1 such that

CT ∥B H
∥

3
θ,T

k
m=1

k
l=m+1

(1 − δαl) ≤ P1(∥B H
∥θ,T ).

On the other hand, since
k

l=m+1(1 − δαl) ≤ 1, we also have

k
m=1

k
l=m+1

(1 − δαl)

mη̃
γ

l=
(m−1)η̃
γ

+1

(βγ + C |∆l |
2) ≤


kη̃
γ


u=1

(βγ + C |∆u |
2)

≤ βkη̃ + C


kη̃
γ


u=1

|∆u |
2.

We deduce that for every k ∈ {1, . . . , ⌊ T
η̃
⌋}:

V (X̄kη̃) ≤ V (x) exp(−δkη̃)+ P1(∥B H
∥θ,T )+ C Qγ (B

H
t , 0 ≤ t ≤ T ), (23)

where P1 is a polynomial function and Qγ is defined by

Qγ ((w(t))t∈[0,T ]) =


T
γ


k=1

|w(kγ )− w((k − 1)γ )|2. (24)

Owing to the definition of ∥B H
∥θ,T , one checks that for every γ ∈ (0, γ0]

Qγ (B
H
t , t ∈ [0, T ]) ≤ γ 2θ−1T ∥B H

∥
2
θ,T ≤ CT ∥B H

∥
2
θ,T .

Thus, denoting by P the polynomial function defined by P(v) = P1(v)+CT v
2, we deduce from

(23) that for every k ∈ {1, . . . , ⌊ T
η̃
⌋}:

V (X̄kη̃) ≤ V (x) exp(−δkη̃)+ P(∥B H
∥θ,T ). (25)

Step 4: Contracting dynamics for V (X̄T ). We now patch the estimates obtained so far in order to
propagate inequality (25) to V (X̄T ). Indeed, applying (25) with k = ⌊η̃−1T ⌋, we obtain

V (X̄⌊η̃−1T ⌋η̃) ≤ V (x) exp(−δ⌊η̃−1T ⌋η̃)+ P(∥B H
∥θ,T ),

and owing again to (20), (21) (applied with s = ⌊η̃−1T ⌋η̃ and t = T ) and (22), we deduce that

V (X̄T ) ≤ V (x) exp(−δ⌊η̃−1T ⌋η̃)+ P̃(∥B H
∥θ,T ) (26)
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where P̃ is a polynomial function. Finally, we want to control V (X̄T ) − V (X̄T ). The function
∇V being sublinear and D2V being bounded, we deduce from the Taylor formula that for every
x, y ∈ Rd ,

V (y) ≤ V (x)+ C(|x | · |y − x | + |y − x |
2).

Applying this inequality with x = X̄T and y = X̄T and taking advantage of the assumptions on
b, we have

V (X̄T ) ≤ V (X̄T )+ C

γ (1 + |X̄T |

2)+ (1 + |X̄T |)|B H
T − B H

T | + |B H
T − B H

T |
2


(27)

≤ V (X̄T )(1 + Cγ )+ C(1 + ∥B H
∥

2
θ,T ), (28)

where in the second line, we again used the elementary inequality |ab| ≤ 2−1(|a|
2

+ |b|
2) and

the fact that |x |
2

≤ CV (x). Combined with (26), the previous inequality yields:

V (X̄T ) ≤ V (x) exp(−δ⌊η̃−1T ⌋η̃)(1 + Cγ )+ P1,θ (∥B H
∥θ,T ),

where P1,θ denotes the polynomial function defined by P1,θ (v) = P̃(v) + C(1 + v2). Finally,

since exp(−δ⌊η̃−1T ⌋η̃) ≤ e−δ(T −η̃−γ ), since T ≥ 1 and η̃ ≤ 2
1
θ < 1, one can find γ0 > 0 such

that T − δη̃ − γ0 > 0 and such that,

exp(−δ⌊η̃−1T ⌋η̃)(1 + Cγ ) ≤ ρ a.s.

Inequality (10) for p = 1 follows.

Step 5: Inequality (10) for p > 1. We recall that for every p > 0, there exists cp > 0 such that
for every u, v ∈ R, the following inequality holds: |u + v|p

≤ |u|
p

+ cp(|v| · |u|
p−1

+ |v|p).
Thus, by the Young inequality, it follows that for every ε > 0, there exists cε,p > 0 such that
|u + v|p

≤ (1 + ε)|u|
p

+ cε,p|v|p for every u, v ∈ R and p ≥ 1. Applying this inequality, we
deduce from the case p = 1 that

V p(X̄γT ) ≤ ρ p(1 + ε)V p(x)+ CT Pθ (∥B H
∥θ,1)

p.

