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Abstract Based on Malliavin calculus tools and approximation results, we show how to
compute a maximum likelihood type estimator for a rather general differential equation driven
by a fractional Brownian motion with Hurst parameter H > 1/2. Rates of convergence for
the approximation task are provided, and numerical experiments show that our procedure
leads to good results in terms of estimation.
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1 Introduction

In this introduction, we first try to motivate our problem and outline our results. We also
argue that only a part of the question can be dealt with in a single paper. We briefly sketch a
possible program for the remaining tasks in a second part of the introduction.

1.1 Motivations and outline of the results

The inference problem for diffusion processes is now a fairly well understood problem.
In particular, during the last two decades, several advances have allowed to tackle the problem
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of inference based on discretely observed diffusions (Durham and Gallant 2002; Pedersen
1995; Sorensen 2009), which is of special practical interest.

More specifically, consider a family of stochastic differential equations of the form

Yt = a +
∫ t

0
μ(Ys; θ) ds +

d∑
l=1

∫ t

0
σ l(Ys; θ) d Bl

s, t ∈ [0, T ], (1)

where a ∈ R
m, μ(·; θ) : R

m → R
m and σ(·; θ) : R

m → R
m,d are smooth enough functions,

B is a d-dimensional Brownian motion with Hurst parameter H > 1/2 (the stochastic integral
in (1) being understood in the Young sense) and θ is a parameter varying in a subset � ⊂ R

q .
If one wishes to identify θ from a set of discrete observations of Y , most of the methods
which can be found in the literature are based on (or are closely linked to) the maximum
likelihood principle. Indeed, if B is a Brownian motion and Y is observed at some equally
distant instants ti = iτ for i = 0, . . . , n, then the log-likelihood of a sample (Yt1 , . . . , Ytn )

can be expressed as

�n(θ) =
n∑

i=1

ln
(

p
(
τ, Yti−1 , Yti ; θ

))
, (2)

where p stands for the transition semi-group of the diffusion Y . If Y enjoys some ergodic
properties, with invariant measure νθ0 under Pθ0 , then we get

a.s.− lim
n→∞

1

n
�n(θ) = Eθ0 [p (τ, Z1, Z2; θ)] � Jθ0(θ), (3)

where Z1 ∼ νθ0 and L(Z2| Z1) = p(τ, Z1, · ; θ). Furthermore, it can be shown in a general
context that θ �→ Jθ0(θ) admits a maximum at θ = θ0. This opens the way to a MLE analysis
which is similar to the one performed in the case of i.i.d observations, at least theoretically.

However, in many interesting cases, the transition semi-group p is not amenable to explicit
computations, and thus expression (2) has to be approximated in some sense. The most
common approach, advocated for instance in Pedersen (1995), is based on a linearization of
each p(τ, Yti−1 , Yti ; θ), which transforms it into a Gaussian density

N (
Yti−1 + μ(Yti−1; θ) τ, σσ ∗(Yti−1; θ) τ

)
.

This linearization procedure is equivalent to the approximation of Eq. (1) by an Euler (first
order) numerical scheme. Refinements of this procedure, based on Milstein type discretiza-
tions, are proposed in Durham and Gallant (2002).

Some special situations can be treated differently (and often more efficiently): for instance,
in case of a constant diffusion coefficient, the continuous time likelihood can be computed
explicitly by means of Girsanov’s theorem. When the dimension of the driving Brownian
motion B is d = 1, one can also apply Itô’s formula in order to be back to an equation
with constant diffusion coefficient, or use Doss-Sousman representation of solutions to (1).
Let us also mention that statistical inference for SDEs driven by Lévy processes is currently
intensively investigated, with financial motivations in mind.

The current article is concerned with the estimation problem for equations of the form (1),
when the driving process B is a fractional Brownian motion. Let us recall that a fractional
Brownian motion B with Hurst parameter H ∈ (0, 1), defined on a complete probability
space (�, F , P), is a d-dimensional centered Gaussian process. Its law is thus characterized
by its covariance function, which is given by

E
[

Bi
t B j

s

]
= 1

2

(
t2H + s2H − |t − s|2H

)
1(i= j), s, t ∈ R+.
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The variance of the increments of B is then given by

E
[(

Bi
t − Bi

s

)2
]

= |t − s|2H , s, t ∈ R+, i = 1, . . . , d,

and this implies that almost surely the fBm paths are γ -Hölder continuous for any γ < H .
Furthermore, for H = 1/2, fBm coincides with the usual Brownian motion, converting the
family {B H ; H ∈ (0, 1)} into the most natural generalization of this classical process.

In the last decade, some important advances have allowed to solve (Nualart and Rǎşcanu
2002; Zähle 1998) and understand (Hu and Nualart 2007; Nualart and Saussereau 2009)
differential systems driven by fBm for H ∈ (1/2, 1). The rough paths machinery also allows
to handle fBm with H ∈ (1/4, 1/2), as nicely explained in (Friz and Victoir 2010; Gubinelli
2004; Lejay 2003; Lyons and Qian 2002). However, the irregular situation H ∈ (1/4, 1/2) is
not amenable to useful moments estimates for the solution Y to (1) together with its Jacobian
(that is the derivative with respect to the initial condition). This is why we concentrate, in
the sequel, on the simpler case H > 1/2 for our estimation problem. In any case, many
real world noisy systems are currently modeled by equations like (1) driven by fBm, and
this is particularly present in the Biophysics literature (Kou and Sunney-Xie 2004; Odde et
al. 1996), or for Finance oriented applications (Cheridito 2003; Gubinelli 2004; Hairer and
Ohashi 2007; Hu and Nualart 2007; Rogers 1997; Willinger et al. 1999). This leads to a
demand for rigorous estimation procedures for SDEs driven by fractional Brownian motion,
which is the object of our paper.

Concerns about the inference problem for fractional diffusion processes started a decade
ago with the analysis of fractional Ornstein-Uhlenbeck processes Kleptsyna and Le Breton
(2002). Then a more recent representative set of references on the topic includes Papavasiliou
and Ladroue (2012) and Tudor and Viens (2007). More specifically, Tudor and Viens (2007)
handle the case of a one-dimensional equation of the form

Yt = a + θ

∫ t

0
μ(Ys) ds + Bt , t ∈ [0, T ], (4)

where μ is regular enough, and where B is a fBm with H ∈ (0, 1). The simple dependence on
the parameter θ and the fact that an additive noise is considered enables the use of Girsanov’s
transform in order to get an exact expression for the MLE. Convergence of the estimator is
then obtained through an extensive use of Malliavin calculus.

The article by Papavasiliou and Ladroue (2012) is focused on the case of a polynomial
equation, for which the exact moments of the solution can be computed. The estimator relies
then on a generalization of the moments method, which tries to fit empirical moments of
the solution with their theoretical value. The range of application of this method is however
confined to specific situations, for the following reasons:

– It assumes that N independent runs of Eq. (1) can be obtained, which is usually not the
case.

– It hinges on multiple integrals computations, which are time consuming and are avoided
in most numerical schemes.

As can be seen from this brief review, parameter estimation for rough equations is still in its
infancy. We shall also argue that it is a hard problem.

Indeed, if one wishes to transpose the MLE methods used for diffusion processes to the
fBm context, an equivalent of the log-likelihood functions (2) should first be produced. But
the covariance structure of B is quite complex and the attempts to put the law of Y defined by
(1) into a semigroup setting are cumbersome, as illustrated by Baudoin and Coutin (2007);
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Fig. 1 Empirical Distribution of the estimators for α and β.

Hairer and Ohashi (2007); Neuenkirch et al. (2009). We have thus decided to consider a
highly simplified version of the log-likelihood. Namely, still assuming that Y is observed at
a discrete set of instants 0 < t1 < · · · < tn < ∞, set

�n(θ) =
n∑

i=1

ln
(

f (ti , Yti ; θ)
)
, (5)

where we suppose that under Pθ the random variable Yti admits a density z �→ f (ti , z; θ).
Notice that in case of an elliptic diffusion coefficient σ the density f (ti , ·; θ) is strictly posi-
tive, and thus expression (5) makes sense by a straightforward application of Proposition 19.6
in Friz and Victoir (2010). However, the successful replication of the strategy implemented
for Brownian diffusions (that we have tried to summarize above) relies on some highly non
trivial questions: existence of an invariant measure for Eq. (1), rate of convergence to this
invariant measure, convergence of expressions like (5), characterization of the limit in terms
of θ as in (3), to mention just a few. We shall come back to these considerations in the next
section, but let us insist at this point on the fact that all those questions would fit into a
research program over several years.

Our aim in this paper is in a sense simpler: we assume that quantities like (5) are meaningful
for estimation purposes. Then we shall implement a method which enables to compute �n(θ)

and optimize it in θ , producing thus a pseudo MLE estimator. We focused first on this specific
aspect of the problem for the following reasons:

1. From a statistical point of view, it is obviously essential to obtain a computationally
efficient estimation procedure. This will allow us for instance to evaluate numerically the
accuracy of our method.

2. The procedure itself is nontrivial, and requires the use of advanced stochastic analysis
tools: probabilistic representation of the density, Malliavin type integration by parts,
Stratonovich-Skorohod correction terms, discretization of systems of pathwise stochastic
differential equations for instance.

We have thus decided to tackle the implementation issues first, and we shall produce a practical
recursive method in order to approximate our pseudo-likelihhood �n(θ). If this method turns
out to be satisfying, we shall then try to proceed to a full justification of our method.
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Let us also mention that it might not be clear to the reader that �n(θ) can be meaningful
in terms of statistical estimation, since it only involves evaluations at single points Yti . How-
ever our numerical experiments indicate that this quantity behaves nicely for our purposes.
Moreover, it will become clear from the forthcoming computations that our methodology
can be extended to handle quantities like

�̃n(θ) :=
n∑

i=1

ln
(

f (ti , ti+1, Yti , Yti+1; θ)
)
,

where f (s, t, x, z; θ) stands for the density of the couple (Ys, Yt ). This kind of pseudo log-
likelihood is obviously closer in spirit to the diffusion case. Densities of tuples could also be
considered at the price of technical complications.

Let us now try to give a flavor of the kind of result we shall obtain in this article, in a very
loose form:

Theorem 1 Consider Eq. (1) driven by a d-dimensional fractional Brownian motion B with
Hurst parameter H > 1/2. Assume μ and σ are smooth enough coefficients, and that σσ ∗
is strictly elliptic. For a sequence of times t0 < · · · < tn < ∞, let yti , i = 1, . . . , n be the
corresponding observations. Then:

(i) The gradient of the log-likelihood function admits the following probabilistic represen-
tation: ∇l�n(θ) = ∑n

i=1
Vi (θ)
Wi (θ)

, with

Wi (θ) = E
[

1(Yti (θ)>yti )
H(1,...,m)

(
Yti (θ)

)]
(6)

where H(1,...,m)(Yti (θ)) is an expression involving Malliavin derivatives and Skorohod inte-
grals of Y (θ). A similar expression is also available for Vi (θ).

