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In this paper, we introduce a stochastic integral with respect to the solution X of the
fractional heat equation on [0,1], interpreted as a divergence operator. This allows to
use the techniques of the Malliavin calculus in order to establish an Ito-type formula for
the process X.

Keywords: heat equation; fractional Brownian motion; 1t6’s formula; stochastic
integral
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1. Introduction

In the last few years, a great amount of effort has been devoted to a proper definition of
stochastic PDEs driven by a general noise. For instance, the case of stochastic heat and
wave equations in R" driven by a Brownian motion in time, with some mild conditions on
its spatial covariance, has been considered, e.g. in Refs. [8,16,19], leading to some optimal
results. More recently, the case of SPDEs driven by a fractional Brownian motion has been
analyzed in Refs. [5,10,22] in the linear case, or in Refs. [12,15,20] in the non-linear case.
Notice that this kind of development can be related to the study of turbulent plasmas [6],
where some non-diffusive SPDEs may appear.

In this context, it seems natural to investigate the basic properties (Holderianity,
behaviour of the density, invariant measures, numerical approximations, etc.) of these
objects. And indeed, in the case of an equation driven by a Brownian motion, a lot of effort
has been made in this direction (let us cite [13,14,16] among others). On the other hand,
results concerning SPDEs driven by a fractional Brownian motion are rather scarce (see
however [18] for a result on SPDEs with irregular coefficients and [21] for a study of the
Holder regularity of solutions).

We propose, therefore, in this article, to go further into the study of processes defined
by fractional PDEs and we will establish an It6-type formula for a random function X on
[0, T] X [0, 1] defined as the solution to the heat equation with an additive fractional noise.
More specifically, we will consider X as the solution to the following equation:

9,X(t,x) = AX(t,x) + B(dt,dx), (t,x) € [0,T] X [0, 1], ey
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with Dirichlet boundary conditions and null initial condition. In Equation (1), the driving
noise B will be considered as a fractional Brownian motion in time, with Hurst parameter
H > 1/2 and as a white noise in space (notice that some more general correlations in space
could have been considered, as well as the case 1/3 < H < 1/2, but we have restrained
ourselves to this simple situation for sake of conciseness).
Then, for X solution to (1), 7 € [0,7],x € [0, 1] and a Ci-functionf :R— R, we will
prove that f(X(t,x)) can be decomposed into:
t ol 1 !
FO,30) = £(0) + L JO (M0 ) (5,30 Weds, dy) + 5 Lf”(X(s, DKL), (@)
where in the last formula, Mf‘x is an operator based on the heat kernel G, on [0, 1] and the

covariance function of B, W is a space-time white noise naturally associated to the
fractional Brownian motion B and K, is the function defined on [0, T] by:

S S
K.(s) = HH — 1)LJ()GZJ_W_VZ(x, Ol = a2y dvs,
Notice also that, in (2), the stochastic integral has to be interpreted in the Skorohod sense
(see Theorem 3.13 for a precise statement).
It is worth mentioning at this point that formula (2) will be obtained thanks to some
Gaussian tools inspired by the case of the fractional Brownian motion itself. This is due to
the fact that X can be represented by the convolution

t ol
X(t,x) = LLM 1s(x, Y)W (ds, dy) 3

of a certain kernel M on [0, 7] X [0, 1], defined at (21), with respect to W. This kind of
property has already been exploited in Ref. [11] for the case of the heat equation driven by
a space-time white noise, and let us compare our current result to this latter reference and
other existing results:

(1) First of all, notice that an important step of our computations will be to obtain the
representation (3) itself (see Corollary 3.3) and to give some reasonable bounds on
the kernel M and its derivatives.

(2) The infinite dimensional setting was adopted in Ref. [11], which leads more
naturally to consider the L?([0, 1]) process X as a function of the time variable
t € [0,T]. If we set X, = X(¢,-), we obtained in Ref. [11] a change of variable
formula for F(X,), where F:L?*([0,1])— R is a smooth enough function.
A typical example of such kind of function is the case of F defined by

1
F(g) = Lf (g)Pdx,  for g € L([0, 1), “

with a given continuous function ¢ on [0, 1]. We could have chosen the same
setting here, but it turns out that the little gain in regularity (for our noise B) we
have here allows us to obtain directly an 1t type formula for ¢+ f(X(¢,x))
whenever H > 1/2, for any x € [0, 1].

(3) The fact that a change of variable formula is available for the function
t+— f(X(#,x)) is not a surprise: if H > 1/2, the Holder regularity of the function
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)

t+— X(t,x) is greater than 1/4, so that we are morally in condition to use the
theoretical setting developed in Ref. [2]. In fact, for a fixed value x € [0, 1], one
may also try to get a representation (in law) of the process ¢ — X(¢, x) by means of
a convolution of the type

X(t,x) = J K. (t,5)B(ds),
0

for a certain kernel K, and a Brownian motion B. Then one can be easily reduced
to the framework [2] in order to get an It6 type formula. Notice however that our
formula (2) goes beyond this approach, since it is valid for any x € [0, 1], with the
same driving process W for the stochastic integral

t ol
||| (v1:.500) 0.mweas.an.
0J0

Furthermore, this latter integral has a natural interpretation in terms of the initial
Equation (1), as a Skorohod integral of f/(X) with respect to X (which may be
written 8%(f/(X)) in the notation of Ref. [2]). Eventually, we believe that our
analysis can be pushed forward to the case 1/3 < H < 1/2, for a function F of the
form (4) and this would allow to handle the case of a Holder regularity in time lesser
than 1/4 for X. We plan to report on this possibility in a further communication.
Let us mention at this point the alternative approach developed in Ref. [24] in order
to obtain Itd formulae for SPDEs. This methodology is based on the weak form of
Equation (1), while ours relies on its mild form. This has several implications: on
the one hand, the formulae derived in Ref. [24] may be easier to use in algebraic
terms. Indeed, if we set Y, = J"(]) f(X(t, x))(x)dx for a continuous function ¢ on
[0, 1], then the decomposition given in Ref. [24] allows to write