Since ρ < 1, we can choose ε > 0 such that ρ̃ = ρ p(1 + ε) < 1. It follows that

V p(X̄γT ) ≤ ρ̃V p(x)+ Pp,θ (∥B H
∥θ,T )

where Pp,θ is again a polynomial function.
Now, let us focus on (11). We only give the main ideas of the proof when p = 1 (the

extension to p > 1 again follows from the inequality |u + v|p
≤ 2p−1(|u|

p
+ |v|p)). By (25),

the announced inequality holds taking the supremum of the left-hand side of (11) for every kη̃

with k ∈ {1, . . . , ⌊ T
η̃
⌋}. Then, for every t ∈ [(k − 1)η̃, kη̃], it remains to control (uniformly in k)

V (X̄ t ) in terms of V (X̄(k−1)η̃). By (19) and (21), we obtain such a control for every discretization

time between (k − 1)η̃ and kη̃. Then, it is enough to control uniformly V (X̄ t ) in terms of V (X̄ t ).
This can be done similarly as in inequality (27).

Step 6: Proof of the Hölder bound (12). Let s, t ∈ [0, T ] with 0 ≤ s < t ≤ T . We have

X̄γt − X̄γs =

 t

s
b(X̄γu )du + Z̄γt − Z̄γs .
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First, since |b(x)| ≤ C
√

V (x) ≤ C(1 + V (x)), t

s
b(X̄γu )du

 ≤ C(t − s)


1 + sup

u∈[0,T ]

V (X̄u)


and it follows from (i) that

sup
0≤s<t≤T

 t
s b(X̄γu )du


(t − s)θ

≤ CT (V (x)+ Pp,θ (∥B H
∥θ,T )).

Thus, we can only focus on the increment of Z̄γ . By Lemma 3, for every u, v ∈ [0, T ] such that
v − u ≤ η (where η is given by (18)),

|Z̄γv − Z̄γu | ≤ (v − u)θ


2∥σ∥∞ + CT (1 + sup
s∈[0,T ]

|X̄s |)η
θ


∥B H

∥θ,T .

Using the concavity of x → xθ on R+, we have for every s1, s2 ∈ [0, T ] being such that
|s2 − s1| ≤ γ ,

|Z̄γs2 − Z̄γs1 | ≤ 21−θ
∥σ∥∞(s2 − s1)

θ
∥B H

∥θ,T

and we derive that for every u, v ∈ [0, T ] with |u − v| ≤ η,

|Z̄γv − Z̄γu | ≤ CT (v − u)θ


1 +


1 + sup

s∈[0,T ]

|X̄s |


ηθ


∥B H

∥θ,T .

Now, by the very definition of η, we have ηθ∥B H
∥θ,T ≤ 1. Then, since |x |

2
≤ CV (x), we have

in particular that |x | ≤ CV (x) (using that infx∈Rd V (x) > 0) and we deduce from the first part
of this proposition that for every u, v ∈ [0, T ] with |u − v| ≤ η:

|Z̄γv − Z̄γu | ≤ CT (v − u)θ (V (x)+ P̃(∥B H
∥θ,T )), (29)

where P̃ is a polynomial function.
We want now to make use of the previous inequality to control Z̄γt − Z̄γs for every 0 ≤ s < t ≤

T . We divide [s, t] into intervals of length lower than η. More precisely, setting sk = s + k⌊η⌋,
we have

Z̄γt − Z̄γs = Z̄γt − Z̄γs t−s
η

 +


t−s
η


k=1

Z̄γsk − Z̄γsk−1 .

Then, we deduce from (29) that

|Z̄γt − Z̄γs | ≤ CT


t − s t−s

η

θ +


t − s

η


ηθ


(V (x)+ P̃(∥B H

∥θ,T ))

≤ CT


(t − s)θ + (t − s)ηθ−1


(V (x)+ P̃(∥B H

∥θ,T )).

Thus, using (29) if t − s ≤ η or the fact that (t − s)ηθ−1
≤ (t − s)θ if t − s ≥ η, we deduce that

there exists CT > 0 such that for every 0 ≤ s < t ≤ T ,

|Z̄γt − Z̄γs | ≤ CT (t − s)θ (V (x)+ P̃(∥B H
∥θ,T )).

The result (12) follows.
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4. Tightness properties

In the following proposition, we obtain some a.s. tightness results for the sequence
(P(n,γ )(ω, dα))n≥1. Using that the controls established in Proposition 4 are uniform in γ , we
also show that tightness properties also hold for the set of its limiting measures (U (∞,γ )(ω, θ))γ
defined by

U (∞,γ )(ω, θ) =


µ ∈ C̄θ (R+,Rd), ∃(nk(ω))k≥1,P(nk (ω),γ )(ω, dα)

k→+∞
−−−−→ µ


.

Proposition 5. Assume (C). Then, there exists γ0 > 0 such that,

(i) For every γ ∈ (0, γ0] and p ≥ 1, a.s.,

lim sup
n→+∞

1
n

n
k=1

V p(X̄γγ (k−1)) ≤ C pE[|Pp,θ (∥B H
∥θ,1)|] < +∞

where C p does not depend on γ and Pp,θ is a polynomial function.
(ii) For every θ ∈ (1/2, H), for every γ ∈ (0, γ0], (P(n,γ )(ω, dα))n≥1 is almost surely tight on

C̄θ (R+,Rd).
(iii) For every θ ∈ (1/2, H), (U (∞,γ )(ω, θ))γ∈(0,γ0] is a.s. tight in C̄θ (R+,Rd).