(ii) A computational recursive procedure is constructed in order to obtain H(1,...,m)(Yti (θ))

in a suitable way.
(iii) When Yt is replaced by its Euler scheme approximation with step T/M and expected

values in (6) are approximated thanks to N Monte Carlo steps, we show that

– N can be chosen in function of M in an optimal way (see Proposition 13).
– The corresponding approximation of ∇l�n(θ) converges to the real one with rate n−(2γ−1)

for any 1/2 < γ < H.

All those results are stated in a more rigorous way in the remainder of the article. We
shall also apply the computational procedure described in Theorem 1 to explicit examples of
equations arising in finance.

Here is how our article is structured: we give some preliminaries and notations on Young
and Malliavin calculus for fractional Brownian motion at Sect. 2. The probabilistic repre-
sentation for the log-likelihood is given at Sect. 3. Discretization procedures are designed at
Sect. 4, and finally numerical examples are given at Sect. 5.

1.2 Remaining open problems

We emphasized above the fact that only a part of the problem at stake was going to be solved
in the current article. We now briefly sketch the remaining tasks to be treated.

The most important obstacle in order to fully justify our methodology is to get a suitable
convergence theorem for �n(θ)/n, where �n(θ) is defined by (5). In a natural way, this
should be based on some strong ergodicity properties for Yt . After a glance at the literature
on ergodicity for fractional systems, one can distinguish two cases:
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(i) When σ(·; θ) is constant, the convergence of L(Yt ) as t → ∞ is established in Hairer
(2005), with a (presumably non optimal) rate of convergence t−1/8.

(ii) For a general smooth and elliptic coefficient σ , only the uniqueness of the invariant
measure is shown in Hairer and Ohashi (2007), with an interesting extension to the
hypoelliptic case in Hairer and Pillai (2011). Nothing is known about the convergence
of L(Yt ), not to mention rates.

This brief review already indicates that the convergence to invariant measures is still
quite mysterious for fractional differential equations, at least for a non constant coefficient σ .
Moreover, recall that if ν(θ) stands for the invariant measure corresponding to the system with
coefficients μ(·; θ), σ (·; θ), we also wish to retrieve some information on the dependence
θ �→ ν(θ) (See Hairer and Majda (2010) for some partial results in this direction).

Let us mention another concrete problem: even in the case of a constant σ , the convergence
of L(Yt ) to an invariant measure ν(θ) is proven in Hairer (2005) in the total variation sense.
In terms of the density p(t, x; θ) of Yt , it means that p(t, ·; θ) converges to the density of ν

in L1 topology. However, in order to get a limit for �n(θ)/n (recall that �n(θ) is defined by
(5)), one expects to use at least a convergence in some Sobolev space W α,p for α, p large
enough.

One possibility in order to get this sharper convergence is to bound first the density
p(t, ·; θ) in another Sobolev space W α′,p′

and then to use interpolation theory. It seems
thus sufficient to obtain Gaussian bounds on p(t, ·; θ), uniformly in t . In case of Brownian
diffusions, these Gaussian bounds are obtained by analytic tools, thanks to the Markov
property. This method being obviously not available for systems driven by fBm, a possible
inspiration is contained in the upper Gaussian bounds for the stochastic wave equation which
can be found in Dalang and Nualart (2004). The latter technical results stem from an intensive
use of Malliavin calculus, which should also be invoked in our case, and notice the recent
efforts (Baudoin and Ouyang 2012; Baudoin et al. 2012) in this direction. Let us point out
at this stage that Gaussian bounds on densities are also useful for the very definition of the
quantity ∇l�n(θ), which requires lower bounds on the density p(t, ·; θ).

Finally, let us mention that it seems possible to produce some reasonable convergent
parametric estimators for equations driven by fBm in a rather general context. Among the
methods which can be adapted from the diffusion case with the current stochastic analysis
techniques, let us mention the least square estimator of Kasonga (1990), as well as the local
asymptotic normality property shown in Gobet (2001). However, it seems obvious that the
road to a complete picture of parameter estimation for stochastic equations driven by fBm is
still hard and long. We hope to complete it in some subsequent communications.

2 Preliminaries and notations

As mentioned in the introduction, we are concerned with equations driven by a d-dimensional
fractional Brownian motion B. We recall here some basic facts about the way to solve those
equations, and some Malliavin calculus tools which will be needed later on. Let us introduce
first some general notation for Hölder type spaces:

Notation 2 We will denote by C α(V ) the set of V -valued α-Hölder functions for any α ∈
(0, 1), and by C n

b (U ; V ) the set of n times differentiable functions, bounded together with
all their derivatives, from U to V . In the previous notation, U and V stand for two finite
dimensional vector spaces. The state space V can be omitted for notational sake when its
value is non ambiguous. When we want to stress the fact that we are working on a finite
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interval [0, T ], we write C α
T (V ) for the space of α-Hölder functions f from [0, T ] to V .

The corresponding Hölder norms shall be denoted by ‖ f ‖α,T .

2.1 Differential equations driven by fBm

Recall that the equation we are interested in is of the form (1). Before stating the assumptions
on our coefficients we need an additional notation:

Notation 3 For n, p ≥ 1, a function f ∈ C p(Rn; R) and any tuple (i1, . . . i p) ∈
{1, . . . , d}p, we set ∂i1...i p f for ∂ p f

∂xi1 ...∂xi p
. Similarly, consider a function gθ ∈ C p(Θ; R), for

n, p ≥ 1 and a vector of parameters θ ∈ Θ ⊂ R
q . For any tuple (i1, . . . i p) ∈ {1, . . . , q}p,

we set ∇i1...i p gi
θ for

∂ p gi
θ

∂θi1 ...∂θi p
, where i = 1, . . . , n.

Using this notation, we work under the following set of assumptions:

Hypothesis 4 For any θ ∈ Θ , we assume that μ(·; θ) : R
m → R

m and σ(·; θ) : R
m → R

m,d

are C 2
b coefficients. Furthermore, we have

sup
θ∈Θ

2∑
l=0

∑
1≤i1,...,il≤q

‖∇l
i1···il μ(·; θ)‖∞ + ‖∇l

i1···il σ(·; θ)‖∞ < ∞.

When Eq. (1) is driven by a fBm with Hurst parameter H > 1/2 it can be solved, thanks to
a fixed point argument, with the stochastic integral interpreted in the (pathwise) Young sense
(see e.g. Gubinelli 2004). Let us recall that Young’s integral can be defined in the following
way:

Proposition 1 Let f ∈ C γ , g ∈ C κ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1. Then the integral∫ t
s gξ d fξ is well-defined as limit of Riemann sums along partitions of [s, t]. Moreover, the

following estimation is fulfilled:∣∣∣∣
∫ t

s
gξ d fξ

∣∣∣∣ ≤ C‖ f ‖γ ‖g‖κ |t − s|γ , (7)

where the constant C only depends on γ and κ . A sharper estimate is also available:∣∣∣∣
∫ t

s
gξ d fξ

∣∣∣∣ ≤ |gs | ‖ f ‖γ |t − s|γ + cγ,κ‖ f ‖γ ‖g‖κ |t − s|γ+κ . (8)

With this definition in mind and under assumptions 4, we can solve our differential system
of interest, and the following moments bounds are proven in Friz and Victoir (2010) and
Hu and Nualart (2007):

Proposition 2 Consider a fBm B with Hurst parameter H > 1/2. Then:

(i) Under Hypothesis 4, Eq. (1) driven by B admits a unique β-Hölder continuous solution
Y , for any β < H.

(ii) Furthermore,

‖Y‖T,β ≤ |a| + c f,T ‖B‖1/β
β,T .

(iii) If we denote by Y a the solution to (1) with initial condition a, then

‖Y b − Y a‖T,β ≤ |b − a| exp
(

c f,T ‖B‖1/β
β,T

)
.
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(iv) If we only assume that f has linear growth, with ∇ f,∇2 f bounded, the following
estimate holds true:

supt∈[0,T ]|Yt | ≤ (1 + |a|) exp
(

c f,T ‖B‖1/β
β,T

)
.

Remark 1 The framework of fractional integrals is used in Hu and Nualart (2007) in order
to define integrals with respect to B. It is however easily seen to be equivalent to the Young
setting we have chosen to work with.

Some differential calculus rules for processes controlled by fBm will also be useful in the
sequel:

Proposition 3 Let B be a d-dimensional fBm with Hurst parameter H > 1/2. Consider
a, â ∈ R, b, b̂ ∈ C α

T (Rd) with α + H > 1, and c, ĉ ∈ CT (R) (all these assumptions are
understood in the almost sure sense). Define two processes z, ẑ on [0, T ] by

zt = a +
d∑

j=1

∫ t

0
b j

u d B j
u +

∫ t

0
cu du, and ẑt = â +

d∑
j=1

∫ t

0
b̂ j

u d B j
u +

∫ t

0
ĉu du.

Then for t ∈ [0, T ], one can decompose the product zt ẑt into

zt ẑt = a â +
n∑

j=1

∫ t

0

[
ẑu b j

u + zu b̂ j
u

]
d B j

u +
∫ t

0

[
zu ĉu + ẑucu

]
du,

where all the integrals with respect to B are understood in the Young sense.

The proof of this elementary and classical result is omitted here. See Proposition 2.8 in León
and Tindel (2012) for the proof of a similar rule.

2.2 Malliavin calculus techniques

Our representation of the density for the solution to (1) obviously relies on Malliavin calculus
tools that we proceed now to recall. As already mentioned in the introduction, on a finite
interval [0, T ] and for some fixed H ∈ (1/2, 1), we consider (�, F , P) the canonical
probability space associated with a fractional Brownian motion with Hurst parameter H . That
is, � = C0([0, T ]; R

d) is the Banach space of continuous functions vanishing at 0 equipped
with the supremum norm, F is the Borel sigma-algebra and P is the unique probability
measure on � such that the canonical process B = {Bt , t ∈ [0, T ]} is a d-dimensional
fractional Brownian motion with Hurst parameter H . Remind that this means that B has
d independent coordinates, each one being a centered Gaussian process with covariance
RH (t, s) = 1

2 (s2H + t2H − |t − s|2H ).

2.2.1 Functional spaces

Let E be the space of d-dimensional elementary functions on [0, T ]:

E =
{

f = ( f1, . . . , fd); f j =
n j −1∑
i=0

a j
i 1[t j

i ,t j
i+1)

,

0 = t0 < t j
1 < · · · < t j

n j −1 < t j
n j = T, for j = 1, . . . , d

}
. (9)
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We call H the completion of E with respect to the semi-inner product

〈 f, g〉H =
d∑

i=1

〈 fi , gi 〉H0
, where 〈1[0,t], 1[0,s]〉H0 := R(s, t), s, t ∈ [0, T ].

Then, one constructs an isometry K ∗
H : H → L2([0, 1]; R

d) such that

K ∗
H

(
1[0,t1], . . . , 1[0,td ]

) = (
1[0,t1]K H (t1, ·), . . . , 1[0,td ]K H (td , ·)) ,

where the kernel K H is given by

K H (t, s) = cH s
1
2 −H

∫ t

s
(u − s)H− 3

2 u H− 1
2 du

and verifies that RH (t, s) = ∫ s∧t
0 K H (t, r)K H (s, r) dr , for some constant cH . Moreover, let

us observe that K ∗
H can be represented in the following form: for ϕ = (ϕ1, . . . , ϕd) ∈ H ,

we have K ∗
H ϕ

K ∗
H ϕ =

(
K ∗

H ϕ1, . . . , K ∗
H ϕd

)
, where [K ∗

H ϕi ]t =
∫ 1

t
ϕi

r∂r K H (r, t) dr.