t rl t el
Y~ v, = J J R (u, y)W(du, dy) +J J R2(u, y)dudy, )
sJ0 sJ0

for two processes R !, R%. We do not have access to this kind of decomposition, and
this is quite natural in the mild setting, since a formula of the type (5) does not hold
even for f = Id. On the other hand, the assumptions in Ref. [24] require a lot of
regularity on both f and i, while we only have to consider a Ci—function fand
= &, for our formula (2).

Our motivations for an expansion like (2) can be summarized as follow: first of all,
we believe that once the existence and uniqueness of the solution to (1) is
established, it is a natural question to ask whether an It6-type formula is available
for the process we have produced. Furthermore, this kind of result can also yield a
better understanding of some properties of the process itself, such as the
distribution of hitting times for the infinite-dimensional process X(z, -); this has
been shown in Ref. [9] for the one-dimensional fractional Brownian motion, and
see also [7] for a reference on exit times for parabolic SPDEs. Eventually, It6’s
formula for SPDEs can also be a tool in order to construct a stochastic version of the
Hopf-Cole transform, which links stochastic heat and Burgers equation (see, e.g.
[4]). All these possibilities go beyond our current framework, but are still
motivations for a formula like (2).
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Let us say now a few words about the method we have used in order to get our result: as
mentioned above, the first step in our approach consists in establishing the representation (3).
This representation, together with the properties of the kernel M, suggests that the
differential of X should be of the form

t rl
X(dr,x) = U [ 0t weas. an)a. ©)
0J0

This formula is of course ill-defined, since (s,y) — 0,M, ((x,y) is not a L?*-function on
[0, 7] X [0, 1], but it holds true for a regularization M ¢ of M. We will then obtain easily an Itd
type formula for the process X ® corresponding to M ¢, where the differential (6) appears.
Therefore, the main step in our calculations will be to study the limit of the regularized Itd
formula when & — 0, which was also the point of view adopted in Ref. [1]. Notice that this
approach is quite different (and from our point of view more intuitive) from the one adopted
in Refs. [2,11], where the quantity E[ f(X(t, x))I,,(¢)] was evaluated for an arbitrary multiple
integral /,,(¢) with respect to W.

Our paper is divided as follows: in Section 2, we will describe precisely the noise and
the equation under consideration and we will give some basic properties of the process X.
Section 3 is devoted to the derivation of our Ito-type formula: in Section 3.1 we obtain the
representation (3) for X, the regularized formula is given in Section 3.2 and eventually the
limiting procedure is carried out in Sections 3.3 and 3.4. In the sequel of the paper, ¢ will
designate a positive constant whose exact value can change from line to line.

2. Preliminary definitions

In this section we introduce the framework that will be used in this paper: we will define
precisely the noise which will be considered, then give a brief review of some Malliavin
calculus tools and eventually introduce the fractional heat equation.

2.1 Noise under consideration

Throughout the article, we will consider a complete probability space ({2, F, P) on which
we define a noise that will be a fractional Brownian motion with Hurst parameter H > 1/2
in time, and a Brownian motion in space. More specifically, we define a zero mean
Gaussian field B = {B(s,x) : s € [0,T],x € [0, 1]} of the form

B(1,x) = J JXKH(L s)W(ds, dy). @)
0J0

Here Wis a two-parameter Wiener process and K is the kernel of the fractional Brownian
motion (fBm) with Hurst parameter H € ((1/2), 1). Namely, for 0 =< s =<t =< T, we have

!
Ky(t,s) = CHS(I/z)fHJ (u — S)H7(3/2) qu(l/z)du,

s

where Cy is a constant whose exact value is not important for our aim. Observe that the
standard theory of martingale measures introduced in Ref. [23] easily yields the existence
of the integral (7).
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Note that it is natural to interpret the left-hand side of (7) as the stochastic integral

B(110,ax0.4)) = J J B(ds, dy). (8)
oJo

The domain of this Wiener integral is then extended as follows: let H be the Hilbert space
defined as the completion of the step functions with respect to the inner product

r rS
oty Lo = (Kan(t, ), Kra(s, Wraqorry = HQH — 1>J J = P dudr. (9)
0J0

Thus, by Alos and Nualart [3], the kernel Ky allows to construct an isometry K;iT from
H X L*([0,1]) (denoted by Hy for short) into LZ?([0,T]X[0,1]) such that, for
O0=s<t=T,

T

(KZ,Tl[oAz]x[oAx])(S,}’) = Kg(t,$)lpoq(y) = 1[0,x](y)J L1o.n(r)0,Kg(r, s)dr.

N

Therefore, the Wiener integral (8) can be extended into an isometry ¢ +— B(¢) from Hry
into a subspace of L*(Q) so that, for any ¢ € Hr,

T rl
5o = | [ (Kire)sowias,an. (10
0J0

Then, for two elements ¢ and s of Hr, the covariance between B(¢) and B(i) is given by

T ¢T ¢1
E[B(¢)B())] = HQH — 1)J J J (s, s — rP 2, yydsdrdy. (1)
0J0JO

Notice that an element of H7 could possibly not be a function. Hence as the in
fBm case, we will deal with the Banach space |Hr| of all the measurable functions
¢ :[0,T] %X [0,1] — R such that

T ¢T ¢l
el = HQH — 1)J J j Lo il — 12 o(at, )l dydudr
0J0JO

1 (T s ¢T 2
- ” (J |<o<r,y>|arKH<r,s>dr) dsdy < oo.

