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In this paper, we introduce a stochastic integral with respect to the solution X of the
fractional heat equation on [0,1], interpreted as a divergence operator. This allows to
use the techniques of the Malliavin calculus in order to establish an Itô-type formula for
the process X.
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1. Introduction

In the last few years, a great amount of effort has been devoted to a proper definition of

stochastic PDEs driven by a general noise. For instance, the case of stochastic heat and

wave equations in Rn driven by a Brownian motion in time, with some mild conditions on

its spatial covariance, has been considered, e.g. in Refs. [8,16,19], leading to some optimal

results. More recently, the case of SPDEs driven by a fractional Brownian motion has been

analyzed in Refs. [5,10,22] in the linear case, or in Refs. [12,15,20] in the non-linear case.

Notice that this kind of development can be related to the study of turbulent plasmas [6],

where some non-diffusive SPDEs may appear.

In this context, it seems natural to investigate the basic properties (Hölderianity,

behaviour of the density, invariant measures, numerical approximations, etc.) of these

objects. And indeed, in the case of an equation driven by a Brownian motion, a lot of effort

has been made in this direction (let us cite [13,14,16] among others). On the other hand,

results concerning SPDEs driven by a fractional Brownian motion are rather scarce (see

however [18] for a result on SPDEs with irregular coefficients and [21] for a study of the

Hölder regularity of solutions).

We propose, therefore, in this article, to go further into the study of processes defined

by fractional PDEs and we will establish an Itô-type formula for a random function X on

½0; T� £ ½0; 1� defined as the solution to the heat equation with an additive fractional noise.

More specifically, we will consider X as the solution to the following equation:

›tXðt; xÞ ¼ DXðt; xÞ þ Bðdt; dxÞ; ðt; xÞ [ ½0; T� £ ½0; 1�; ð1Þ
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with Dirichlet boundary conditions and null initial condition. In Equation (1), the driving

noise B will be considered as a fractional Brownian motion in time, with Hurst parameter

H . 1=2 and as a white noise in space (notice that some more general correlations in space

could have been considered, as well as the case 1=3 , H , 1=2, but we have restrained

ourselves to this simple situation for sake of conciseness).

Then, for X solution to (1), t [ ½0; T�, x [ ½0; 1� and a C2
b-function f : R! R, we will

prove that f ðXðt; xÞÞ can be decomposed into:

f ðXðt; xÞÞ ¼ f ð0Þ þ

ðt

0

ð1

0

M*
t;x f 0ðXÞ

� �
ðs; yÞWðds; dyÞ þ

1

2

ðt

0

f 00ðXðs; xÞÞKxðdsÞ; ð2Þ

where in the last formula, M*
t;x is an operator based on the heat kernel Gt on ½0; 1� and the

covariance function of B, W is a space-time white noise naturally associated to the

fractional Brownian motion B and Kx is the function defined on ½0; T� by:

KxðsÞ ¼ Hð2H 2 1Þ

ðs

0

ðs

0

G2s2v12v2
ðx; xÞjv1 2 v2j

2H22
dv1dv2:

Notice also that, in (2), the stochastic integral has to be interpreted in the Skorohod sense

(see Theorem 3.13 for a precise statement).

It is worth mentioning at this point that formula (2) will be obtained thanks to some

Gaussian tools inspired by the case of the fractional Brownian motion itself. This is due to

the fact that X can be represented by the convolution

Xðt; xÞ ¼

ðt

0

ð1

0

Mt;sðx; yÞWðds; dyÞ ð3Þ

of a certain kernel M on ½0; t� £ ½0; 1�, defined at (21), with respect to W. This kind of

property has already been exploited in Ref. [11] for the case of the heat equation driven by

a space-time white noise, and let us compare our current result to this latter reference and

other existing results:

(1) First of all, notice that an important step of our computations will be to obtain the

representation (3) itself (see Corollary 3.3) and to give some reasonable bounds on

the kernel M and its derivatives.

(2) The infinite dimensional setting was adopted in Ref. [11], which leads more

naturally to consider the L2ð½0; 1�Þ process X as a function of the time variable

t [ ½0; T�. If we set Xt ¼ Xðt; ·Þ, we obtained in Ref. [11] a change of variable

formula for FðXtÞ, where F : L2ð½0; 1�Þ! R is a smooth enough function.

A typical example of such kind of function is the case of F defined by

FðgÞ ¼

ð1

0

f ðgðxÞÞcðxÞdx; for g [ L2ð½0; 1�Þ; ð4Þ

with a given continuous function c on ½0; 1�. We could have chosen the same

setting here, but it turns out that the little gain in regularity (for our noise B) we

have here allows us to obtain directly an Itô type formula for t 7! f ðXðt; xÞÞ

whenever H . 1=2, for any x [ ½0; 1�.