Proof. (i) Case p = 1: We first focus on the sequence ( 1
N

N−1
ℓ=0 V (X̄γℓ ))N≥1. Note that, at this

stage, we consider the values of the Euler scheme at times 0, 1, 2, . . . (which do not depend on
γ ). Then we set

∀ℓ ≥ 0, (δℓB H )t = B H
ℓ+t − B H

ℓ .

By Proposition 4 applied with T = 1, we have for every k ≥ 1

V (X̄γℓ ) ≤ ρV (X̄γℓ−1)+ P1,θ (∥δℓ−1 B H
∥θ,1)

with ρ ∈ (0, 1). An iteration yields for every ℓ ≥ 1

V (X̄γℓ ) ≤ ρℓV (x)+

ℓ−1
m=0

ρℓ−1−m P1,θ (∥δm B H
∥θ,1).

Setting Um = P1,θ (∥δm B H
∥θ,1) and summing over ℓ, we obtain

1
N

N−1
ℓ=0

V (X̄γℓ ) ≤
V (x)

N (1 − ρ)
+

1
N

N−1
ℓ=0

ℓ−1
m=0

ρℓ−1−mUm

≤
V (x)

N (1 − ρ)
+

1
N

N−2
m=0

Um

N
ℓ=m+1

ρℓ−1−m

≤
V (x)

N (1 − ρ)
+

1
N (1 − ρ)

N−2
m=0

Um .

Let us remark that since B H is a C̄θ ([0, 1],Rq) valued Gaussian random variable, the norm
∥B H

∥θ,1 has finite moments of every order, which is a classical consequence of the Fernique
Lemma. Hence

E[|P1,θ (∥B H
∥θ,1)|] < +∞. (30)
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Then, since (δm B H )m≥1 is ergodic (see Remark 5 for background and details), we have

1
N

N−2
m=0

Um
N→+∞
−−−−−→ E[P1,θ (∥B H

∥θ,1)] a.s. (31)

and it follows that

lim sup
N→+∞

1
N

N−1
ℓ=0

V (X̄γℓ ) ≤
1

1 − ρ
E[P1,θ (∥B H

∥θ,1)] a.s. (32)

We want now to use this result to control the a.s. asymptotic behavior of ( 1
n

n−1
k=0 V (X̄γγ k))n≥1.

By the second point of Proposition 4(i), for every ℓ ≥ 0,

sup
k∈


ℓ
γ


+1,


ℓ+1
γ

 V (X̄γγ k) ≤ C


V (X̄γℓ )+ P1,θ (∥δℓB H
∥θ,1)


.

As a consequence, setting N = ⌊γ (n − 1)⌋ + 1, we have

1
n

n−1
k=0

V (X̄γγ k) ≤
N

n

1
N

V (x)+

N−1
ℓ=0


ℓ+1
γ


k=


ℓ
γ


+1

V (X̄γγ k)


≤ C


γ +

1
n


1
γ

+ 1


1
N

N−1
ℓ=0


V (X̄γℓ )+ P1,θ (∥δℓB H

∥θ,1)

.

Using (31) and (32), the result follows when p = 1.
The proof when p > 1 is very similar to the case p = 1 and is left to the reader.
(ii) If for a sequence (µn)n≥1 of probability measures on Rd , there exists a positive function

ϕ : Rd
→ (0,+∞) such that supn≥1 µn(ϕ) < +∞ and lim|x |→+∞ ϕ(x) = +∞, one classically

derives that (µn)n≥1 is tight on Rd (see e.g. [10, p. 41]). Thus, by (i), (P(n,γ )
0 (ω, dx)) is a.s. tight

on Rd . Owing to some classical tightness results in Hölder spaces (see e.g. [30, Theorem 1.4]),
we deduce that we only have to prove that for every T > 0, for every θ ∈ (1/2, H), for every
ε > 0,

lim sup
δ→0

lim sup
n→+∞

1
n

n
k=1

1
{ωθ,T (X̄

γ

γ (k−1)+·
,δ)≥ε} = 0, (33)

where we recall that

∀ T > 0, ωθ,T ( f, δ) := sup
0≤s<t<T,0≤|t−s|≤δ

| f (t)− f (s)|

|t − s|θ
.