0J0 s

It is then easy to see that L2([0, T] X [0,1]) C |H7| C Hr.

2.2  Malliavin calculus tools

The goal of this section is to recall the basic definitions of the Malliavin calculus which
will allow us to define the divergence operator with respect to W. For a more detailed
presentation, we recommend Nualart [17].

Let S be the family of all smooth functionals of the form

F=fWsi,y1), -, Wisp, yn)),  with (s, y;) € [0,T]X[0, 1],
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where f € C; (R") (i.e. fand all its partial derivatives are bounded). The derivative of this
kind of smooth functional is the Lz([O, T] X [0, 1])-valued random variable

n af
DF = le o, WE1D: - W i) Lo o
=

It is then well-known that D is a closeable operator from L%*(Q) into
L*(Qx[0,T] %[0, 1]). Henceforth, to simplify the notation, we also denote its closed
extension by D. Consequently D has an adjoint 6, which is also a closed operator,
characterized via the duality relation

E(F8u)) = E((DF,u);20 1ix0.1))) +

with FES and u € Dom(8) C L>(Q2 X [0,T] X [0,1]). The operator & has been
considered as a stochastic integral because it is an extension of the It6 integral with respect
to W that allows us to integrate anticipating processes (see, for instance, [17]). According
to this fact, we will sometimes use the notational convention

T ¢l
o(u) = J J us,W(ds, dy).
0Jo

Notice that the operator & (or Skorohod integral) has the following property: suppose
that F is a random variable in Dom(D) and that u is Skorohod integrable (i.e.
u € Dom (8)), such that E(F2[! [} (u(s,y))*dyds) < 0. Then

T rl T ¢l T r1
J JFu(s,wW(ds, dy) =FJ Ju(s,wW(ds,dy) —J J(Dﬁ,ynu(s,y)dyds, (12)
0J0 0J0 0J0

in the sense that (Fu) € Dom (8) if and only if the right-hand side is in L?({2).

2.3 Heat equation

This paper is concerned with the solution X to the following stochastic heat equation on
[0, 1], with Dirichlet boundary conditions and null initial condition:

{ 9,:X(1,x) = AX(t,x) + B(dt, dx), (t,x) €[0,T1X[0,1]
13)

X(0,x) =0, X(t,0)=X(t1)=0.

It is well-known (See Ref. [22]) that Equation (13) has a unique solution, which is given
explicitly by

t el
X(t,%) = LJOGH@, VB(ds, dy), (14)

where

" —x — 2n)? — 2n)?
Gloy) == 3 [exp(— W) —exp(— W)] (15)
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stands for the Dirichlet heat kernel on [0, 1] with Dirichlet boundary conditions. Let us
recall here some elementary but useful identities for the heat kernel G:

LemMA 2.1. The following relations hold true for the heat kernel G given by (15):

1 2
c c(x—y)
J Gt(xay)dy = 13 Gt(xay) = tl;z exp(_ 2 t y >7
0

and

c3 calx — y)?
10,G,(x, )| = 32%P (‘ t> ;

for some positive constants cy, ¢, c3 and c4. Furthermore, G can be decomposed into

Gt(xvy)z Gl.r(x7Y)+Rz(x7)’), (16)

where

1 —x)? +x)? =2y
o= g lon(-0 ) e (-5 e, )

and R,(x,y) is a smooth bounded function on [0, 7] X [0, 17%.

Let us recall now some basic properties of the process X defined by (13) and (14),
starting with its integrability.

LeMMA 2.2. The process defined on [0, 7] X [0, 1] by (14) satisfies
sup E[IX(t,x)Iz] < 0.,

1€[0,T], x€[0,1]
Proof. We have, according to (11) and Lemma 2.1, that

dsdu !
E[|X(t7x)|2] = CHJ ZWJ Gi—5(x, )Gr—u(x, y)dy
02 |s — u 0
dsdu !
=c — Gi—u(x,y)d
J[o,z]2 t — )"2|s — ul? ZHJO ' P
J dsdu
= C 5
o (t — 9)'2|s — ul* 2"
and the last integral is finite by elementary arguments. (|

One can go further in the study of X, and show the following regularity result
(see also [21]):

ProPOSITION 2.3. Let X be the solution to (13). Then, for #;,¢, € [0,T] and x € [0, 1],
we have

E[IX(2,2) ~ X010 | = clta = 1,
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forany y < H — 1/4.In particular, forany T > Q0 and x € [0, 1], the function¢ € [0, T] —
X(t,x) is y-Holder continuous for any y < H — 1/4.