(3) The fact that a change of variable formula is available for the function

t 7! f ðXðt; xÞÞ is not a surprise: if H . 1=2, the Hölder regularity of the function

J.A. León and S. Tindel428
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t 7! Xðt; xÞ is greater than 1=4, so that we are morally in condition to use the

theoretical setting developed in Ref. [2]. In fact, for a fixed value x [ ½0; 1�, one

may also try to get a representation (in law) of the process t 7! Xðt; xÞ by means of

a convolution of the type

Xðt; xÞ ¼

ðt

0

K̂xðt; sÞB̂ðdsÞ;

for a certain kernel K̂x and a Brownian motion B̂. Then one can be easily reduced

to the framework [2] in order to get an Itô type formula. Notice however that our

formula (2) goes beyond this approach, since it is valid for any x [ ½0; 1�, with the

same driving process W for the stochastic integral

ðt

0

ð1

0

M*
t;x f 0ðXÞ

� �
ðs; yÞWðds; dyÞ:

Furthermore, this latter integral has a natural interpretation in terms of the initial

Equation (1), as a Skorohod integral of f 0ðXÞ with respect to X (which may be

written dXð f 0ðXÞÞ in the notation of Ref. [2]). Eventually, we believe that our

analysis can be pushed forward to the case 1=3 , H , 1=2, for a function F of the

form (4) and this would allow to handle the case of a Hölder regularity in time lesser

than 1=4 for X. We plan to report on this possibility in a further communication.

(4) Let us mention at this point the alternative approach developed in Ref. [24] in order

to obtain Itô formulae for SPDEs. This methodology is based on the weak form of

Equation (1), while ours relies on its mild form. This has several implications: on

the one hand, the formulae derived in Ref. [24] may be easier to use in algebraic

terms. Indeed, if we set Yt ¼
Ð 1

0
f ðXðt; xÞÞcðxÞdx for a continuous function c on

½0; 1�, then the decomposition given in Ref. [24] allows to write

Yt 2 Ys ¼

ðt

s

ð1

0

R1ðu; yÞWðdu; dyÞ þ

ðt

s

ð1

0

R2ðu; yÞdudy; ð5Þ

for two processes R1;R2. We do not have access to this kind of decomposition, and

this is quite natural in the mild setting, since a formula of the type (5) does not hold

even for f ¼ Id. On the other hand, the assumptions in Ref. [24] require a lot of

regularity on both f and c, while we only have to consider a C2
b-function f and

c ¼ dx for our formula (2).

(5) Our motivations for an expansion like (2) can be summarized as follow: first of all,

we believe that once the existence and uniqueness of the solution to (1) is

established, it is a natural question to ask whether an Itô-type formula is available

for the process we have produced. Furthermore, this kind of result can also yield a

better understanding of some properties of the process itself, such as the

distribution of hitting times for the infinite-dimensional process Xðt; ·Þ; this has

been shown in Ref. [9] for the one-dimensional fractional Brownian motion, and

see also [7] for a reference on exit times for parabolic SPDEs. Eventually, Itô’s

formula for SPDEs can also be a tool in order to construct a stochastic version of the

Hopf-Cole transform, which links stochastic heat and Burgers equation (see, e.g.

[4]). All these possibilities go beyond our current framework, but are still

motivations for a formula like (2).

Stochastics: An International Journal of Probability and Stochastics Processes 429
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Let us say now a few words about the method we have used in order to get our result: as

mentioned above, the first step in our approach consists in establishing the representation (3).

This representation, together with the properties of the kernel M, suggests that the

differential of X should be of the form

Xðdt; xÞ ¼

ðt

0

ð1

0

›tMt;sðx; yÞWðds; dyÞ

� �
dt: ð6Þ

This formula is of course ill-defined, since ðs; yÞ 7! ›tMt;sðx; yÞ is not a L2-function on

½0; t� £ ½0; 1�, but it holds true for a regularization M 1 of M. We will then obtain easily an Itô

type formula for the process X 1 corresponding to M 1, where the differential (6) appears.

Therefore, the main step in our calculations will be to study the limit of the regularized Itô

formula when 1! 0, which was also the point of view adopted in Ref. [1]. Notice that this

approach is quite different (and from our point of view more intuitive) from the one adopted

in Refs. [2,11], where the quantity E½ f ðXðt; xÞÞInðwÞ�was evaluated for an arbitrary multiple

integral InðwÞ with respect to W.

Our paper is divided as follows: in Section 2, we will describe precisely the noise and

the equation under consideration and we will give some basic properties of the process X.

Section 3 is devoted to the derivation of our Itô-type formula: in Section 3.1 we obtain the

representation (3) for X, the regularized formula is given in Section 3.2 and eventually the

limiting procedure is carried out in Sections 3.3 and 3.4. In the sequel of the paper, c will

designate a positive constant whose exact value can change from line to line.