2.2.2 Malliavin derivatives

Let us start by defining the Wiener integral with respect to B: for any element f in E whose
expression is given as in (9), we define the Wiener integral of f with respect to B as

B( f ) :=
d∑

j=1

n j −1∑
i=0

a j
i (B j

t j
i+1

− B j

t j
i

).

We also denote this integral as
∫ T

0 ft d Bt , since it coincides with a pathwise integral with
respect to B.

For θ : R → R, and j ∈ {1, . . . , d}, denote by θ [ j] the function with values in R
d having

all the coordinates equal to zero except the j-th coordinate that equals to θ . It is readily seen
that

E
[

B
(

1[ j]
[0,s)

)
B

(
1[k]
[0,t)

)]
= δ j,k Rs,t .

This definition can be extended by linearity and closure to elements of H , and we obtain the
relation

E [B( f ) B(g)] = 〈 f, g〉H ,

valid for any couple of elements f, g ∈ H . In particular, B(·) defines an isometric map from
H into a subspace of L2(�).

We can now proceed to the definition of Malliavin derivatives. With this notation 3 in
hand, let us consider S be the family of smooth functionals F of the form

F = f (B(h1), . . . , B(hn)), (10)

where h1, . . . , hn ∈ H , n ≥ 1, and f is a smooth function with polynomial growth, together
with all its derivatives. Then, the Malliavin derivative of such a functional F is the H -valued
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random variable defined by

DF =
n∑

i=1

∂i f (B(h1), . . . , B(hn)) hi .

For all p > 1, it is known that the operator D is closable from L p(�) into L p(�; H )

(see e.g. Sect. 1 in Nualart (2006)). We will still denote by D the closure of this operator,
whose domain is usually denoted by D

1,p and is defined as the completion of S with respect
to the norm

‖F‖1,p := (
E(|F |p) + E(‖DF‖p

H )
) 1

p .

It should also be noticed that partial Malliavin derivatives with respect to each component B j

of B will be invoked: they are defined, for a functional F of the form (10) and j = 1, . . . , d ,
as

D j F =
n∑

i=1

∂i f (B(h1), . . . , B(hn))h[ j]
i ,

and then extended by closure arguments again. We refer to Sect. 1 in Nualart (2006) for the
definition of higher derivatives and Sobolev spaces D

k,p for k > 1. Another essential object
related to those derivatives is the so-called Malliavin matrix of a R

m-valued random variable
F ∈ D

1,2, defined by

γF =
(〈

DFi , DF j
〉)

1≤i, j≤m
. (11)

2.2.3 Skorohod integrals

We will denote by δ the adjoint of the operator D (also referred to as the divergence operator).
This operator is closed and its domain, denoted by Dom(δ), is the set of H -valued square
integrable random variables u ∈ L2(�; H ) such that

|E [〈DF, u〉H ] | ≤ C ‖F‖2,

for all F ∈ D
1,2, where C is some constant depending on u. Moreover, for u ∈ Dom(δ), δ(u)

is the element of L2(�) characterized by the duality relationship:

E [Fδ(u)] = E [〈DF, u〉H ] , for any F ∈ D
1,2. (12)

The quantity δ(u) is usually called Skorohod integral of the process u.
Skorohod integrals are obviously analytic objects, not suitable for easy numerical

implementations. However, they can be related to the Young type integrals introduced at
Proposition 1. For this, we need to define another functional space as follows:

Notation 5 We call |H | the space of measurable functions ϕ : [0, T ] → R
d such that

‖ϕ‖2|H | := cH

∫ 1

0

∫ 1

0
|ϕr ||ϕu ||r − u|2H−2drdu < +∞,

where cH = H(2H − 1), and we denote by 〈·, ·〉|H | the associated inner product. We also
write D

k,p(|H |) for the space of D
k,p functionals with values in |H |.

The following proposition is then a slight extension of Proposition 5.2.3 in Nualart (2006):
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Proposition 4 Let {ui j
t , t ∈ [0, 1]}, for i = 1, . . . , m and j = 1, . . . , d, be a stochastic

process in D
1,2(|H |) such that

d∑
j=1

∫ 1

0

∫ 1

0
|D j

s ui j
t | |t − s|2H−2dsdt < +∞ a.s. (13)

We also assume that almost surely, u has β-Hölder paths with β + H > 1. Then the Young
integral

∑d
j=1

∫ T
0 ui j

t d B j
t exists and for all i = 1, . . . , m can be written as

d∑
j=1

∫ T

0
ui j

t d B j
t = δ(ui ) +

d∑
j=1

∫ T

0

∫ T

0
D j

s ui j
t |t − s|2H−2dsdt,

where δ(u) stands for the Skorohod integral of u.

3 Probabilistic expression for the log-likelihood

Recall that we are focusing on Eq. (1) driven by a d-dimensional fBm B, and that we have
chosen to use expression (5) as a substitute to the log-likelihood function. We have thus
reduced the initial maximization problem to the solution of ∇l�n(θ) = 0. This will be
performed numerically by means of a root approximation algorithm.

Observe first that in order to define (5), the density of Yt (θ) must exist for any t > 0. Let
us thus recall the classical setting (given in Hu and Nualart 2007) under which Yt admits a
smooth density:

Hypothesis 6 Let μ and σ be coefficients satisfying Hypothesis 4. For ξ ∈ R
m and θ ∈ Θ ,

set α(ξ) = σ(ξ, θ)σ ∗(ξ, θ). Then we assume that

(i) For any k ≥ 0 and j1, . . . , jk ∈ {1, . . . , m} we have

sup
θ∈Θ

2∑
l=0

∑
1≤p1,...,pl≤q

‖∇l
p1···pl

∂k
j1,..., jk μ(·; θ)‖∞ + ‖∇l

p1···pl
∂k

j1,..., jk σ(·; θ)‖∞ ≤ ck,

for a strictly positive constant ck .
(ii) There exists a strictly positive constant ε such that 〈α(ξ ; θ)η, η〉Rm ≥ ε|η|2

Rm for any
couple of vectors η, ξ ∈ R

m, uniformly in θ ∈ Θ .

Then the density result for Yt can be read as follows:

Theorem 7 Consider the stochastic differential Eq. (1) with initial condition a ∈ R
m.

Assume Hypothesis 6 is satisfied. Then, for any t > 0 and θ ∈ Θ , the law of Yt (θ) admits a
C ∞ density, denoted by f (t, ·; θ), with respect to Lebesgue’s measure.

In the sequel, we shall suppose that the density f (t, ·; θ) exists without further mention,
the aim of this section being to produce a probabilistic representation of f (t, ·; θ) for com-
putational purposes. To this aim, we shall first give the equations governing the Malliavin
derivatives of the processes Y (θ) and ∇Y (θ), and then use a stochastic analysis formula in
order to represent our log-likelihood. We separate these tasks in two different subsections.
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3.1 Some Malliavin derivatives

This section is devoted to a series of preliminary lemmas which will enable to formulate our
probabilistic representation of f (t, ·; θ). Let us first introduce a notation which will prevail
until the end of the paper:

Notation 8 For a set of indices or coordinates (k1, . . . , kr ) of length r ≥ 1 and 1 ≤ j ≤ r ,
we denote by (k1, . . . , ǩ j , . . . , kr ) the set of indices or coordinates of length r − 1 where k j

has been omitted.

We now give a general expression for the higher order derivatives of Yt , borrowed from
Nualart and Saussereau (2009).

Lemma 1 Assume Hypothesis 4 and 6 hold true. For n ≥ 1 and (i1, . . . , in) ∈ {1, . . . , d}n,
denote by Di1,...,in Y i

t (θ) the nth Malliavin derivative of Y i
t (θ) with respect to the coordinates

Bi1 , . . . , Bin of B. Then Di1,...,in Y i
t (θ), considered as an element of H ⊗n, satisfies the

following linear equation: for t ≥ r1 ∨ · · · ∨ rn,

Di1,...,in
r1,...,rn

Y i
t (θ) =

n∑
p=1

αi
i p,i1...,ı̌ p,...,in

(rp; r1, . . . , ř p, . . . , rn; θ)

+
∫ t

r1∨···∨rn

β i
i1,...,in

(s; r1, . . . , rn; θ) ds +
d∑

l=1

∫ t

r1∨···∨rn

αi
l,i1,...,in

(s; r1, . . . , rn; θ) d Bl
s,

(14)

where

αi
j,i1,...,in

(s; r1, . . . , rn; θ) =
∑ m∑

k1,...,kν=1

∂ν
k1...kν

σ i j (Ys(θ); θ) Di(I1)
r(I1)

Y k1
s (θ) . . . Di(Iν )

r(Iν )
Y kν

s (θ)

βi
i1,...,in

(s; r1, . . . , rn; θ) =
∑ m∑

k1,...,kν=1

∂ν
k1...kν

μi (Ys(θ); θ) Di(I1)
r(I1)

Y k1
s (θ) . . . Di(Iν )

r(Iν )
Y kν

s (θ).

In the expressions above, the first sums are extended to the set of all partitions I1, . . . , Iν of

{1, . . . , n} and for any subset K = {i1, . . . , iη} of {1, . . . , n} we set Di(K )
r(K )

for the derivative

operator D
i1,...,iη
r1,...,rη

. Notice that Di1,...,in
r1,...,rn Y i

t (θ) = 0 whenever t < r1 ∨ · · · ∨ rn.

The formulas above might seem intricate. The following examples illustrate their use in
a simple enough situation:

Example 1 The first order derivative D1
r1

Y 1
t can be computed as

D2
r1

Y 1
t = σ 12(Yr1(θ); θ) +

m∑
k=1

∂kμ
1(Ys(θ); θ)D2

r1
Ys(θ)kds

+
d∑

�=1

m∑
k=1

∫ t

r1

∂kσ
1�(Ys(θ); θ)D2

r1
Ys(θ)kd B�

s ,

if r1 ≤ t and 0, if r1 > t .

123



Stat Inference Stoch Process (2013) 16:29–61 41

Example 2 The second order derivative D1,3
r1,r2 Y 2

t (θ) can be computed as:

D1,3
r1,r2

Y 2
t (θ) = α2

1,3(r1, r2; θ) + α2
3,1(r2, r1; θ)

+
∫ t

r1∨r2

β2
1,3(s, r1, r2; θ) ds +

d∑
l=1

∫ t

r1∨r2

α2
l,1,3(s, r1, r2; θ)d Bl

s,

where

α2
1,3(r1, r2; θ) =

m∑
k=1

∂kσ
21(Yr2(θ); θ) D3

r2
Y k

r1
(θ),

α2
3,1(r2, r1; θ) =

m∑
k=1

∂kσ
23(Yr1(θ); θ) D1

r1
Y k

r2
(θ)

and

β2
1,3(s, r1, r2; θ) = ∂2

kkμ
2(Ys(θ); θ)D1,3

r1,r2
Y k

s (θ) + ∂2
k1k2

μ2(Ys(θ); θ)D1
r1

Y k1
s (θ)D3

r2
Y k2

s (θ),

α2
l,1,3(s, r1, r2; θ) = ∂2

kkσ
2l(Ys(θ); θ)D1,3

r1,r2
Y k

s (θ) + ∂2
k1k2

σ 2l(Ys(θ); θ)D1
r1

Y k1
s (θ)D3

r2
Y k2

s (θ),

where we have used the convention of summation over repeated indices.