Proof. Assume t; < t,. We then have

X(t2,x) — X(t1,x) = A(t1, 12, x) + B(t1, 12, %),

with
1l
A(ty,12,%) :J J [G1,—5(x,y) = Gy, —(x, )| B(ds, dy)
0JO
and
1 1
Bltr, 12,x) = J J Gor-o(x,)B(ds, dy).
1J0
Hence

E[IX(t2,%) = X(t1,0I)] = 2(E[A*(11,12,0)] + E[B*(11,12,%)]). a7

We first note that (11) and Lemma 2.1 imply

1yl 1
E[B(t1,12,)] =ch J dudsls — ul””j Gy s, )Gy, Yy
0

nJn

15) 153
= cJ ds(tr — s)*l/zj Is — ul® 2du < c(t, — 1))*~0/2, (18)

t 4]
Now we will concentrate on the estimate on E[A2(z1, f2, x)]. By (11), we have

hoh duds
J s, (19)

E[A%(1,12,9] = cu
0 ls— ul

0

with C.(s, u) defined by

1

Cx(sa M) = JO [Gtzfs(xa y) - thfs(xa y)} [Gtzfu(xa y) - Gzl—u(X,)’)] dy

Thus, invoking Lemma 2.1, we obtain that, for a given @ < 1/2,

(th — )™

Ci(s,u) =c
O G —

Dx(57 u)7

where

1
-« -«
Dy (s, u) = J |Gr,—s(x,3) = Gy s, )| *[Gr—u(x,y) = Gy —u(x, )| “dy.
0
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It is then easily seen that D, (s, u) can be bounded by a sum of terms of the form
1
Fits.0 = | Gl 260G s,
0
with o, 7 € {t],,}. This latter expression can be bounded in the following way:

1 1/2 , 1 1/2
Fi(s,u) = (J GX N (x, y)dy) (J Gi“u“>(x,y>dy>
0 0

- c
- (tl _ s)l/4—a/2(tl _ u)1/4—a//2 :

We have thus obtained that

g J" duds

E[A%(t),12,%)] = c(t —t)Z“J - .
[ 1,72 ] 2 1 0 |S _ u|2 2H(tl _ S)1/4+a(tl _ u)1/4+a

0

Now thanks the change of variable v = (u — 5)/(¢; — s), the latter integral is finite
whenever « < H — 1/4, which, together with (17) and (18), ends the proof. O

3. 1Ito’s formula for the heat equation

Let us turn to the main aim of this paper, namely the Ito-type formula for the process X
introduced in (14). The strategy of our computations can be briefly outlined as follows:
first we will try to represent X as a convolution of a certain kernel M with respect to W,
with reasonable bounds on M. Then we will be able to establish our It6’s formula for a
smoothed version of X, involving a regularized kernel M ® for ¢ > 0, by applying the usual
1t6 formula. Our main task will then be to study the limit of the quantities we will obtain as
e—0.

3.1 Differential of X

Before getting a suitable expression for the differential of X, let us see how to represent
this process as a convolution with respect to W.

3.1.1 Representation of X
The expressions (9) and (10) lead to the following result (see Ref. [3]).

LemMma 3.1. Let ¢ be a function in |Hr|. Then

t rl t rl
|| [ etsompeasan = [ | [Kirtione] e wean,an.
0J0 0J0

with

1

[K;Tl[m]fp} (u,y) = 1[0,:](M)J o(r, )0, Ky (r, u)dr.

u
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Remark 3.2. This result could also have been obtained by some heuristic arguments.
Indeed, a formal way to write (7) is to say that, for t > 0 and y € [0, 1], the differential
B(t,dy) is defined as

t

B(t,dy) = J Ku(t, $)W(ds, dy).
0

Thus, if we differentiate formally this expression in time, since Ky(t,7) = 0, we obtain

9,B(t,dy) = U 9, Ky(t, s)W(ds, dy)} dr.
0

Since 8,K(t, s) is not a L >~function, the last equality has to be interpreted in the following
way: if ¢ is a deterministic function, then

t rl t rl S
J J (s, VB(ds, dy) = J J o5, ) U 0,K (s, ) W(dl, dy)} s
0 0 0

0 0

t rl t
= J J W(du, dy) U @(s,y)asK(s, u)dS],
0 u

0
which recovers the result of Lemma 3.1.

We can now easily get the announced representation for X:

COROLLARY 3.3. The solution X to (13) can be written as

t ¢l
X(t,x) = J J My (x, y)W(ds, dy), (20)
0J0

with

!

M (x,y) = J Gi—u(x,y)0,Kp(u, s)du. 2y

N

Proof. The result is an immediate consequence of the proof of Proposition 2.3 and
Lemma 3.1. |

3.1.2  Some bounds on M

The kernel M will be algebraically useful in order to obtain our It6’s formula, and we will
proceed to show now that it behaves similarly to the heat kernel G. To do so, let us first
state the following technical lemma:

LemmA 3.4. Let fbe definedon 0 < r <t =T by

1 2
fr,n= J t—uw P~ r)‘“exp(— ff )du,

u
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for a constant k >0, x € [0,2] and « € (0,1). Then, there exist some constants
c1,¢2,c3,¢4 > 0 such that

—(a—1/2 sz2
frn = e =n" " Pexp( — 22)
—r
and
_ 1/2 C4.x2
A, f(r,0) = c3(t — r)” @ Pexp ) (23)
- r

Proof. Recall that, in the remainder of the paper, « stands for a positive constant which can
change from line to line. Notice also that (22) is easy to see due to
sz t
flr, 0 = exp<— >J (t —w) VP —redr.

t—r

Now we will concentrate on (23): let us perform the change of variable
v=(u—r)/(t — r). This yields

1 2
fr,t)y=(t— r)f(“fl/z)J (1- v)l/zv”‘exp(— U—’:;Cm)dw

0
and thus
9:f(r;0) = gi(r, 1) + ga(r, ),
with
gi(r,t) = kx’(t — r)(a+3/2)Jl(1 —v) My exp(- e >dv
0 d=v—r)
and
o, = (% - a) (t — r)(““/z)J;(l — ) 12ye exp(— a5 :;C(zt — r)) dv.
Therefore, thanks to the fact that u — ue™ is a bounded function on R, , we have
1 o2
gi1(r,t) = c(t — r)_(aH/z)Jo(l - v)_l/zv_aexp(— XA —wi=-n r)) dv

o2 1
< c(t — )~ @t/ exp(— = r))J (1 -2 v %dy,
0

which is an estimate of the form (22). Finally, it is easy to see that
2

1
o (r,0) = c(t — r)~ @12 exp(— 2(:<x r)>J (1 —v) 2y ey,
- 0

which completes the proof. (|
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We are now ready to prove our bounds on M:

ProrosITION 3.5. Let M be the kernel defined at (21). Then, for some strictly positive
constants cs, cg, ¢7,cg > 0, we have

_ N2 )
M, 5(x,y) < cs(t — s) 78 (E)H " {exp<— cﬁ(xy)> + exp(_ W)}
s r—s r—s
and

-1/ N2 — )2
o.M = =972 (5) fenp (< SO o enp (- AEEIZ2T) |

t—s t—s

Proof. First of all, we will use the decomposition (16), which allows to write

1 1
Mt.s(xay) = J Gl,t*u(x7y)auKH(u7s)du + J Rt*u(x>y)auKH(ua s)du

Now the result is an immediate consequence of Lemma 3.4 applied to a < (3/2) — H, the
only difference being the presence of the term (u/s)? ~1/2 which can be bounded by
(t/s)f ~1/2 each time it appears. This yields the desired result. ]

3.1.3  Differential of X

With the representation (20) in hand, we can now follow the heuristic steps in Remark 3.2
in order to get a reasonable definition of the differential of X in time. That is, we can write
formally that

t rl
X(dt,x) = U J .M (x, y)W(ds, dy)} da,
0J0

which means that if ¢ : [0, 7] X [0, 1] — R is a smooth enough function, we have

T T ¢ el
J o(t, x)X(dt, x) = J o(t, x) U J M, (x,y)W(ds, dy)] dr
0 0 0

0

T ¢l T
— J J W(ds, dy) U qo(t,x>a,Mw(x,y>dt} .
0

0 s

Note that this expression may not be convenient because it does not take advantage of the
continuity of ¢. But, by Proposition 3.5, we can write
T

T
J ()D(t7x)atMl,s(x7y)dt = J (QD([,X) - (P(Sa-x))atMl,s(-xa y)dt + QD(S7'X)MT.,S(X7y)-

s N

Here again, we can formalize these heuristic considerations into the following:
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DEFINITION 3.6. Let ¢ : Q2 X [0, T] X [0, 1] — R be a measurable process. We say that ¢ is
integrable with respect to X if the mapping

T
(5,3) = [Mj ] (5,3) = J (9(0,5) = 95,300 My (v, ) + (s, OMr(x.y)  (24)

s

belongs to Dom (), for almost all x € [0, 1]. In this case we set

T T rl ,
|| et = | | [7.0] s pwias,a.
0 0J0

Remark 3.7. Just like in the case of the fractional Brownian motion [2] or of the heat
equation driven by the space-time white noise [11], one can show that fg (¢, x)X(dt, x) can
be interpreted as a divergence operator for the Wiener space defined by X.

Remark 3.8. It is easy to see that Proposition 3.5 implies that ¢ : [0, 7] — R is integrable
with respect to X if it is B-Holder continuous in time with 8> 1 — H.

3.2 Regularized version of Ito’s formula

The representation (20) of X also allows us to define a natural regularized version X ° of X,
depending on a parameter € > 0, such that # — X (¢, x) will be a semi-martingale. Indeed,
set, for ¢ > 0,

t

Mi‘y(xvy) = J Gt*u+€(xvy)auKH(u + 87S)du7

s

and

t ol
X°(t,x) = J J M (x, y)W(ds, dy). (25)
0J0

We will also need a regularized operator Mf; (see (24)), defined naturally by

1

(M5 e] s 3) = j (@(r,3) — (5,000, M (x, y)dr + gs, M, (x, ).

Our strategy in order to get an It6 type formula for X will then be the following:

1. Apply the usual 1t6 formula to the semi-martingale 7 +— X°(¢, x).
2. Rearrange terms in order to get an expression in terms of the operator Mf;
3. Study the limit of the different terms obtained through Steps 1 and 2, as € — 0.

The current section will be devoted to the elaboration of Steps 1 and 2.

LeMMA 3.9. Let € > 0. Then, the process 7 — X ®(¢, x) has bounded variations on [0, T'], for
all x € [0, 1].
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Proof. The Fubini theorem for W and the semigroup property of G imply

t rl u 1
x°0,9 = | | Grumn (J | Gtz Kintu+ o 5pwias, dy)) dedu,
0J0 0J0

and notice that this integral is well-defined due to Kolmogorov’s continuity theorem.
Therefore, since +— G;—,1,/2(x,2) is also a C I_function on [, T], we obtain that X is
differentiable with respect to t € [0, T, and

t rl u 1l
0,X%(t,x) = J J 0:Gi—ut(e/2) (%, 2) <J J Ge2(z2, )0, Kp(u + &, 5)W(ds, dy)> dzdu
0Jo 0Jo

1 t el
4 J Gupalx,2) (J j Gopalay)0.K (i + £, $)W(ds, dy)) &,
0 0J0

which is a continuous process on [0,7]X [0, 1], invoking Kolmogorov’s continuity
theorem again in a standard manner. |

An immediate consequence of the previous lemma is the following:

COROLLARY 3.10. Let t € [0, T], x € [0, 1] and & > 0. Then,

t 1 t
0 X°(1,%) = j (J 0,Gr o, VK + &, s)du) W(ds, dy)
0J0 K

t rl
+ J || Getrakuto-+ . owas,ay
0J0

t rl
_ J 0, M2 (x, y)W(ds, dy).
0J0

Proof. The result follows from Fubini’s theorem for W and from the semigroup property
of G. |

Now we are ready to establish our regularized 1t6’s formula in order to carry out Steps
1 and 2 of this section.