By Proposition 4(ii) with θ ′
∈ (θ, H),

sup
0≤s<t≤T

|X̄γt − X̄γs |

(t − s)θ
≤ CT (t − s)θ

′
−θ (V (x)+ P̃θ ′(∥B H

∥θ ′,T ))

so that for every s, t ∈ [0, T ] such that s < t and t − s ≤ δ,

sup
0≤s<t≤T

|X̄γt − X̄γs |

(t − s)θ
≤ CT δ

θ ′
−θ (V (x)+ P̃θ ′(∥B H

∥θ ′,T )).
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As in (i), this property can be extended to the shifted process: we have for every k ≥ 0

ωθ,T (X̄
γ

γ k+·
, δ) = sup

0≤s<t≤T, t−s≤δ

|X̄γγ k+t − X̄γγ k+s |

(t − s)θ

≤ CT δ
θ ′

−θ (V (X̄γγ k))+ P̃θ ′(∥δk B H
∥θ ′,T ). (34)

Since (δk B H )k≥1 is ergodic (see Remark 5 for details) and since by the Fernique Lemma
∥B H

∥θ ′,T has moments of any order, we have

1
n

n
k=1

P̃θ ′(∥δk B H
∥θ ′,T )

n→+∞
−−−−→ E[P̃θ ′(∥B H

∥θ ′,T )] a.s.

Then, we deduce from (i) and (34) that

lim sup
n→+∞

1
n

n
k=1

ωθ,T (X̄
γ

γ (k−1), δ) ≤ Cδθ
′
−θ .

By the Markov inequality, we obtain for every ε > 0,

lim sup
n→+∞

1
n

n
k=1

1
{ωθ,T (X̄

γ

γ (k−1)+·
,δ)≥ε} ≤ C

δθ
′
−θ

ε
(35)

and (33) follows.
(iii) Let θ ∈ (1/2, H) and denote by µ(γ ) an element of U (∞,γ )(ω, θ) and by µ(γ )t its margin-

als. By (30) and (32),

∀γ ∈ (0, γ0], µ
(γ )

0 (V ) ≤
C

1 − ρ

where ρ does not depend on γ . It follows that U (∞,γ )

0 (ω, θ) is a.s. tight in Rd (where

U (∞,γ )

0 (ω, θ) stands for the set of initial distributions µ(γ )0 ).
Now, since C does not depend on γ in (35), we also have for every T > 0, δ > 0 and ε > 0

for every θ ′ > θ :

∀γ ∈ (0, γ0], µ(γ )(1{ωθ,T (·,δ)≥ε}) ≤ Cδθ
′
−θ

and the announced result follows again from Theorem 1.4 of [30]. �

Remark 5. Some of the arguments of the previous proof are based on the ergodicity of the
increments of the fractional Brownian motion. More precisely, we use the fact that (B H

t )t∈R is
ergodic under the transformation Tξ : C̄θ (R,Rq) → C̄θ (R,Rq) defined by (Tξ (ω))t = ω(ξ + t)
−ω(ξ) (ξ > 0), which implies by the Birkhoff theorem that, for any functional F : C̄θ (R,Rq) →

R such that E[|F(B H
t , t ≥ 0)|] < +∞,

P-a.s.,
1
n

n
k=1

F(B H
ξk+·

− B H
ξk)

n→+∞
−−−−→ E[F(B H

t , t ≥ 0)]. (36)

Note that this ergodic result is a (classical) consequence of the Maruyama theorem [25] (see
also [32]) which is stated in a slightly different way: let (θt )t∈R denote the standard time-shift
defined for ω : R → R by θt (ω) = ω(t + ·). Then, a centered stationary real Gaussian process
(Yt )t∈R is ergodic under (θt )t∈R if its covariance function r(t) = E[Yt Y0] satisfies r(t) → 0 as
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t → +∞. This result can be applied to the stationary (centered) fractional Ornstein–Uhlenbeck
process solution to dYt = −Yt dt + d B H

t (since r(t) → 0, see e.g. [4]). Then we retrieve (36) by
using that the increment B H

t+s − B H
t is a functional of (Yt )t≥s : B H

t+s − B H
t = Yt+s −Yt +

 t
s Yudu.

5. Identification of the weak limits

5.1. Weak limits of (P(n,γ )(ω, dα))n≥1

We have the following result:

Proposition 6. Assume (C) and let P(∞,γ )(ω, dα) denote a weak limit of (P(n,γ )(ω, dα))n≥1.
Then, P(∞,γ )(ω, dα) is a.s. an adapted stationary solution of (6).

Remark 6. In the following proof, we will state some properties “for every function f , for
almost every ω” and conclude that “for almost every ω, for every function f ” the property is
true. For the sake of completeness, we recall here that such inversions are rigorous since we
work on Polish spaces (in which the distributions and the weak convergence are characterized by
some countable family of bounded continuous functions).