Our formula for the log-likelihood will also involve some derivatives of the process Y (θ)

with respect to the parameter θ . The existence of this derivative is assessed below:

Proposition 5 Under the same hypothesis as for Lemma 1, the random variable Y i
t (θ) is

a smooth function of θ for any t ≥ 0. We denote by ∇lY i
t (θ) the derivative of Y i

t (θ) with
respect to the lth element of the vector of parameters θ . This process satisfies the following
SDE:

∇lY
i
t (θ) =

∫ t

0
[∂iμ

i (Yu(θ); θ)∇lY
i
u(θ) + ∇lμ

i (Yu(θ); θ)]du

+
d∑

j=1

∫ t

0
[∂σ i j (Yu(θ); θ)∇lY

i
u(θ) + ∇lσ

i j (Yu(θ); θ)]d B j
u .

Proof The proof goes exactly along the same lines as for Proposition 4 in Nualart and
Saussereau (2009), and the details are left to the reader. ��

We shall also need some equations describing the gradient of the Malliavin derivatives of
∇lY (θ) with respect to θ . This is the aim of the following lemma:

Lemma 2 For any l ∈ {1, . . . , q} and n ≥ 1, the process ∇l Di1,...,in Y (θ) is n-times differ-
entiable in the Malliavin calculus sense. Moreover, taking up the notations of Lemma 1, the
process ∇l Di1,...,in Y i

t (θ) satisfies the following linear equation: for t ≥ r1 ∨ · · · ∨ rn,

∇l Di1,...,in
r1,...,rn

Y i
t (θ) =

n∑
p=1

α̂
i,l
i p,i1...,ı̌ p,...,n(ri p , r1, . . . , ř p, . . . , rn; θ)

+
∫ t

r1∨···∨rn

β̂
i,l
i1,...,in

(s; r1, . . . , rn; θ) ds +
d∑

l=1

∫ t

r1∨···∨rn

α̂
i,l
l,i1,...,in

(s; r1, . . . , rn; θ) d Bl
s,
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where α̂
i,l
j,i1,...,in

= ∇lα
i
j,i1,...,in

and β̂
i,l
j,i1,...,in

= ∇lβ
i
i1,...,in

. More specifically, β̂
i,p
j,i1,...,in

is
defined recursively by

β̂
i,p
i1,...,in

(s; r1, . . . , rn; θ)

=
∑

I1∪...∪Iν

m∑
k1,...,kν=1

{
∇p[∂ν

k1...kν
μi (Ys(θ); θ)] Di(I1)

r(I1)Y
k1
s (θ) · · · Di(Iν )

r(Iν )Y
kν
s (θ)

+∂ν
k1...kν

μi (Ys(θ); θ)

ν∑
p=1

∇p D
i(Ip)

r(Ip)Y
kp
s (θ) Di(I1)

r(I1)Y
k1
s (θ) · · · D

ı̌(Ip)

ř(Ip)
Y

ǩp
s (θ) · · · Di(Iν )

r(Iν )Y
kν
s (θ)

}
,

where we have set

∇p[∂ν
k1...kν

μi (Ys(θ); θ)] = ∇p∂
ν
k1...kν

μi (Ys(θ); θ) + ∂∂ν
k1...kν

μi (Ys(θ); θ)∇pYs(θ).

Notice that the same kind of equation (skipped here for sake of conciseness) holds true for
the coefficients α̂

i,l
j,i1,...,in

.

The next object we need for our calculations is the inverse of the Malliavin matrix γYt (θ)

of Yt (θ). Recall that according to (11), the Malliavin matrix of Yt (θ) is defined by

γt (θ) := γYt (θ) =
(〈

D·Y i
t (θ), D·Y j

t (θ)
〉)

1≤i, j≤m
, (15)

where we have set γt (θ) := γYt (θ) for notational sake in the computations below. We shall
now compute γ −1

t (θ) as the solution to a SDE:

Proposition 6 The matrix valued process γ −1
t (θ) is the unique solution to the following

linear equation in η:

ηt (θ) = α̃−1
0 (Yt (θ); θ) −

d∑
l=1

∫ t

0
[ηu(θ)α̃l(Yu(θ); θ) + α̃T

l (Yu(θ); θ)ηu]d Bl
u

−
∫ t

0
[ηu(θ)β̃(Yu(θ); θ) + β̃T (Yu(θ); θ)ηu(θ)]du, (16)

with

α̃0(Yt (θ); θ)=
m∑

j=1

∫ t

0

∫ t

0
σ i j (Yr (θ); θ)σ i ′ j (Yr ′(θ); θ) |r − r ′|2H−2dr dr ′, i, i ′ =1, . . . , m

and where the other coefficients α̃ and β̃ are defined by

α̃l (Yu(θ); θ) =
(
∂kσ

i ′l (Yu(θ); θ)
)

1≤i ′,k≤m
and β̃(Yu(θ); θ) =

(
∂kμ

i ′ (Yu(θ); θ)
)

1≤i ′,k≤m
.

(17)

Proof The proof of this fact is an adaptation of Theorem 7 in Hu and Nualart (2007) to
the case of a SDE with drift. We include it here for sake of completeness, and we drop the
dependence of Y on θ for notational sake in the computations below.
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Let us start by invoking Proposition 3 and Eq. (14) in order to compute the product of two
first-order Malliavin derivatives:

D j
r Y i

t D j
r ′Y i ′

t = σ i j (Yr )σ
i ′ j (Yr ′) (18)

+
m∑

k=1

{∫ t

0

d∑
l=1

[
∂kσ

il(Yu) D j
r ′Y i ′

u D j
r Y k

u + ∂kσ
i ′l(Yu) D j

r Y i
u D j

r ′Y k
u

]
d Bl

u

+
∫ t

0

[
∂kμ

i (Yu) D j
r ′Y i ′

u D j
r Y k

u + ∂kμ
i ′(Yu) D j

r Y i
u D j

r ′Y k
u du

]}
.

Moreover, recall that γt is defined by (15). Thus, the covariance matrix becomes

γ i i ′
t =

d∑
j=1

〈
D j Y i

t , D j Y i ′
t

〉
H

= cH

d∑
j=1

∫ t

0

∫ t

0
D j

r Y i
t (θ) D j

r ′Y i ′
t (θ) |r − r ′|2H−2 dr dr ′.

Plugging (18) into this relation, we end up with the following equation for γ i i ′ :

γ i i ′
t = α̃i i ′

0 +
d∑

l=1

∫ t

0

m∑
k=1

[
∂kσ

il(Yu) γ i ′k
u + ∂kσ

i ′l(Yu) γ ik
u

]
d Bl

u

+
∫ t

0

m∑
k=1

[
∂kμ

i (Yu) γ i ′k
u + ∂kμ

i ′(Yu) γ ik
u

]
du.

Using our notation (17) and matrix product rules, we obtain that γt is solution to:

γt =
d∑

l=1

∫ t

0
(α̃l(Yu)γu + γu α̃T

l (Yu))d Bl
u +

∫ t

0
(β̃(Yu)γu + γu β̃T (Yu))du.

Consider now η solution to (16). Applying again Proposition 3, it is readily checked that
γtηt = Id for any t ∈ [0, T ], which ends the proof. ��
Remark 2 Gathering Eq. (16) and Proposition 2, it is easily seen that for any t > 0 and
θ ∈ Θ, Yt (θ) is a non degenerate random variable in the sense given at Definition 2.1.2 in
Nualart (2006): we have det(γ −1

t ) ∈ L p(�) for any p > 1.

Now that we have derived an equation forη = γ −1, an equation for the Malliavin derivative
of η is also available:

Proposition 7 For any l ∈ {1, . . . , q} and n ≥ 1, the process ηt = γ −1
t is n-time differen-

tiable in the Malliavin calculus sense. Moreover, the process Di1,...,in ηt satisfies the following
equation: for t ≥ r1 ∨ · · · ∨ rn,

Di1,...,in
r1,...,rn

η
i j
t (θ) = −

n∑
k1=1

k1∑
k2=1

(D
i1,...,ik2
r1,...,rk2

α̃−1
0 D

i1,i2,...,ik1−k2
r1,r2,...,rk1−k2

α̃0 D
i1,...,in−k1
r1,...,rn−k1

α̃−1
0 )i j

−
d∑

�=1

∫ t

r1∨...∨rn

Ci j
�,i1,...,in

(s; r1, . . . , rn; θ)d B�
s −

∫ t

r1∨...∨rn

Ai j
i1,...,in

(s; r1, . . . , rn; θ)ds,
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where

Ai j
i1,...,in

(s; r1, . . . , rn; θ) =
∑ m∑

k1,...,kν

m∑
k=1{

[∂ν
k1,...,kν

(β̃(Yu(θ); θ))k j Di(I1)
r(I1)

ηik
s (θ) . . . Di(Iν )

r(Iν )η
ik
s (θ) Di(I1)

r(I1)
Y i

s (θ) . . . Di(Iν )
r(Iν )Y

i
s (θ)]

+[∂ν
k1,...,kν

(β̃(Yu(θ); θ))ik Di(I1)
r(I1)

η
k j
s (θ) . . . Di(Iν )

r(Iν )η
k j
s (θ) Di(I1)

r(I1)
Y j

s (θ) . . . Di(Iν )
r(Iν )Y

j
s (θ)]

}

and the same kind of equation holds for Ci j
l,i1,...,in

(s; r1, . . . , rn; θ), with the coefficients β

replaced by αl .

Proof The proof of this proposition is based on Lemma 1 and the fact that
d A−1

λ

dλ

= −A−1
λ

d Aλ

dλ
A−1

λ . ��
Finally, one can also differentiate η with respect to our standing parameter θ , which

yields:

Lemma 3 The derivative of the inverse of the Malliavin matrix ηt with respect to θ satisfies
the following SDE

∇lηt (θ) = ∇l α̃
−1
0 −

d∑
�=1

∫ t

0
{∇lηu(θ)α̃�(Yu(θ); θ) + ηu(θ)∇l [α̃�(Yu(θ); θ)]

+ ∇l [α̃T
� (Yu(θ); θ)]ηu(θ) + α̃T

� (Yu(θ); θ)∇lηu(θ)
}

d B�
u −

∫ t

0
{∇lηu(θ)β̃(Yu(θ); θ)

+ηu(θ)∇l [β̃(Yu(θ); θ)] + ∇l [β̃T (Yu(θ); θ)]ηu(θ) + β̃T (Yu(θ); θ)∇lηu(θ)}du,

where ∇l [β̃�(Yu)] = ∂β̃�(Yu)∇lYu +∇l β̃�(Yu) and ∇l [α̃�(Yu)] = ∂α̃�(Yu)∇lYu +∇l α̃�(Yu).