ProprosITION 3.11. Let fbe a regular function in Ci([R), e > 0, and X° the process defined
by (25). Then, for t € [0,T] and x € [0, 1], Mf_ff’(Xe) belongs to Dom (&) and

JXO(1,0)) = f(0) + A1s(t, ) + Az(1, %),

where
t el
Aven = | | (i) swias.an
0J0

is defined as a Skorohod integral, and

1

Analt,) = Jf”(XWs,x))K&,x(ds),
0
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with
V2

Ko x(s) =J deJ 41 Gatsieyvy () {HQH = Dlvy = va"7?
0 0

vi+e
— a%l,vz (J Ky(vi +&,u)Ky(v, + &, u)du)

Vi

80 (Kn(vi + &,v)Kn(vz + &,v1) . (26)

Proof. By Corollary 3.10, we are able to apply the classical change of variable formula to
obtain

t s rl
FXE(,20) = £(0) + Lf’(ms, ) UOJOaXMiu(x,wW(du? dy)} ds. @7

Moreover, the derivative of f/(X?(s, x)) in the Malliavin calculus sense is given by
D, [f'(X?(s,0)] = Mg (x, 2f (X (5, )1 jy=g).

Since the last quantity is bounded by c,v"/?~# for & > 0, then invoking formula (12) for
the Skorohod integral, we get

A

1 1
Face, )| LasM;u(x, PWidudy) = | Lf’(st,x»a.fM;iu(x,y)W(du,dy)

0 0
s 1

70,0 [ (a0a2,0000) 02 oy
0J0

28)

Denote for the moment the quantity jf)f(l) (E);Mje (x,y))Mje (x,y)dudy by h.(s). Then,

S,U S,U

combining (27) and (28), proceeding as the beginning of Section 3.1.3 and applying
Fubini’s theorem for the Skorohod integral, we have

JXo(1,0) = f(0) + Ay 02, %) + J F(X(s,x)hi(s)ds. (29)
0

We can find now a simpler expression for /,(s). Indeed, since M (x,y) = 0, it is easily
checked that

1 s rl 2
() = 50, UOJO (Mf‘u(x,y)> dudy]. (30)

Furthermore, the semigroup property for G yields

sl 2 S X
J [ (Mf#(x,y)) dudy = J duJ dV]J
0Jo 0

S

1
dVZJ dsz-H:*vl (x, Y)Gs-&-sfvz (x, )0 i
u 0

X Kg(vy + &,u)0,,Kg(v2 + €, u),

u
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and this last expression is equal to

2J duj dvlj V3Gt ey (6 X, K01 + 8, 100)00, Ky (v + 8, 10)

0 u Vi

Xy %3 Vi
= ZJ dvzj dvi Go(ste)—v; -1, (X, X) (J (aleH(vl + ¢, u))aVZKH(vz + &, u)du). 31
0 0 0

But

V1
J (av]Ky(vl + ¢, u))avZKH(vz + &, u)du
0

= 0,,0,, U Ky + &, u)Kg(va + &, u)du} — 0, [Kg(vi + &,v)Kp(v2 +&,v)]
0

vi+e
= HQH — Dy, — w2 - Dy, Oy, “ Ky(vi + &, u)Kg(vo + &, u)du

Vi

— 0y, [Kg(vi + &,v)Ku(va + &,v1)]. (32)

By putting together (31) and (32), we have thus obtained that

1 1 2
3| ] () s = Koo,

2JoJo ’

where K. (s) is defined at (26). By plugging this equality into (29) and (30), the proof is
now complete. |

3.3 Itd’s formula

We are now ready to perform the limiting procedure which will allow to go from
Proposition 3.11 to the announced It6 formula. To this end we will need the following
technical result, which states that the modulus of continuity of 7+ X°®(f,x) can be
bounded from below by any v < H — 1/4, independently of &.

PRrOPOSITION 3.12. Let X © be given by (25). Then for ¢, 1, € [0,T] and x € [0, 1], there is
a positive constant ¢ (independent of &) such that

E(IX%(12,%) — X°(t1,0)) = ¢l — 1 [”,

for any v < H — (1/4).

Proof. Suppose that t; < t,. Then

151 2
E(lXS(t2,x) - X*’(tl,x)|2) = 2J J (M:’N()Qy) — thx(x,y)) dyds

0Jo

+ zrr (Mfm(x, y)) " dyds. (33)

11J0
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Now using the fact that 9, Ky (u,s) > 0, we have
1 1 2 1 1l tr+e 2
J J (Mf”(x,y)) dyds:J J <J Gt2+28u(xvy)auKH(uvs)du> dyds
HdJo o 1 J0 s+e

th+e rl thr+e 2
= J J (J 1[t|+s,12+s](u)Gtz+2£u(xvy)auKH(uas)du) dde
0 0 s

th+e rh+te pl 2H—2
=HQH - 1)J J J | — vl Ghy26—u(X,Y)
t1+edt+eJ0

X Gy 26—y (x,y)dydudy = c(t, — 1)~ 1/?,
(34)

where the last inequality follows as in (18).
On the other hand, it is not difficult to see that

t 1l 2
J J (023, ) = 01529 s
0J0

1l t1+e 2
= 2J J (J [Grrsze-u(6,9) — Grs2eult, )] 0Kt s)du) dyds
0J0 s+e

1l th+e 2
+ ZJ J (J Gtz+2£—u(xay)auKH(uaS)du) dyds
0J0 t+e

=By + B». (35)
Observe now that we can proceed as in (34) to obtain
By = c(t — )71/, (36)

and it is also readily checked that

t1+2¢ pl 1 +2¢e 2
B = 2J j (j Gy y2ea6,) — Gwsu<x,y)|auKH<u,s>du) dyds
0 0 s

t1+2¢e pt1+2e pl 2H—2
— 2H(QH - 1)J J J 1 = V2 G 2, 3) — G o,
0 0 0

X |Grrr26-+(%,5) = Gy 420-4(x,y)|dydudy.