Proof. In the proof, we denote by (P̃(n)(ω, dα, dβ))n≥1, the sequence of probability measures
on C̄θ (R+,Rd)× C̄θ (R,Rq) with 1

2 < θ < H defined by

P̃(n,γ )(ω, dα, dβ) =
1
n

n
k=1

δ(X̄γ
γ (k−1)+·

(ω),B H
(k−1)γ+·

(ω)−B H
(k−1)γ (ω))

(dα, dβ)

where (B H
t )t∈R is the fractional Brownian motion used to build the Euler scheme (9). First,

let us recall that by Proposition 5(ii), (P(n,γ )(ω, dα))n≥1 is a.s. tight. Thus, we can consider a
weak limit P(∞,γ )(ω, dα). Second, one checks that (P̃(n,γ )(ω, dα, dβ))n≥1 is also almost surely
tight since each of its margins have this property. Indeed, for the first margin, it is again (ii) of
Proposition 5. For the second margin, we use that (B H

t )t∈R is ergodic under the transformation
Tγ : C̄θ (R,Rq) → C̄θ (R,Rq) (see Remark 5). In particular,

1
n

n
k=1

δB H
(k−1)γ+·

−B H
(k−1)γ

(dβ) (37)

is converging almost surely to the distribution of (B H
t )t∈R (on C̄θ (R,Rq)). Hence, the

sequence (P̃(n)(ω, dα, dβ))n≥1 is almost surely tight (and thus relatively compact). Then, if
P(∞,γ )(ω, dα) is the limit of a subsequence of (P(n,γ )(ω, dα))n≥1, maybe with the help of a
second extraction, it follows that a.s., there exists a subsequence (nk(ω))k≥0 such that

P(nk ,γ )(ω, dα)
k→+∞
−−−−→ P(∞,γ )(ω, dα) and

P̃(nk ,γ )(ω, dα, dβ)
nk→+∞
−−−−−→ P̃(∞,γ )(ω, dα, dβ)

(38)

where the first margin of P̃(∞,γ )(ω, dα, dβ) is obviously P(∞,γ )(ω, dα) and the second one
is a.s. the distribution of (B H

t )t∈R (thanks to (37)). Let us also denote by (X (∞,γ )
t , B H

t ) the
coordinate process on C̄θ (R+,Rd) × C̄θ (R,Rq) endowed with the probability P̃(∞,γ ). For
(α, β) ∈ C̄θ (R+,Rd)× C̄θ (R+,Rq) we consider the following function

Φ̃γ (α, β)t := α0 +

 t

0
b(Φ̃γ (α, β)sγ )ds +

 t

0
σ(Φ̃γ (α, β)sγ )dβs . (39)
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Please remark that Φ̃γ is slightly different from Φγ in the way it handles the initial condition but

Φ̃γ (α, β) = Φγ (a, β)

for every α such that α0 = a. For t, K > 0 let us denote by Ft,K the functional defined on
C̄θ (R+,Rd) × C̄θ (R,Rq) by Ft,K (α, β) = sup0≤s≤t |αs − Φ̃γ (α, β+)s | ∧ K where β+ =

(β(t))t≥0. The function Ft,K is bounded continuous on C̄θ (R+,Rd)× C̄θ (R,Rq).
Then,

E(Ft,K (X
(∞,γ ), B H )) = lim

nl→∞

1
nl

nl
k=1

Ft,K (X̄
γ

(k−1)γ+·
, B H

(k−1)γ+·
− B H

(k−1)γ ).

By the definition of the Euler scheme (even though it is shifted), we have for every k ≥ 1,
Ft,K (X̄

γ

(k−1)γ+·
, B H

(k−1)γ+·
− B H

(k−1)γ ) = 0 almost surely, and

X (∞,γ )
= Φ̃γ (X (∞,γ ), B H )

almost surely, which ensures that the pair (X (∞,γ ), B H ) is a solution of (6).
The stationarity of X (∞,γ ) follows from the construction. Actually, using the convergence of

(P(n,γ )(ω, dα)), we have for every bounded continuous functional F : C̄θ (R+,Rd) → R,

1
n

n
k=1

F(X̄γγ (k−1)+t+·
)− F(X̄γγ (k−1)+·

)
n→+∞
−−−−→ E[F(X (∞,γ )

t+· )] − E[F(X (∞,γ )
· )]

and owing to a change of variable, it is obvious that for every t ∈ γN,

1
n

n
k=1

F(X̄γγ (k−1)+t+·
)− F(X̄γγ (k−1)+·

)
n→+∞
−−−−→ 0.

It follows that for every t ∈ γN, for every F ,

E[F(X (∞,γ )
t+· )] = E[F(X (∞,γ )

· )].

This property implies that X (∞,γ ) is stationary.
We now focus on the adaptation of X (∞,γ ). In this step, we need to introduce, for a subset D

of R that contains 0, the Polish space Wθ,δ(D) that denotes the completion of C∞

0 (D,R
q) (the

space of C∞-functions f : D → Rq with compact support and f (0) = 0) for the norm

∥ f ∥ = sup
s,t∈D

| f (t)− f (s)|

|t − s|θ (1 + |t |δ + |s|δ)
.