3.2 Probabilistic representation of the likelihood

We have chosen to represent the log-likelihood of our sample thanks to the following formula
borrowed from the stochastic analysis literature:

Proposition 8 Let F be a R
m-valued non degenerate random variable (see Remark 2 for

references on this concept), and let f be the density of F. For n ≥ 1 and ( j1, . . . , jn) ∈
{1, . . . , m}n, let H( j1,..., jn)(F) be defined recursively by H( j1)(F) = ∑m

j=1 δ((γ −1
F ) j1 j DF j )

and

H( j1,..., jn)(F) =
m∑

j=1

δ

((
γ −1

F

) jn j
DF j H( j1,..., jn−1)(F)

)
, (19)

where the Skorohod operator δ is defined at Sect. 2.2.3. Then one can write

f (x) = E
[
1(F>x) H(1,...,m)(F)

] = E
[
(F − x)+ H(1,...,m,1,...,m)(F)

]
, (20)

where 1(F>x) := ∏m
i=1 1(Fi >xi )

and (F − x)+ := ∏m
i=1(Fi − xi )+.

Proof The first formula is a direct application of Proposition 2.1.5 in Nualart (2006). The
second one is obtained along the same lines, integrating by parts m additional times with
respect to the first one. ��
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The formula above can obviously be applied to Yt (θ) for any strictly positive t , since
we have noticed at Remark 2 that Yt (θ) is a non-degenerate random variable. However, the
expression of H( j1,..., jn)(Yt (θ)) given by (19) is written in terms of Skorohod integrals, which
are not amenable to numerical computations. We will thus recast this expression in terms of
Young integrals plus some correction terms:

Proposition 9 Under Hypothesis 4 and 6, let us define Q pji
st := (γ −1

s )pj Di
sY j

t (θ) for 0 ≤
s < t ≤ T, p, j ∈ {1, . . . , m} and i ∈ {1, . . . , d}. Consider p ∈ {1, . . . , m} and a real
valued random variable G which is smooth in the Malliavin calculus sense. Set

Up(G) =
m∑

i=1

d∑
j=1

G
∫ t

0
Q pji

st d Bi
s − cH

m∑
i=1

d∑
j=1

∫ t

0

∫ t

0
Di

s

[
G Q pji

r t

]
|r − s|2H−2drds,

(21)

where the integral with respect to B is understood in the Young sense. Then the quantities
H( j1,..., jn)(Yt (θ)) defined at Proposition 8 can be expressed as

H( j1,..., jn)(Yt (θ)) =
m∑

j=1

U jn ◦ · · · ◦ U j1

(
Y j

t (θ)
)
. (22)

Proof It is an immediate consequence of Proposition 4, since we have noticed in our Remark
2 that Yt (θ) is a non-degenerate random variable. ��

The previous proposition is still not sufficient to warranty an effective computation of the
log-likelihood. Indeed, the right hand side of (21) contains terms of the form Ds[G Q pji

r t ],
which should be given in a more explicit form. This is the content of our next proposition.

Proposition 10 Set H( j1,..., jn)(Yt (θ)) := K j1... jn . Then the term Ds[K j1... jn Q pji
r t ] in (21)

can be computed inductively as follows:
(i) We have Ds[K j1... jn Q pji

r t ] = Ds K j1... jn Q pji
r t + K j1... jn Ds Q pji

r t , and Ds Q pji
r t is com-

puted by invoking Proposition 7 for the derivative of γ −1
t and Lemma 1 for the derivative of

Yt (θ). We are thus left with the computation of Ds K j1... jn .
(ii) Assume now that we can compute n − r Malliavin derivatives of K j1... jr . Notice that

this condition is met for r = 0, since Yt (θ) itself can be differentiated n times in an explicit
way according to Lemma 1 again. Then for any j1, . . . , jr+1 and k ≤ n − r − 1, the quantity
K j1... jr+1 can be differentiated k times, with a Malliavin derivative given by

Di1,...,ik
ρ1...ρk

K j1... jr+1 =
k∑

�=1

Di1,...,ǐ�...,ik
ρ1...ρ̌�...ρk

(K j1... jr Q pji
ρ�t ) +

d∑
j=1

∫ t

0
Di1,...,ik

ρ1...ρk
(K j1... jr Q pji

st )d B j
s

−cH

∫ t

0

∫ t

0
Dk+1

r1ρ1...ρk
(K j1... jr Q pji

r2t )|r1 − r2|2H−2dr1dr2. (23)

Proof We focus on the induction step (ii), the other one being straightforward: for a smooth
random variable W , one easily gets by induction that

D
i1,...,i p
r1...r p δ(W ) =

p∑
�=1

D
i1,...,ǐ�...,i p

r1...ř�...r p
Wr�

+ δ(D
i1,...,i p
r1...r p W ). (24)

Suppose we know the n − r Malliavin derivatives for U jr ◦ · · · ◦ U j1(F) := K j1... jr . Recall
moreover that

K j1... jr+1 = U jr+1(K jr ... j1) = δ(K jr ... j1 Q·t )
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Applying directly relation (24) we thus get, for k ≤ m − 1:

Di1,...,ik
ρ1...ρk

δ(K jr ... j1 Q·t ) =
k∑

�=1

Di1,...,ǐ�,...,ik−1
ρ1...ρ̌�...ρk

(K jr ... j1 Qρ�t ) + δ(Di1,...,ik
ρ1...ρk

(K jr ... j1 Q·t )).

Our formula (23) is now obtained by applying Proposition 4 to the Skorohod integral
δ(Dk

ρ1...ρk
(K jr ... j1 Q·t )) above. ��

Example 3 As an illustration of the proposition above, we compute U2 ◦ U1(F) for
F = Y i

t , i ∈ {1, . . . , m} and our d-dimensional fBm B.
Write first U1(Y i

t ) = δ(Y i
t (γ −1)1 j1 D j1 Y i

t ), and since this quantity has to be expressed
in a suitable way for numerical approximations, we have

U1(Y
i
t ) =

d∑
j1=1

Y i
t

∫ t

0
Q1i j1

ut d B j1
u − cH

d∑
j1=1

∫ t

0

∫ t

0
D j1

u1 [Y i
t Q1i j1

u2t ]|u1 − u2|2H−2du1du2,

where Q is defined at Proposition 9 and where the first integral in the right hand side is
understood in the Young sense. In order to compute the second one, we have to compute
Malliavin derivatives. This is done through Lemma 1 for Y and Proposition 7 for Q.

We now have to differentiate U1(Y i
t ): the derivation rules for Skorohod integrals imme-

diately yield

D j2
u2 [U1(Y

i
t )] =

d∑
j2=1

Y i
t Q2i j2

u2t +
d∑

j2=1

δ(D j2
u2 [Y i

t Q2i j2·t ]).

Once again, the Skorohod integral above is not suitable for numerical approximations. Write
thus

D j2
u2 [U1(Y

i
t )] =

d∑
j2=1

Y i
t Q2i j2

u2t +
d∑

j2=1

∫ t

0
D j2

u2 [Y i
t Q2i j2

r t ]d B j2
r

−cH

d∑
j2=1

∫ t

0

∫ t

0
D j2

u2 D j1
u1 [Y i

t Q2i j2
u2t ]|u2 − u1|2H−2du1du2,

and compute the Malliavin derivatives of the products Y Q thanks to Lemma 1 for Y and
Proposition 7 for Q. Once this is done, just write

U2(U1(Y
i
t )) = δ(U1(Y

i
t )Qi·t )

=
d∑

j2=1

U1(Y
i
t )

∫ t

0
Q2i j2

ut d B j2
u − cH

d∑
j2=1

∫ t

0

∫ t

0
D j2

u2 [U1(Y
i
t )Q2i j2

u1t ]|u2 − u1|2H−2du1du2.

In order to give our formula for the derivative of the log-likelihood, we still need to
compute the derivative with respect to θ of H( j1,..., jn)(Yt (θ)). For this we state the following
lemma
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Lemma 4 The derivative with respect to θ of Up(Yt (θ)) can be written as

∇lUp(Y
i
t (θ)) =

d∑
j=1

[∇lY
i
t (θ)

∫ t

0
Q pi j

st (θ) d B j
s + Y i

t (θ)

∫ t

0
∇l [Q pi j

st (θ)] d B j
s ]

−cH

d∑
j=1

∫ t

0

∫ t

0
∇l [D j

s Y i
t (θ)Q pi j

r t (θ)]|r − s|2H−2drds,

where ∇lY i
t (θ) is computed according to Proposition 5 and ∇l [D j

s Y i
t ] is given by Lemma 2.

As far as ∇l [Q pj
st (θ)] is concerned, it is obtained through the following equation:

∇l [Q pj
st (θ)] = ∇lη

pj
s (θ) DsY j

t (θ) + η
pj
s (θ)∇l [DsY j

t (θ)],

where the expression for ∇lη
pj
s (θ) is a consequence of Lemma 3.

We are now ready to state our probabilistic expression for the log-likelihood function (5).

Theorem 9 Assume Hypothesis 4 and 6 hold true. Let yti , i = 1, . . . , n be the observation
arriving at time ti . Let also Yti be the solution to the SDE (1) at time ti . Then, the gradient
of the log-likelihood function admits the following probabilistic representation: ∇l�n(θ)

= ∑n
i=1

Vi (θ)
Wi (θ)

, with

Wi (θ) = E
[

1(Yti (θ)>yti )
H(1,...,m)

(
Yti (θ)

)]
(25)

and

Vi (θ) = E
[
∇lYti (θ) 1(Yti (θ)>yti )

H(1,...,m,1,...,m)

(
Yti (θ)

)

+
(

Yti (θ) − yti

)
+∇l H(1,...,m,1,...,m)

(
Yti (θ)

)]
, (26)

where (i) H( j1,..., jn)(Yti (θ)) is given recursively by (22) and computed at Proposition 10 (ii)
∇lYti (θ) is given by Proposition 5 (iii) ∇l H(1,...,m,1,...,m) is obtained by applying Lemma 4.

Proof Recall that under Hypothesis 4 and 6, Yt (θ) admits a C ∞ density f (t, ·; θ) for any
t > 0 and θ ∈ Θ . Moreover, we have defined �n(θ) as �n(θ) = ∑n

i=1 ln( f (ti , yti ; θ)). Thus

∇l�n(θ) =
n∑

i=1

∇l f (ti , yti ; θ)

f (ti , yti ; θ)
:=

n∑
i=1

Vi (θ)

Wi (θ)
.

Now Wi (θ) can be expressed like (25) by a direct application of (20), first relation. As far as
Vi (θ) is concerned, write

f (ti , yti ; θ) = E
[(

Yti (θ) − yti

)
+ H(1,...,m,1,...,m)(Yti (θ))

]
,

according to the second relation in (20). By using standard arguments, one is allowed to
differentiate this expression within the expectation, which directly yields (26). ��
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4 Discretization of the log-likelihood

The expression of the log-likelihood that we derived in Proposition 9 is a fraction of two
expectations that do not have explicit formulas even in the one-dimensional case. In addition,
our goal is to find the root of this non-explicit expression, the ML estimator, which is an even
harder task. To solve this problem in practice we first use a stochastic approximation algorithm
in order to find the root of ∇l�n(θ). In each iteration of the algorithm we compute the value of
the expression using Monte-Carlo (MC) simulations. For each Monte-Carlo simulation, since
we do not have available an exact way of simulating the kernels of the expectation, we use
an Euler approximation scheme. More specifically, we simulate using Euler approximation
terms such as Yt , DYt , which are solutions to fractional stochastic differential equations.