Finally, the proof follows combining (19) and (33)—(36). O
Let us state now the main result of this paper.

THEOREM 3.13. Let X be the process defined by (14) and f € Ci([R). Then, for t € [0, T]
and x € [0, 1], the process M:Xf’(X) belongs to Dom (8) and

JX(#,x)) = f(0) + Aq (7, %) + Az(1, %),
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where

t el

Ane0 = | [ (81:.700) s ywias. )

0J0

and
As(t, ) = %Jf”(X(s,x))Kx(ds),
0

with

S

Ki(s) = HQH — 1)J J Gos (6 01 = w22y,

0J0

As mentioned before, in order to prove this theorem, we use the regularized Itd
formula of Proposition 3.11 and we only need to study the convergence of the terms A,
and A, . appearing there. However, this analysis implies long and tedious calculations.
This is why we have chosen to split the proof of our theorem into a series of lemmas which
will be given in the next section.

3.4 Proof of the main result

The purpose of this section is to present some technical results whose combination
provides us the proof of our Itd’s formula given at Theorem 3.13. We begin with the
convergence Aj . — A, for which we provide first a series of lemmas.

LeEMMA 3.14. Let L] be the function defined on [0, T] by

S %)
Li(s) = J deJ dv1Gagsre)—vi - (X5, DK (vi + &,v1)0,,Kg(va + &, v1).
o Jo

Then s — 9,L{(s) converges to 0 in Ll([O, T]),asel0.
Proof. Note that by (16) we only need to study the convergence of 9,L{,(s), where

' " Ky(vi +¢&,v1)
L(s)= | dv| d 3y, Kn(va + £,v1). 37
11(s) L VzJO NGt e a2+ &, v1) (37

Indeed, this term will show us the technique and the difficulties for the remaining terms.

We will now proceed to a series of change of variables in order to get rid of the
parameter s in the boundaries of the integrals defining L{, : using first the change of variable
z=(v2 = v1)/(s — v1) and then 6 = v /s, we can write

1 s0+¢
. _ . _ (1-6
L} (s) = ch;s3 ZHJO (J \ (u — s0)H G/2) 1 (l/z)du) T

Jl (e + 50+ zs(1 — g)1~1/2
0o 2e+s(1—6)2 -2

(zs(1 — ) + &)~ C/Pqzde.
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Hence, the change of variable v = u — 50 leads to

1 e
e — - - (1 - 0)
s e ([0 o) U

Jl (€ + 50+ zs(1 — G)F~1/2

1- H=G/2dzd6.
o on=p cdmo0+e b

Therefore, by differentiating this expression in s, we end up with a sum of the type

5
L5, () =D L5,(9),
J=1

where
1 £
. - . . (1-6)
L1 (s) = eps? ZHJ() (JOVH G2+ so)f (1/2)‘1") 921
1 — )~ 1/2
0 1-6
J 04 U= (a1 — )+ )=z,

0o e+sd—0Q2 -2

and where the terms L7 ,,, ..., L},5, whose exact calculation is left to the reader for sake of

conciseness, are similar to L.
Finally, we have

& 1 (1 _ 0)H-1 1
L?H(S) = h <J VH(B/Z)dV) (J Wde)J ZH7(3/2)dZ = C‘H&‘Hﬁl/2 N 7H’
0 0 0

and it is easily checked that this last term converges to 0 in L ([0, T]). Furthermore, it can
also be proved that |L},;(s)| = cLj,,(s) for 2 = j = 5, which ends the proof. O

LemMAa 3.15. Let L be the function defined on [0, '] by

S Vo Vi +e
Li(s) = J deJ AviGogste)—v, —v, (X, X0y, (J Ky(vi + &,u)0,,Ku(va + &, u)du>-
0 0

Vi

Then s — 0,L5(s) converges to 0 in LY([0,T]), as € | 0.

Proof. As in the proof of Lemma 3.14 we only show the convergence of d,L5,(s), where

s 1 .
L5(s)= | dw| d 3, L(v1, v),
21) Jo VZL N TS T

with

vite
L(vi,vy) = J Ku(vi + €,u)d,,Kp(v2 + &, u)du.

Vi

Towards this end, we will proceed again to a series of changes of variables in order to
eliminate the parameter s from the boundaries of the integrals: notice first that the
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definition of Ky and the change of variables 6 = (u — v;)/(r — v;) and z = r — v yield

A H—(1/2) ° H—(1/2) ] 1-2H -0/
L(vi,v) =cy(va + &) Jo(m +2) JO(V1 + 62) (1= g0/

X (v 4+ & — vy — 62)1C/2d0odz.
Thus

H=(1/2)

& 1
- _ H—(1/2) H-(3/2) 1-2H
0, L1, 72) = (12 + ©) {cHL(vl O o o0

& 1
X (v2 +&— v — 02" %Pdedz — cHJ v + z)”*“/Z’J v+ 62)
0 0

H=(1/2)
X
(

R NG/ ° H=(1/2)
= g0P A (vo+&—v — 62 dez—i-cHL(vl +2)

: 1—2H A2 H—(5/2)
XJO(Vl + 62) W(Vz +e—v — 6 d0d1:| .