This space is convenient to obtain some Feller properties for the conditional distribution of the
fractional Brownian motion given its past. More precisely, by Lemmas 4.1–4.3 of [17], the paths
of B H belong a.s. to Wθ,δ(R) when θ ∈ (1/2, H) and θ + δ ∈ (H, 1). Furthermore, setting
B H,u

t = B H
t+u − B H

u , we also deduce from these lemmas that for every non-negative t and T ,

PT (ω, ·) := L((B H,t+T
s )s≤0|(B

H,t
s )s≤0 = (ωs)s≤0)

is a Feller transition on Wθ,δ(R−) (which does not depend on t).
Let us now prove that X (∞,γ ) is adapted, i.e. that for every t ≥ 0, (X (∞,γ )

s )s≤t and (B H
s )s≥t

are independent conditionally to (B H
s )s≤t . One can check that it is enough to prove that for every

t ≥ 0 and (arbitrary large) T ≥ 0, (X (∞,γ )
s )s≤t and (B H,t+T

s )s≥0 are independent conditionally
to (B H,t

s )s≤0 (using on the one hand that (B H
s )s≤t is trivially σ(B H

s , s ≤ t)-measurable and that
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for every u ≥ 0, σ (B H,u
s , s ≤ 0) = σ(B H

s , s ≤ u)). To prove this conditional independence
property, it is now enough to show that for every t ≥ 0, for every T ≥ 0, for every bounded
continuous functionals f : C̄θ ([0, t],Rd) → R, g : Wθ,δ(R−) → R and h : Wθ,δ(R−) → R

E[ f (X (∞,γ )
s , s ∈ [0, t])g(B H,t+T

s , s ≤ 0)h(B H,t
s , s ≤ 0)]

= E[ f (X (∞,γ )
s , s ∈ [0, t])ψg(B H,t

s , s ≤ 0)h(B H,t
s , s ≤ 0)] (40)

where ψg((ωs)s≤0) = E[g(B H,t+T
s , s ≤ 0)|(B H,t

s )s≤0 = (ωs)s≤0] = PT g((ωs)s≤0). Since
PT (ω, ·) is Feller, ψg is continuous on Wθ,δ(R−).

Then, using the ergodicity of the increments of B H , we can show as in the beginning of the
proof that (P̃(n,γ )(ω))n≥1 is tight on C̄θ (R+,Rd) × Wθ,δ(R). Thus, there exists a.s. a sequence
(nk) such that

E[ f (X (∞,γ )
s , s ≤ t)g(B H,t+T

s , s ≤ 0)h(B H,t
s , s ≤ 0)] = lim

k→+∞

1
nk

nk
k=1

Hk−1 Jk

and such that

E[ f (X (∞,γ )
s , s ≤ t)ψg(B H,t

s , s ≤ 0)h(B H,t
s , s ≤ 0)]

= lim
k→+∞

1
nk

nk
k=1

Hk−1E[Jk |Fγ (k−1)+t ]

with Fu = σ(B H
s , s ≤ u), Hk = f (X̄γγ k+s, s ≤ t)h(B H

γ (k−1)+s+t − B H
γ (k−1)+t , s ≤ 0), and

Jk = g(B H
γ (k−1)+s+t+T − B H

γ (k−1)+t+T , s ≤ 0). This implies that it is now enough to prove that

1
n

n
k=1

Hk−1

Jk − E[Jk |Fγ (k−1)+t ]

 n→+∞
−−−−→ 0 a.s.

This point follows from a decomposition of the above sum in martingale increments and from
classical martingale arguments (see the proof of Proposition 6 of [5] for a similar argument). �

5.2. Identification of limits when γ → 0+

In this part we fix a H -fractional Brownian motion B H on C̄θ (R,Rq) and we consider a pair
(X∞,γ , B H ) on C̄θ (R+,Rd) × C̄θ (R+,Rq) such that for each γ > 0 the joint distribution is
given by Proposition 6.

Proposition 7. Let (γk) be a sequence converging to 0 such that the distributions of
(X∞,γk , B H ) are converging weakly on C̄θ (R+,Rd) × C̄θ (R,Rq) to (X∞, B H ). Then X∞ is
a stationary adapted solution to (1) in the sense of Definition 3.

Proof. Let us first introduce

Φ̃(α, β)t := α0 +

 t

0
b(Φ̃(α, β)s)ds +

 t

0
σ(Φ̃(α, β)s)dβs,

and remark that Φ̃(α, β) = Φ(a, β), if α0 = a. We want to show that

X∞
= Φ̃(X∞, B H ) (41)
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almost surely so that (X∞, B H ) is a solution to (1). Let us rewrite the equation with the help of
two continuous operators on C̄θ (R+,Rd)× C̄θ (R+,Rq):

Ψ(α, β)t =

 t

0
b(αs)ds +

 t

0
σ(αs)dβs,

and

∆(α)t = αt − α0.

Then Eq. (41) is equivalent to

∆(X∞) = Ψ(X∞, B H ). (42)

Let us also consider the discretization of Ψ

Ψγ (α, β)t =

 t

0
b(αsγ )ds +

 t

0
σ(αsγ )dβs .

Obviously (6) can be rewritten

∆(X∞,γ ) = Ψγ (X∞,γ , B H ). (43)

Lemma 4. Let (γk)k≥1 be a sequence converging to 0 such that (X∞,γk , B H )k≥1 converges
weakly on C̄θ (R+,Rd) × C̄θ (R,Rq) to (X∞, B H ). Then Ψγk (X∞,γk , B H ) converges weakly
on C̄θ (R+,Rd) to Ψ(X∞, B H ).