Therefore, in our approach we have three types of error in the computation of the MLE: the
error of the stochastic approximation algorithm, the Monte-Carlo error and the discretization
bias introduced by the Euler approximation for the stochastic differential equations. Our aim
here is to combine the Monte Carlo and Euler approximations in an optimal way in order to
get a global error bound for the computation of ∇l�n(θ).

4.1 Pathwise convergence of the Euler scheme

The Euler scheme is the main source of error in our computations. There is always a trade-
off between the number of Euler steps and the number of simulations, but what is usually
computationally costly is the number of Euler steps. This is even worse when we deal with
fractional SDEs, since the rate of convergence depends on H and the closer the value of H
to 1/2, the more steps are required for the simulation.

In this section, we compute the magnitude of the discretization error we introduce. We
measure the bias of the Euler scheme via the root mean square error. That is, we want to
estimate the quantity supτ∈[0,T ](E|Yτ (θ) − Ȳ M

τ (θ)|2)1/2, where Yt (θ) is the solution to the
SDE (1) and Ȳ M

τ (θ) is the Euler approximation of Yτ (θ) given on the grid {τk; k ≤ M} by

Ȳ M
τk+1

(θ) = Ȳ M
τk

(θ) + μ(Ȳ M
τk

(θ); θ)(τk+1 − τk) +
d∑

j=1

σ j (Ȳ M
τk

(θ); θ)δB M, j
τkτk+1

, (27)

in which we denote δB M, j
τkτk+1 = B M, j

τk+1 − B M, j
τk and τk = kT

M for k = 0, . . . , M − 1. Notice
that those estimates can be found in Deya et al. (2012); Friz and Victoir (2010) and Mishura
and Shevchenko (2008). We include their proof here because it is simple enough, and also
because they can be easily generalized to the case of a linear equation. This latter case is of
special interest for us, since it corresponds to Malliavin derivatives, and is not included in
the aforementioned references.

Notation 10 For simplicity, in this section we write Y := Y (θ).

Proposition 11 Let T > 0 and recall that ¯Y M is defined by Eq. (27). Then, there exists a
random variable C with finite L p moments such that for all γ < H and H > 1/2 we have

‖Yt − Ȳ‖γ,T ≤ CT M1−2γ (28)

Consequently, we obtain that the MSE is of order O(M1−2γ ).

Proof In order to prove (28) we apply techniques of the classical numerical analysis for the
flow of an ordinary differential equation driven by a smooth path. Namely, the exact flow of
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(1) is given by Φ(y; s, t) := Yt , where Yt is the unique solution of (1) when t ∈ [s, T ] and
the initial condition is Ys = y. Introduce also the numerical flow

Ψ (y; τk , τk+1) := y + μ(y)(τk+1 − τk) +
d∑

j=1

σ j (y)δB M, j
τkτk+1

, (29)

where τk = kT
M , k = 0, . . . , M − 1. Thus, we can write that

Ȳ M
τk+1

= Ψ
(

Ȳ M
τk

; τk, τk+1

)
, k = 0, . . . , M − 1

Y M
0 = α.

For q > k we also have that

Ψ (y; τk, τq) := Ψ (·; τq−1, τq) ◦ Ψ (·; τq−2, τq−1) ◦ . . . ◦ Ψ (y; τk, τk+1).

The one-step error computes as

rk = Φ(y; τk, τk+1) − Ψ (y; τk , τk+1)

=
∫ τk+1

τk

[
μ(Ys) − μ(y)

]
ds +

∫ τk+1

τk

[
σ(Ys) − σ(y)

]
d Bs (30)

Furthermore, since Y ∈ C γ and B ∈ C γ for γ > 1/2, using (8) we have

∣∣∣
∫ τk+1

τk

[
σ(Ys) − σ(y)

]
d Bs

∣∣∣ ≤ cγ ‖∂σ‖∞‖Y‖γ ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

≤ cγ,σ ‖∂σ‖∞ ‖B‖1/γ
γ ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

,

where we used the fact that ‖Y‖γ ≤ cσ ‖B‖1/γ
γ (see Proposition 2). Similarly, for the drift

part we have

∣∣∣
∫ τk+1

τk

[
μ(Ys) − μ(y)

]
ds

∣∣∣ ≤ cγ ‖∂μ‖∞ ‖Y‖γ

∣∣∣∣ T

M

∣∣∣∣
γ+1

≤ cγ,μ ‖∂μ‖∞ ‖B‖1/γ
γ

∣∣∣∣ T

M

∣∣∣∣
γ+1

.

Therefore, the one-step error (30) satisfies

|rk | ≤ cμ,σ ‖B‖1+1/γ
γ

∣∣∣∣ T

M

∣∣∣∣
2γ

. (31)

Now, we can write the classical decomposition of the error in terms of the exact and numerical
flow. Since Ȳ M

τk
= Φ(Ȳ M

τk
; τk , τk) and Yτk = Φ(Ȳ M

τ0
; τ0, τk) we have

Yτq −Ȳ M
τq

=Φ(Ȳτ0 ; τ0, τk)−Φ(Ȳ M
τq

; τq , τq)=
q−1∑
k=0

(
Φ(Ȳ M

τk
; τk, τq) − Φ(Ȳ M

τk+1
; τk+1, τq)

)
.

(32)

Since Φ
(

Ȳ M
τk

; τk , τq

)
= Φ

(
Φ(Ȳ M

τk
; τk, τk+1); τk+1, τq

)
we obtain∣∣∣Φ(Ȳ M

τk
; τk , τq )−Φ(Ȳ M

τk+1
; τk+1, τq )

∣∣∣ =
∣∣∣Φ

(
Φ(Ȳ M

τk
; τk , τk+1); τk+1, τq

)
−Φ(Ȳ M

τk+1
; τk+1, τq )

∣∣∣
≤ CT (‖B‖γ ) |Φ(Ȳ M

τk
; τk , τk+1) − Ȳ M

τk+1
|,
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where we have used the fact that

|Φ(α; t, s) − Φ(β; t, s) ≤ CT (‖B‖γ )|α − β|,
where CT is a subexponential function (see Proposition 2 again). Moreover, owing to relation
(31),

|Φ(Ȳ M
τk

; τk, τk+1) − Ȳ M
τk+1

| = |rk | ≤ cμ,σ ‖B‖1+1/γ
γ

∣∣∣∣ T

M

∣∣∣∣
2γ

. (33)

Therefore, replacing (33) in (32) for any q ≤ n we obtain

|Ȳ M
τq

− Yτq | ≤ cμ,σ CT ‖B‖1+1/γ
γ

q−1∑
k=0

∣∣∣∣ T

M

∣∣∣∣
2γ

Let us push forward this analysis to Hölder type norms on the grid 0 ≤ τ1 < . . . < τn = T .
We have for q ≥ p

δ
(

Y − Ȳ M
)
τpτq

=
(
Φ(Yτp ; τp, τq )−Yτp

)
−

(
Ψ (Ȳ M

τp
; τp, τq )−Ȳ M

τp

)

=
(
Φ(Yτp ; τp, τq )−Yτp

)
−

(
Φ(Ȳ M

τp
; τp, τq )−Ȳ M

τp

)
−

(
Ψ (Ȳ M

τp
; τp, τq )−Φ(Ȳ M

τp
; τp, τq )

)

=
((

Φ(Yτp ; τp, τq )−Φ(Ȳ M
τp

; τp, τq )
)
−

(
Yτp −Ȳ M

τp

))
−

(
Ψ (Ȳ M

τp
; τp, τq )−Φ(Ȳ M

τp
; τp, τq )

)
.

Similar to the calculations leading to (33) we obtain

∣∣∣Ψ (Ȳ M
τp

; τp, τq) − Φ(Ȳ M
τp

; τp, τq)

∣∣∣ ≤ cμ,σ ‖B‖1+1/γ
γ

q−1∑
k=p

∣∣∣∣ T

M

∣∣∣∣
2γ

.

Moreover, owing to Proposition 2 part (3), observe that
∣∣∣
(
Φ(Yτp ; τp, τq) − Φ(Ȳ M

τp
; τp, τq)

)
−

(
Yτp − Ȳ M

τp

)∣∣
|τq − τp|γ ≤ c(‖B‖γ ) |Yτp − Ȳ M

τp
|.

Consequently, we have that for 0 ≤ p < q ≤ M

∣∣∣δ
(

Y − Ȳ M
)

τpτq

∣∣∣ ≤ c′(‖B‖1+1/γ
γ )

{q−1∑
k=p

∣∣∣∣ T

M

∣∣∣∣
2γ

+ |τq − τp|γ
q∑

k=0

∣∣∣∣ T

M

∣∣∣∣
2γ }

which easily yields that

sup
p,q=0,1,...,M−1,p �=q

∣∣∣δ
(

Y − Ȳ M
)

τpτq

∣∣∣
|τp − τq |γ ≤ c(‖B‖γ ) M1−2 γ .

By “lifting” this error estimate to [0, T ] and since |t − s| ≤ T/M ,

‖Yt − Ȳ‖γ,∞,T ≤ C M1−2 γ , (34)

which concludes the first part of the proof. Regarding the order of the Mean Square Error, it
suffices to note that the constant C has finite L p moments. ��
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As mentioned before, an elaboration of Proposition 11 is needed in the sequel. Indeed, in
the expression of the log-likelihood in Proposition 9 we need to discretize more complicated
quantities of the underlying process, such as (14) or (16). To this aim, let us notice first that
all those equations can be written under the following generic form:

Zt = α +
∫ t

0
ξ2

u Zudu +
∫ t

0
ξ

1, j
u Zt d B j

u , (35)

where ξ1, ξ2 are stochastic processes with bounded moments of any order. The corresponding
Euler discretization is

Z̄ M
τk

= Z̄ M
τk

+ ξ2
τk

Z̄ M
τk

(τk+1 − τk) +
d∑

j=1

ξ1, j
τk

Z̄τk δB j,M
τkτk+1

, (36)

and we give first an approximation result in this general context:

Proposition 12 Let T > 0, and consider the R
q -valued solution Z to Eq. (35), where

α ∈ R
q , ξ2, ξ1, j ∈ R

q,q and we suppose that ‖ξ2‖γ and ‖ξ1, j‖γ belong to L p(�) for any
value of p ≥ 1. Let Z̄ M be defined by Eq. (36). Then, there exists a random variable C

′
with

L p finite moments, such that for all γ < H and H > 1/2 we have

‖Z − Z̄‖γ,T ≤ C
′
T M1−2γ (37)

Consequently, we obtain that the Mean Square Error is of order O(M1−2γ )

Proof We follow a similar approach as in the previous proposition. Thus, the exact flow is
equal to Φ(ζ ; s, t) := Zt , where Zt is the unique solution of Eq. (35) when t ∈ [s, T ] and
the initial condition is Zs = ζ . Consider also the numerical flow

Ψ (ζ ; τk, τk+1) := ζ + ξ2
u ζ(τk+1 − τk) +

d∑
j=1

ξ
1, j
u ζ δB j,M

τkτk+1
,

where τk = kT/M, n = 0, . . . , M − 1. Thus, we have

Z̄ M
τk+1

= Ψ (Z̄ M
τk

; τk+1, τk), k = 0, . . . , M − 1

Z̄ M
0 = α.