(38)

Hence, it is easily seen that L5 is a sum of terms of the form

s "2 (vy + &)H~1/2 r Jl LH=(1/2)
ap(s) = | dva| dv v 4+2% o F o) —
Qecpl5) Jo ZJo 1\/2(s+.s) -V — WV 0( ! ) 0( ! ) a- 9)<3/2>—H

X (v +&— v — 0z7)"d0dz

1 1 H—(1/2) e
= 32J dnJ du s+ ©) J (usm + 2)*
o Jo 20s+e) —usm—sm)

H—(1/2)

1
X J (usm + 60z)P (sm+ e — smu + 6z)"dedz,
0

a- 0)(3/2)—11

by applying the changes of variable u = v;/v, and 1 = v,/s. Differentiating this last
relation, we are now able to compute d,L5,(s), and see that this function goesto O as € | 0
in L'([0, T]), similarly to what we did in the proof of Lemma 3.14. (|

LemmA 3.16. Let L5 be the function defined on [0, 7] by
) %3
L5) = HQH — 1| s d01Gatros 2 = 2,
0 0

Then 8,L5(s) tends to (1/2)K.(ds) in LY([0,T]), as € | 0.
Proof. As in the proofs of Lemmas 3.14 and 3.15, we only need to use the change of
variables z = v /v, and 6 = v /s. O

LemMA 3.17. Let X and X © be given in (20) and (25), respectively. Then X ®(-, x) converges
to X(-,x) in L>(2 X [0, T]) and, for t € [0, T], X*(t,x) goes to X(¢,x) in L>({2), as € | 0.
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Proof. The result is an immediate consequence of the definitions of the processes X °(:, x)

and X(-,x), the fact that IMiX(x,y)l < c(t— )7 sA/D7H and of the dominated
convergence theorem. ]

We are now ready to study the convergence of the term A ,:

Lemma 3.18. Let r € [0,T] and x € [0, 1]. Then the random variable

t

B3(t,x) == H2H — 1)J FI(X(s,20)d; (JS dVZJvzdleZ(A‘Jra)*v.*vz(xa xX)(v2 — V1)2H2)ds
0 o Jo

converges to As(t,x) in L>(Q) as € | 0.

Proof. Since f" is a bounded function, then

E(|B§(t,x) - Az(t,X)}z) = CJOE((f”(X(S,x)) — f1(X5(5,2)))*) [0,K (5)|ds

+ C(J 10K (s) — H(H - l)asrdw
0 2 0

%3 2
XJ AV Gogse)—v, —v, (6, X) (V2 — V1)2H2|ds) .
0

Hence, the result is a consequence of Lemmas 3.16 and 3.17 and the dominated
convergence theorem. ]

Now we study the convergence of Ay, to Aj in L*(Q).

LeMMA 3.19. Let X and X ® be given in (20) and (25), respectively. Then, for ¢t € [0, T] and
x € [0,1],

E(Jf Jl [(M;xf/(x)) (5,5) — (Mi’if'(xs)) (S,y)} 2dyds> -0

0J0

ase|0.

Proof. We first note that

£ (J Jl [(M7,7100) 5,3 = (M5 £ ) s.9)] 2dyds)

0J0



Downloaded by [Purdue University Libraries] at 06:47 31 January 2016

448 J.A. Leon and S. Tindel

can be bounded from above by:

t ol t )
cE (J J U (f'(X(r, %) — f'(X(s, %) — f'(X5(r, x)) + f1(X5(5,%)))0,M, 5(x, y)dr:| dyds>
0JOLJs

t rl t 5
+ CE( OJ . U (f'(X*(r, ) —f/(Xs(s,x)))(aer,s(x7 y)— aerJ(x,y)) dr} dyds)

t ol
+ cE ( [(F'(X(s,2)) = f/(X5(s, )M, 5(x, )] 2dde>

0J0

ek ( il [P0 (M) = M) 2dyds>

0Jo
=¢(B) +---+Ba).
(39
Next observe that
t rl t
By = J J U E((f/X*(r,0) = f (X (s.x0))7) |0, Ms(x,y) = aer,S(x,w\dr}
0JO LJs
t
X J 8M s (x, ¥) — DM, (x, y)'d@} dyds.
N
Now notice that Proposition 3.12 and the inequality
H—(1/2)
0.M; ()| = ¢ (r f 8) (r—s+e)i
(x—y)7 (x+y—2)>
x _ —
(exp( Cls—{—(r—s) +exp Cle+(r—s)
imply, for B small enough, that
E((f 7 (r,20) = £1OC (5,500 0, My (5,3) = M5 (5, 9)
goes to 0 as & | 0 and that it is bounded by cs1/2~H(r — 5)3H~G/27F Thus
B,—0 (40)

because of the dominated convergence theorem.
Since f’ is a bounded function, then

t ol 2
B4 = CJ J (Mt,s(xvy) - Mf;(xmy)) dde,
0Jo '

which goes to 0 due to the definition of M? and the dominated convergence theorem.
Hence, by (39) and (40), we only need to show that B; + B3 — 0 as & | O to finish the
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proof. This can been seen using Lemma 3.17 and proceeding as the beginning of this
proof. g

LeMMA 3.20. Let X and X?® be given by (20) and (25), respectively. Then, for ¢ € [0, T]
and x € [0, 1], Mixf’(X) belongs to Dom (8). Moreover

o( Mz %)) — 8( M, 1)
as € | 0in L2(Q).

Proof. The result follows from Lemmas 3.14—3.19 and from the fact that 6 is a closed
operator. ]
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