Proof. Let (α, β) ∈ C̄θ (R+,Rd)× C̄θ (R+,Rq). A classical result concerning the discretization
of Young integrals shows that

|Ψ(α, β)t − Ψγ (α, β)t | ≤ ∥α∥θ,t∥β∥θ,tγ
2θ−1t.

See for instance [6], Proposition 31 or [34]. Hence for T > 0,

∥Ψ(α, β)− Ψγ (α, β)∥θ,T ≤ ∥α∥θ,T ∥β∥θ,T γ
2θ−1T 1−θ . (44)

Let F be any bounded K -Lipschitz functional on C̄θ ([0, T ],Rd),

|E(F(Ψ(X∞,γk , B H )))− E(F(Ψ(X∞, B H )))| → 0 (45)

as k → ∞. Then

|E(F(Ψγk (X∞,γk , B H )))− E(F(Ψ(X∞,γk , B H )))|

≤ KE(∥X∞,γk ∥θ,T ∥B H
∥θ,T )T

1−θγ 2θ−1
k , (46)

and using Proposition 4(ii) the left hand side of (46) is converging to 0 as k → ∞. Combining
(45) and this last fact, we get the desired convergence in distribution. �

Let us start with

∆(X∞,γk ) = Ψγk (X∞,γk , B H ), (47)

and let k → ∞. By Lemma 4, the right hand side of (47) converges to Ψ(X∞, B H ) and the left
hand side to ∆(X∞), which, in turn, has the same distribution as Ψ(X∞, B H ).

Now, let us prove that X∞ is stationary. It is enough to show that E[F(X∞
· )] = E[F(X∞

t+·)]

for every t ≥ 0 and for every functional F defined by F(α) =
m

k=1 fi (αti ) where f1, . . . , fm
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denote Lipschitz continuous functions on Rd and t1, . . . , tm belong to R+. By Proposition 6, the
distribution of X∞,γ is invariant by the time-shift (θkγ ) for every k ∈ N so that E[F(X∞

· )] =

E[F(X∞
t+·)]. The result follows easily by checking that for every T > 0,

E


sup

u,v∈[0,T ],|u−v|≤γ

|X∞,γ
v − X∞,γ

u |


γ→0
−−−→ 0.

Finally, it remains to show that (X∞, B H ) is adapted. Since (X∞,γk ) converges in distribution
to X∞ on C̄θ (R+,Rd) and since B H belongs to Wθ,δ (with θ ∈ (1/2, H) and θ + δ ∈ (H, 1)),
(X∞,γ ′

k , B H ) converges to (X∞, B H ) for γ ′

k a subsequence of γk . Then, we can let γ go to 0 in
equality (40) and the result follows. �

6. Simulations

In this section, we give an illustration of the application of our procedure for a one-dimen-
sional toy equation:

d X t = −X t dt + (4 + cos(X t ))d B H
t .

We propose to compute an estimation of the density of the (marginal) invariant distribution in this
case. We denote it by νH

0 . By Theorem 1, for every bounded continuous function f : Rd
→ R,

lim
γ→0

lim
n→+∞

P(n,γ )
0 (ω, f ) = νH

0 ( f ).

The first step is to simulate the sequence (B H
γ k − B H

γ (k−1))
n
k=1. We use the Wood–Chan method

(see [33]) which is based on the embedding of the covariance matrix of the fractional increments
in a symmetric circulant matrix (whose eigenvalues can be computed using the Fast Fourier
Transform).

Then, we compute Kh ∗ P(n,γ )
0 where Kh is the Gaussian convolution kernel defined by

Kh(x) =
1

√
2πh

exp(− x2

2h ). Note that Kh ∗ P(n,γ )
0 (x0) = P(n,γ )

0 (Kh(x0 −·)), where, for a measure

µ, and a µ-measurable function f , we set µ( f ) =


f dµ. In Fig. 1 is depicted the approximate
density with the following choices of parameters

n = 107, γ = 0.05 h = 0.2, H =
3
4
.

We choose to compare it with the density of the invariant distribution when H = 1/2. Note that
in this case, the invariant distribution is (semi)-explicit (as for every ergodic one-dimensional
diffusion) and is given by

ν
1
2
0 (dx) =

M(dx)

M(R)
where M(dx) =

1

(4 + cos x)2
exp


−

 x

0

2u

(4 + cos u)2
du


dx .

We observe that the distribution when H = 3/4 has heavier tails than in the diffusion case.
Finally, in order to have a rough idea of the rate of convergence, we depict in Fig. 2 the

approximate densities for different values of n keeping the other parameters unchanged.

Remark 7. As mentioned before, this section is only an illustration. In fact, there are (many)
numerical open questions. For the estimation of the error, it would be necessary for a function
f to get some rate of convergence results for P(n,γ )

0 ( f ) − νH ( f ) (long-time error) and for
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Fig. 1. Approximate density of νH
0 (continuous line) compared with that of ν

1
2
0 (dotted line).