In this case, the one-step error can be written as

rk = Φ(ζ ; τk, τk+1) − Ψ (ζ ; τk, τk+1)

=
∫ τk+1

τk

ξ2
u (Zs − ζ )du +

∫ τk+1

τk

ξ1
u (Zs − ζ )d Bu

We now treat each term separately. Therefore, using the fact that ‖Z‖γ ≤ exp(c‖B‖1/γ
γ ),

which is recalled at Proposition 2 point (4) in a slightly different context, we have that

∣∣∣
∫ τk+1

τk

ξ1
s (Zs − ζ )d Bs

∣∣∣ ≤ cγ ‖Zξ1‖γ ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

≤ cγ ‖ exp(‖B‖1/γ
γ ) ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

.
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Similarly, we also have

∣∣∣
∫ τk+1

τk

ξ2
s (Zs − ζ )ds

∣∣∣ ≤ cγ ‖Zξ2‖γ ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

≤ cγ ‖ exp(‖B‖1/γ
γ ) ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

.

Therefore, the one-step error satisfies the following inequality

|rk | ≤ cγ exp(‖B‖1/γ
γ ) ‖B‖γ

∣∣∣∣ T

M

∣∣∣∣
2γ

.

Along the same lines as for Proposition 11, the decomposition of the error in terms of the
exact and numerical flow becomes

Z̄ M
τq

−Zτq =Φ(Z̄ M
τq

; τq , τq) − Φ(Z̄ M
τ0

; τ0, τk)=
q−1∑
k=0

(
Φ(Z̄ M

τk+1
; τk+1, τq)−Φ(Z̄ M

τk
; τk, τq)

)
,

and the same inequalities allowing to go from (32) to (33) yield

|Z̄τq − Zτq | ≤ cγ

∣∣∣∣ T

M

∣∣∣∣
2γ

.

The claim of the proposition follows now as in Proposition 11. ��
We now use the previous proposition in order to approximate the kernels of the expectations

in ∇l�n(θ). Let us first introduce the following notation:

Notation 11 Let Wi (θ), Vi (θ) as in (25) and (26) respectively and define wi (θ) and vi (θ)

as

wi (θ) = 1(Yti (θ)>yti )
H(1,...,m)

(
Yti (θ)

)
(38)

vi (θ) = ∇lYti (θ) 1(Yti (θ)>yti )
H(1,.,m,1,.,m) +

(
Yti (θ) − yti

)
+∇l H(1,.,m,1,.,m). (39)

Let also w̄M
i and v̄M

i to be the Euler discretized versions of (39) and (39) using Proposition
12, and set W̄ M

i (θ) = E[w̄M
i ] and V̄ M

i (θ) = E[v̄M
i ].

Our convergence result for ∇l�n(θ) can be read as follows:

Theorem 12 Recall from Theorem 9 that ∇l�n(θ) can be decomposed as ∇l�n(θ)

= ∑n
i=1

Vi (θ)
Wi (θ)

. Then the following approximation result holds true:

∣∣∣Vi (θ) − V̄ M
i (θ)

∣∣∣ +
∣∣∣Wi (θ) − W̄ M

i (θ)

∣∣∣ ≤ c

M2γ−1 ,

for a strictly positive constant c.

Proof We focus on the bound for |Vi (θ) − V̄ M
i (θ)|, the other one being very similar. Now,

applying Proposition 12 to the particular case of the equations governing Malliavin deriva-
tives, we easily get

‖vt − v̄‖γ,T ≤ C2 M1−2γ ,
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for an integrable random variable C2. The proof is now easily finished by invoking the
inequality

∣∣∣Vi (θ) − V̄ M
i (θ)

∣∣∣ ≤ E
[‖vt − v̄‖γ,T

]
.

��
Remark 3 We have given two separate approximations for Vi (θ) and Wi (θ). In order to fully
estimate (Vi (θ)/Wi (θ)) − (V̄ M

i (θ)/W̄ M
i (θ)), one should also prove that Wi (θ) is bounded

away from 0. This requires a lower bound for densities of differential equations driven by
fractional Brownian motion, which are out of the scope of the current article.

4.2 Efficiency of the Monte Carlo simulation

In this section we aim to study the computational tradeoff between the length of a time
period in the Euler discretization (i.e. 1/M) and the number of Monte Carlo simulations of
the sample path (i.e. N ). In order to do so we consider w̄M

i and v̄M
i as above.

Recall that, given t units of computer time, the Monte-Carlo estimators for Wi (θ) and
Vi (θ) can be written as

1

c1(t,
1
M )

c1(t,
1
M )∑

k=1

wM
i,k,

1

c2(t,
1
M )

c2(t, 1
M )∑

k=1

vM
i,k

where {wM
i,�; � ≥ 1} (resp. {vM

i,�; � ≥ 1}) is a sequence of i.i.d. copies of wM
i (resp. of vM

i ),

and c1(t,
1
M ), c2(t,

1
M ) are the maximal number of runs one is allowed to consider with t

units of computer time. Using the result by Durham and Gallant (2002) we can state the
following proposition:

Proposition 13 Let N be the number of Monte Carlo simulations and M the number of steps
of the Euler scheme, then the tradeoff between N and M for computing Wi (θ) (and similarly
Vi (θ)) is

N � M
γ̃

2γ−1 −3
,

for all 1/2 < γ < H and γ̃ = T m(d + 1), where T is the time horizon, m the dimension of
the observed process and d the dimension of the noise process.

Proof We discuss the proof only for Wi , by following exactly the same steps we can obtain
the same result for Vi .

We only need to check that our process w satisfies the conditions of 1 Duffie and Glynn
(1995).

(i) We can easily see that the discretized w̄M
ti converges uniformly to wti .

(ii) In addition, we have bounded moments of wti , thus E[W̄ 2
ti ] → E[w2

ti ].
(iii) From Theorem 12 we have that the rate of convergence of the Euler scheme of w̄M

ti is
M1−2γ , for 1/2 < γ < H .

(iv) The computer time required to generate w̄M
ti is given by τ(1/M), which satisfies:

τ(1/M) = T m(d + 1)M = γ̃ M
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where T is the length of the time period, m is the dimension of the SDE, d is the dimension
of the fBm and M is the number of Euler steps. By applying Theorem 1 (by Duffie and
Glynn (1995)) the optimal rule for choosing the number of Monte-Carlo simulations and the
number of Euler steps is chosen such that the asymptotic error is minimized. Therefore, for t
the total budget of computer time, as t increases, then the Euler step should converge to zero
with order 1−2γ

γ̃+2−4γ
or equivalently:

1

M
� t

1−2γ
γ̃+2−4γ thus t � M− γ̃+2−4γ

1−2γ .

But the number of operations needed for an arbitrary Monte Carlo simulation t0 is equal to

γ̃ M N . Thus, we finally obtain that N � M− γ̃+2−4γ
1−2γ

−1. ��

4.3 Discretization of the score function

Consider the following discretized version of the score function, i.e. ∇l�n(θ):

∇̂l�n(θ) = V̂i

Ŵi
:=

1
N

∑N
k=1 v̄M

i,k
1
N

∑N
k=1 w̄M

i,k

, (40)

where w̄M
1,k, w̄

M
2,k, . . . and v̄M

1,k, v̄
M
2,k, . . . are iid copies of w̄M

i and v̄M
i respectively. Our aim

in this section is to give a global bound for the mean square error obtained by approximating
∇l�n(θ) by ∇̂l�n(θ). As mentioned in Remark 3, this convergence result will be expressed in
terms of the convergence of V̂i and Ŵi since lower bounds for quantities like Wi are currently
unavailable.

Proposition 14 Consider the decomposition (40) for the discretized score function ∇̂l�n(θ).
Then V̂i and Ŵi converge to their continuous counterparts Vi and Wi with rate of convergence
of order M−(2γ−1), where 1/2 < γ < H and M is the number of Euler steps used in the
discretization.

Proof We discuss the idea of the proof for the Wi term first:

E
(

Ŵi − Wi

)2 = E

(
1

N

N∑
k=1

w̄M
i,k − E[wi (θ)]

)2

= E
(

1

N

N∑
k=1

w̄M
i,k − 1

N

N∑
k=1

wi,k + 1

N

N∑
k=1

wi,k − E[wi (θ)]
)2

.

Thanks now to the independence property between Monte Carlo runs, we get

E
(

Ŵi − Wi

)2 ≤ 2
N

∑N
k=1 E(w̄M

i,k − wi,k)
2 + 2 E

(
1
N

∑N
k=1 wi,k − E[wi (θ)]

)2

= 1
N

∑N
k=1 (Euler MSE)2 + (Monte Carlo MSE)2 � (M1−2γ )2 + 1

N ,

and thus

MSE
(

Ŵi − Wi

)
�

√
(M1−2γ )2 + 1

N
.

123



Stat Inference Stoch Process (2013) 16:29–61 55

Now, if we use Proposition 13, i.e. N � M− γ̃+2−4γ
1−2γ

−1, for all 1/2 < γ < H , and
γ̃ = T m(d + 1), where T is the time horizon, m the dimension of the observed process and
d the dimension of the noise process, we have

M SE
(

Ŵi − Wi

)
�

√
M2−4γ + M

γ̃
1−2γ

+3 � M1−2γ ,

since the first is the dominant term above.
Following the same procedure, we can show that MSE(V̂i − Vi ) � M1−2γ and thus the

claim of the proposition follows easily. ��
Remark 4 In Proposition 14 the rate of convergence is independent of the dimension of the
problem, i.e. it is independent of the parameter γ̃ = T m(d + 1).

5 Numerical examples

In this section our aim is to investigate the performance of the suggested maximum likelihood
method in practice. We study the one-dimensional fractional Ornstein-Uhlenbeck process, a
linear two-dimensional system of fractional SDEs and then some real data given by a financial
time series. Before presenting our results, we first discuss some technical issues raised by
the algorithmic implementation of our method.

The goal is to find the root of the quantity ∇l�n(θ) with respect to θ . We can divide
this procedure in two parts. The first part consists in computing the root of the log-likelihood
using a stochastic approximation algorithm. This is a stochastic optimization technique firstly
introduced by Robbins and Monro (1951) that is used when only noisy observations of the
function are available. In our case it is appropriate, since we want to solve

∇l�n(θ) = 0,

where ∇l�n(θ) is given by Theorem 9 and has to be approximated by ∇̂l�n(θ). Thus, the
recursive procedure is of the following form

θ̂k+1 = θ̂k − ak∇̂l�n(θ̂k). (41)

where ∇̂l�n is the estimate of ∇l�n at the k-th iteration based on the observations and ak is
a sequence of real numbers such that

∑∞
k=1 ak = ∞ and

∑∞
k=1 a2

k < ∞. Under appropriate
conditions (see for example Blum 1954), the iteration in (41) converges to θ almost surely.
The step sizes satisfy ak > 0 and the way that we choose them can be found in Kushner and
Yin (1997).

The second part consists of the computation of ∇̂l�n(θ̂k) at each step of the stochastic
approximation algorithm. Thus, for a given value of θk (the one computed at the k-th iteration)
we want to compute ∇̂l�n(θk) when we are given n discrete observations of the process:
yti , i = 1, . . . , n. Here, we describe the main idea of the algorithm we use for only one step.
Thus, assume that we are at [ti−1, ti ], and at time ti we obtain the i-th observation. We want
to compute Wi (θ) and Vi (θ) according to expressions (25) and (26) respectively. To compute
the expectations we use simple Monte-Carlo simulations.Therefore, we discretize the time
interval into N steps

ti−1 = s0 < s1 < · · · < sN = ti .

From each simulated path (apart from that of fBm) we only need to keep the terminal value
which is the value of the process at time ti . The algorithm is the following
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1. Simulate N values of fBm in the interval [ti−1, ti ] using for example the circulant matrix
method (any exact -preferably- simulation technique can be used).

2. Using the simulated values from step 5 and an Euler scheme for the SDE (1), simulate
the value of the process at time ti . For example, for k = 0, . . . , N

Ȳ M
sk

= Ȳ M
sk−1

+ μ(Ȳ M
sk

)(sk − sk−1) +
d∑

j=1

σ ( j)(Ȳ M
sk−1

)(B( j)
sk − B( j)

sk−1).

3. Using step 5 and the observation at time ti , compute the indicator function 1(Yti (θ)>yti )
.

4. Using step 5 and an Euler scheme simulate Dti Y
i
τ , as given in Lemma 1 for n = 1 -first

Malliavin derivative.
5. Using step 5 and an Euler scheme simulate η

k j
ti , k, j = 1, . . . , m, as given in Proposition

3.8.
6. Steps 5 and 5 are used to compute Q pj

sti , p ∈ {1, . . . , m}, j ∈ {1, . . . , d} as defined in
Propositions 8 and 10.

7. Simulate the Malliavin derivative of the product Ds[Yt Q pj
rt ].

8. Using the previous steps, numerical integration for the double integral and numerical
integration for the stochastic integral we compute Up(Yti (θ)) as defined in Proposition 8.

9. Recursively compute H(1,...,m)(Yti (θ)) as given in (8).
10. Combine steps 5 and 5 to obtain the kernel Wi (θ).
11. We repeat steps 5 through 5 N times and we average these values to obtain an estimate

for the expectation Wi (θ).

Using a similar procedure we can obtain an estimate for the expectation Vi (θ). Finally, for
each i = 1, . . . , n we compute Vi (θ)/Wi (θ) and sum over i to obtain the desired value of
the log-likelihood at θk .

We have completed the study of our numerical approximation of the log-likelihood, and
are now ready for the analysis of some numerical examples.

5.1 Fractional Ornstein-Uhlenbeck process

Though our method can be applied to highly nonlinear contexts, we focus here on some linear
situations, which allow easier comparisons with existing methods or exact computations.
Let us first study the one-dimensional fractional Ornstein-Uhlenbeck process, i.e.

dYt = −λYt dt + d Bt , (42)

where the solution is given Yt (λ) = ∫ t
0 e−λ(t−s)d Bs (notice the existence of an explicit

solution here). In this case our methodology is quite simplified. The log-likelihood can be
written as follows:

∂λ�(λ; y) =
n∑

i=1

E
[
∂λYt (λ) 1(Yt (λ)>y) H(1,1)(λ) +

(
Yt (λ) − y

)
+∂λ H(1,1)(λ)

]

E
[

1(Yt (λ)>y) H(1)

(
Yt (λ), 1

)] .

The Malliavin derivative of Yt (λ) satisfies the following ODE

DsYt (λ) = 1 − λ

∫ t

s
DsYu(λ)du,
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Table 1 MLE for the unknown parameter (λ) of a fractional Ornstein-Uhlenbeck process

True λ MLE λ̂ Standard error

0.5 0.497 0.00369
4 3.861 0.00127

with solution DsYt (λ) = e−λ t 1{s≤t}. The corresponding norm is

‖D·Yt (λ)‖2 = cH

∫ t

s

∫ t

s
e−λ(u+v)|u − v|2H−2dudv.

The higher order derivatives of Yt (λ) are equal to zero. Therefore,

H(1)

(
Yt (λ)

)
= 1

‖D·Yt (λ)‖2

∫ t

s
e−λud Bu

and thus

H(1,1)(λ) = 1

‖D·Yt (λ)‖4

∫ t

s

∫ t

s
e−λ(u+v)d Bud Bv − cH ‖D·Yt (λ)‖−2 .

The derivative with respect to the unknown parameter λ satisfies

∂λYt (λ) = −
∫ t

0
Ys(λ) − λ∂λYs(λ)ds

with solution ∂λYt (λ) = ∫ t
0 (t − s)e−λ(t−s)d Bs . The last term we need to compute is:

∂λ H(1,1)(λ) = 1

‖D·Yt (λ)‖8

[
‖D·Yt (λ)‖4

∫ t

s

∫ t

r
−(u + v)e−λ(u+v)d Bud Bv

−2cH ‖D·Yt (λ)‖2
∫ t

s

∫ t

r
−(u + v)e−λ(u+v)|u − v|2H−2dudv

]

−c2
H

∫ t
s

∫ t
r −(u + v)e−λ(u+v)|u − v|2H−2dudv

‖D·Yt (λ)‖4 .

Now, we compute the MLE following the algorithm we described above. The results we
obtained are summarized in the following table:

Remark 5 The value of H used for the simulation of the process is 0.6. The number of
observations is n = 50, the number of Euler steps is M = 500, the number of stochastic
approximation steps is K = 50 and the number of MC simulations N = 500 (Table 1).

5.2 Two-dimensional fractional SDE

In this section we study the following system of fractional OU processes:

dY (1)
t = −αY (2)

t dt + βd B(1)
t

dY (2)
t = −βY (1)

t dt + βd B(2)
t . (43)

In this case, the computations are more involved even though the SDEs are linear functions of
Y . Furthermore, the parameter we want to estimate is two-dimensional as well (θ = (α, β)T ),
which complicated the optimization procedure. Therefore, instead of computing only one
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Table 2 MLE for the unknown parameters (α, β) of a two-dimensional system of fractional SDEs

Parameter True value MLE Standard error

α 2 2.003 0.0518
β 4 3.987 0.0157

derivative, we need to compute both derivatives with respect to α and β and then compute
the solution of the system of two equations

∇α�(α, β; y) = 0, ∇β�(α, β; y) = 0,

where

∇l�(α, β; y) =
n∑

i=1

[E[1(Yt (α,β)>y) H(1,2)(Yt (α, β))]−1

× {
E[∇lYt (α, β) 1(Yt (α,β)>y) H(1,2,1,2)(α, β) + (Yt (α, β) − y)+∇l H(1,2,1,2)(α, β)]}

and l = α or β. The Malliavin derivative of Yt computes as follows:

DsY (1)
t = β − α

∫ t

s
DsY (2)

u du DsY (2)
t = β − β

∫ t

s
DsY (1)

u du.

The covariance matrix γt is given by (〈D·Y i
t , D·Y j

t 〉)1≤i, j≤2. The inverse of the covariance
matrix satisfies the following SDE

γ −1
t = −

∫ t

0
[γ −1

u M + MT γ −1
u ]du,

where

M =
[

0 α

β 0

]

Now, it remains to compute the quantities H(1,2) and H(1,2,1,2). This can be done using
the recursive formulas in Proposition 3.12, but we need to keep in mind that higher order
derivatives of Y are equal to zero, thus they will be simplified (Table 2). Indeed,

H(1)(Yt ) =
2∑

j=1

Yt

∫ t

0
(γ −1

s )1 j DsY j
t d B j

s − cH

∫ t

0

∫ t

0
DsY j

t Qrt |r − s|2H−2drds.

Moreover, we can easily see that

H(1,2)(Yt ) = H(1)(Yt )

∫ t

0
Qst d Bs − cH

∫ t

0

∫ t

0
Ds H(1)(Yt )Qrt |r − s|2H−2drds

H(1,2,1,2)(Yt ) = H(1,2,1)(Yt )

∫ t

0
Qst d Bs − cH

∫ t

0

∫ t

0
Ds H(1,2,1)(Yt )Qrt |r − s|2H−2drds

Of course, recall that Q pj
st = (γ −1

s )pj DsY j
t . In practice, these quantities are computed

recursively. The last step is to compute the derivative of H(1,2,1,2)(Yt ) with respect to α

and β, which in this case is not as complicated and compute the MLEs using the algorithm
discussed in the previous section. The table below summarizes our results, and we have
plotted the corresponding histograms in Fig. 1.

123



Stat Inference Stoch Process (2013) 16:29–61 59

Remark 6 The value of H used for the simulation of the process is 0.6. The number of
observations is n = 50, the number of Euler steps is N = 500, the number of stochastic
approximation steps is K = 50 and the number of MC simulations M = 500.

5.3 Application to financial data

One of the most popular applications of fractional SDEs is in finance. Hu and Oksendal
(2003) and Hu et al. (2003) introduced the fractional Black-Scholes model in order to account
for inconsistencies of the existing models in practice. More specifically, the stock price is
described therein by a fractional geometric Brownian motion with Hurst parameter 1/2 <

H < 1. The choice of this model is based on empirical studies that displayed the presence
of long-range dependence on stock prices, for example in Willinger et al. (1999). However,

Estim. parameters Group 1: Ĥ1 = 0.59 Group 2: Ĥ2 = 0.63 Group 3: Ĥ3 = 0.61

μ̂ 0.015 (0.0123) 0.019 (0.0144) 0.011 (0.0214)

σ̂ 0.352 (0.058) 0.339 (0.046) 0.341 (0.024)

the presence of fractional Brownian motion in the model allows for arbitrage in the general
setting. It has been shown that arbitrage opportunities can be avoided in a number of ways,
for example the reader can refer to Rogers (1997); Dasgupta and Kallianpur (2000) and
Cheridito (2003). We choose to model the stock price as as follows:

d St = μSt dt + σd Bt , (44)

where B is a fractional Brownian motion with Hurst index 1/2 < H < 1. For this SDE
(as well as for a more general class of fractional SDEs) Guasoni (2006) proved that there is
no arbitrage when transaction costs are present.

Our goal is to estimate the unknown parameters μ and σ based on daily observations of the
S&P 500 index (data from June 2010 until December 2010). We consider the Hurst parameter
to be piece-wise constant, we devide the data in three groups (of 50 daily observations each)
and we compute for each one the Hurst index using the Rescaled-Range (R/S) statistic. We
obtain that for the first group of data Ĥ1 = 0.59, for the second Ĥ2 = 0.63 and for the third
one Ĥ3 = 0.61. For the different groups, we apply our maximum likelihood approach in
order to estimate μ and σ . The estimates are summarized in the following table:

Remark 7 The volatility is computed in years. In addition, during this period of time the
historical volatility is around 0.38, which is coherent with our own estimation.
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