Fig. 2. Approximate density of νH
0 for n = 105 (dotted line), n = 106 (dash-dotted line), and n = 107 (continuous line).

ν
H,γ
0 ( f ) − νH

0 ( f ) (discretization error) where νH,γ
0 denotes the initial distribution of the

stationary Euler scheme with step γ . Note that in the diffusion case, it can be shown under some

appropriate assumptions that the long time error is about (γ n)−
1
2 (see [3] for the corresponding

result in the continuous case) whereas the discretization error is O(γ ) (see [31, Theorem 3.3]
for a similar result with the Milstein scheme). Finally, even if the Wood and Chan simulation
method is fast and exact, it requires a lot of memory because of the Fast Fourier Transform.
On Matlab, for instance, this implies that we cannot take n greater than 2.107. Thus, it could
be interesting to study some discretization schemes based on some approximations of the fBm-
increments simulated, which consumes less memory.
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Appendix

Proof of Proposition 2. Let us show that (X̄γ k) is a skew-product in the sense of [16] as follows.
For a fractional Brownian B H motion on R, set for every n ∈ Z ∆γ

n = B H
(n+1)γ − B H

nγ . Setting

W := (Rd)Z− , we then introduce the regular conditional probability P̄γ
: W → M1(Rd)

defined by1:

P̄γ (ω) = L(∆γ

1 |(∆γ

k )k≤0 = ω)

and denote by Pγ the Feller transition on W defined for every measurable function f : W → R
by Pγ f (ω) =


Rd f (ω ⊔ ω̃)P̄γ (ω, dω̃) where for ω ∈ (Rd)Z− and ω̃ ∈ Rd , ω ⊔ ω̃ = (. . . , ω2 ,

ω1 , ω0, ω̃). Setting Φγ (x, ω̃) = x + γ b(x)+ σ(x)ω̃ and PγH := L((∆n)n≤0), we have defined a
skew-product (W,PγH ,Pγ ,Rd ,Φγ ) with the transition operator Qγ on Rd

× W defined by

Qγ f (x, ω) =


f (Φγ (x, ω′))Pγ (ω, dω′),

which describes the dynamics of the Euler scheme.
Then, thanks to Theorem 1.4.17 of [16], uniqueness of the adapted and stationary discrete

Euler scheme (X̄γ k) (in distribution) holds, if the skew-product (W,PγH ,Pγ ,Rd ,Φγ ) is strong
Feller and topologically irreducible (in the sense of Definitions 1.4.6 and 1.4.7 of [16]).

First, write ω̃ = (ω̃1, . . . , ω̃q) and Φγ
= (Φγ

1 , . . . ,Φ
γ

d ). Denote by MΦ(x, ω̃) the (discrete)
Malliavin covariance matrix of Φ defined by

∀(x, ω̃) ∈ Rd
× Rd and (i, j) ∈ {1, . . . , d}

2,

MΦ
i, j (x, ω̃) :=

d
k=1

∂ω̃k Φγ

i (x, ω̃)∂ω̃k Φγ

j (x, ω̃).

Thus, MΦ(x, ω̃) = (σσ ∗)(x) and since σ−1 is bounded (and continuous), it follows that x →

(det(MΦ)−1(x, ω)) is bounded continuous. Second, the functions DωΦ, DωDxΦ and D2
ωΦ are

clearly bounded continuous. Finally, the sequence ((∆γ
n )

1) has a spectral density f that satisfies π
−π
( f (x))−1dx < +∞ (see e.g. [2] for an explicit expression of f ). Thus, it follows from

Theorem 1.5.9 of [16] that the skew-product is strong Feller.
For the topological irreducibility, it is enough to show that for every (x, ω) ∈ Rd

× W ,
for every (y, ε) ∈ Rd

× R∗
+, Q(x, ω, B(y, ε) × W) > 0. Since σ is invertible, the map Φ is

controllable in the following sense: Φ(x, ω̃x ) = y has a (unique) solution ω̃ ∈ Rq , for every
x, y ∈ Rd . Furthermore, b and σ being continuous, for every ε > 0, there exists rε such that for
every ω̃ ∈ B(ω̃x , rε), Φ(x, ω̃) ∈ B(y, ε). Thus

Q(x, ω, B(y, ε)× W) ≥ P̄(ω, B(ω̃x , rε)) > 0,

since P̄(ω, ·) is Gaussian with positive variance. This concludes the proof.

1 Note that since (∆γ
n )n∈Z is a stationary sequence, L(∆γ

1 |(∆
γ
k )k≤0 = ω) = L(∆γ

n+1|(∆
γ
n+k )k≤0 = ω) for every

n ∈ Z.
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[32] Michel Weber, Sur un théorème de Maruyama, in: Seminar on Probability, XIV (Paris, 1978/1979), in: Lecture
Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 475–488 (in French).

[33] Andrew T.A. Wood, Grace Chan, Simulation of stationary Gaussian processes in [0, 1]
d , J. Comput. Graph. Statist.

3 (4) (1994) 409–432.
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