2. Preliminary definitions

In this section we introduce the framework that will be used in this paper: we will define

precisely the noise which will be considered, then give a brief review of some Malliavin

calculus tools and eventually introduce the fractional heat equation.

2.1 Noise under consideration

Throughout the article, we will consider a complete probability space ðV;F ;PÞ on which

we define a noise that will be a fractional Brownian motion with Hurst parameter H . 1=2

in time, and a Brownian motion in space. More specifically, we define a zero mean

Gaussian field B ¼ {Bðs; xÞ : s [ ½0; T�; x [ ½0; 1�} of the form

Bðt; xÞ ¼

ðt

0

ðx

0

KHðt; sÞWðds; dyÞ: ð7Þ

Here W is a two-parameter Wiener process and KH is the kernel of the fractional Brownian

motion (fBm) with Hurst parameter H [ ðð1=2Þ; 1Þ. Namely, for 0 # s # t # T , we have

KHðt; sÞ ¼ CHs ð1=2Þ2H

ðt

s

ðu 2 sÞH2ð3=2Þ uH2ð1=2Þdu;

where CH is a constant whose exact value is not important for our aim. Observe that the

standard theory of martingale measures introduced in Ref. [23] easily yields the existence

of the integral (7).

J.A. León and S. Tindel430
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Note that it is natural to interpret the left-hand side of (7) as the stochastic integral

Bð1½0;t�£½0;x�Þ U

ðt

0

ðx

0

Bðds; dyÞ: ð8Þ

The domain of this Wiener integral is then extended as follows: let H be the Hilbert space

defined as the completion of the step functions with respect to the inner product

k1½0;s�; 1½0;t�lH ¼ kKHðt; ·Þ;KHðs; ·ÞlL 2ð½0;T�Þ ¼ Hð2H 2 1Þ

ðt

0

ðs

0

ju 2 rj
2H22

dudr: ð9Þ

Thus, by Alòs and Nualart [3], the kernel KH allows to construct an isometry K*
H;T from

H £ L2ð½0; 1�Þ (denoted by HT for short) into L2ð½0; T� £ ½0; 1�Þ such that, for

0 # s , t # T ,

K*
H;T 1½0;t�£½0;x�

� �
ðs; yÞ ¼ KHðt; sÞ1½0;x�ð yÞ ¼ 1½0;x�ð yÞ

ðT

s

1½0;t�ðrÞ›rKHðr; sÞdr:

Therefore, the Wiener integral (8) can be extended into an isometry w 7! BðwÞ from HT

into a subspace of L2ðVÞ so that, for any w [ HT ,

BðwÞ ¼

ðT

0

ð1

0

K*
H;Tw

� �
ðs; yÞWðds; dyÞ: ð10Þ

Then, for two elements w and c of HT , the covariance between BðwÞ and BðcÞ is given by

E½BðwÞBðcÞ� ¼ Hð2H 2 1Þ

ðT

0

ðT

0

ð1

0

wðs; yÞjs 2 rj
2H22

cðr; yÞdsdrdy: ð11Þ

Notice that an element of HT could possibly not be a function. Hence as the in

fBm case, we will deal with the Banach space jHT j of all the measurable functions

w : ½0; T� £ ½0; 1�! R such that

kwkjHT j ¼ Hð2H 2 1Þ

ðT

0

ðT

0

ð1

0

jwðr; yÞku 2 rj
2H22

jwðu; yÞjdydudr

¼

ð1

0

ðT

0

ðT

s

jwðr; yÞj›rKHðr; sÞdr

� �2

dsdy , 1:

It is then easy to see that L2ð½0; T� £ ½0; 1�Þ , jHT j , HT .

2.2 Malliavin calculus tools

The goal of this section is to recall the basic definitions of the Malliavin calculus which

will allow us to define the divergence operator with respect to W. For a more detailed

presentation, we recommend Nualart [17].

Let S be the family of all smooth functionals of the form

F ¼ f ðWðs1; y1Þ; . . . ;Wðsn; ynÞÞ; with ðsi; yiÞ [ ½0; T� £ ½0; 1�;

Stochastics: An International Journal of Probability and Stochastics Processes 431
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where f [ C1
b ðR

nÞ (i.e. f and all its partial derivatives are bounded). The derivative of this

kind of smooth functional is the L2ð½0; T� £ ½0; 1�Þ-valued random variable

DF ¼
Xn

i¼1

›f

›xi

ðWðs1; y1Þ; . . . ;Wðsn; ynÞÞ1½0;si�£½0;yi�:

It is then well-known that D is a closeable operator from L2ðVÞ into

L2ðV £ ½0; T� £ ½0; 1�Þ. Henceforth, to simplify the notation, we also denote its closed

extension by D. Consequently D has an adjoint d, which is also a closed operator,

characterized via the duality relation

EðFdðuÞÞ ¼ E kDF; ulL 2ð½0;T�£½0;1�Þ

� �
;

with F [ S and u [ Dom ðdÞ , L2ðV £ ½0; T� £ ½0; 1�Þ. The operator d has been

considered as a stochastic integral because it is an extension of the Itô integral with respect

to W that allows us to integrate anticipating processes (see, for instance, [17]). According

to this fact, we will sometimes use the notational convention

dðuÞ ¼

ðT

0

ð1

0

us;yWðds; dyÞ:

Notice that the operator d (or Skorohod integral) has the following property: suppose

that F is a random variable in DomðDÞ and that u is Skorohod integrable (i.e.

u [ Dom ðdÞ), such that E
�
F 2
Ð T

0

Ð 1

0
ðuðs; yÞÞ2dyds

�
, 1. Then

ðT

0

ð1

0

Fuðs; yÞWðds; dyÞ ¼ F

ðT

0

ð1

0

uðs; yÞWðds; dyÞ2

ðT

0

ð1

0

ðDs;yFÞuðs; yÞdyds; ð12Þ

in the sense that ðFuÞ [ Dom ðdÞ if and only if the right-hand side is in L2ðVÞ.

2.3 Heat equation

This paper is concerned with the solution X to the following stochastic heat equation on

½0; 1�, with Dirichlet boundary conditions and null initial condition:

›tXðt; xÞ ¼ DXðt; xÞ þ Bðdt; dxÞ; ðt; xÞ [ ½0; T� £ ½0; 1�

Xð0; xÞ ¼ 0; Xðt; 0Þ ¼ Xðt; 1Þ ¼ 0:

(
ð13Þ

It is well-known (See Ref. [22]) that Equation (13) has a unique solution, which is given

explicitly by

Xðt; xÞ ¼

ðt

0

ð1

0

Gt2sðx; yÞBðds; dyÞ; ð14Þ

where

Gtðx; yÞ ¼
1ffiffiffiffiffiffiffiffi
4pt

p
X1

n¼21

exp 2
ðy 2 x 2 2nÞ2

4t

� �
2 exp 2

ðy þ x 2 2nÞ2

4t

� �� �
ð15Þ

J.A. León and S. Tindel432
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stands for the Dirichlet heat kernel on ½0; 1� with Dirichlet boundary conditions. Let us

recall here some elementary but useful identities for the heat kernel G:

Lemma 2.1. The following relations hold true for the heat kernel G given by (15):

ð1

0

Gtðx; yÞdy ¼ 1; Gtðx; yÞ #
c1

t 1=2
exp 2

c2ðx 2 yÞ2

t

� �
;

and

j›tGtðx; yÞj #
c3

t 3=2
exp 2

c4ðx 2 yÞ2

t

� �
;

for some positive constants c1; c2; c3 and c4. Furthermore, G can be decomposed into

Gtðx; yÞ ¼ G1;tðx; yÞ þ Rtðx; yÞ; ð16Þ

where

G1;tðx; yÞ ¼
1ffiffiffiffiffiffiffiffi
4pt

p exp 2
ðy 2 xÞ2

4t

� �
2 exp 2

ðy þ xÞ2

4t

� �
2 exp 2

ðy þ x 2 2Þ2

4t

� �� �
;

and Rtðx; yÞ is a smooth bounded function on ½0; T� £ ½0; 1�2.

Let us recall now some basic properties of the process X defined by (13) and (14),

starting with its integrability.

Lemma 2.2. The process defined on ½0; T� £ ½0; 1� by (14) satisfies

sup
t[½0;T�; x[½0;1�

E


jXðt; xÞj

2�
, 1:

Proof. We have, according to (11) and Lemma 2.1, that

E


jXðt; xÞj

2�
¼ cH

ð
½0;t�2

dsdu

js 2 uj
222H

ð1

0

Gt2sðx; yÞGt2uðx; yÞdy

# c

ð
½0;t�2

dsdu

ðt 2 sÞ1=2js 2 uj
222H

ð1

0

Gt2uðx; yÞdy

¼ c

ð
½0;t�2

dsdu

ðt 2 sÞ1=2js 2 uj
222H

;

and the last integral is finite by elementary arguments. A

One can go further in the study of X, and show the following regularity result

(see also [21]):

Proposition 2.3. Let X be the solution to (13). Then, for t1; t2 [ ½0; T� and x [ ½0; 1�,

we have

E jXðt2; xÞ2 Xðt1; xÞj
2

h i
# cjt2 2 t1j

2g
;

Stochastics: An International Journal of Probability and Stochastics Processes 433
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for any g , H 2 1=4. In particular, for any T . 0 and x [ ½0; 1�, the function t [ ½0; T� 7!

Xðt; xÞ is g-Hölder continuous for any g , H 2 1=4.

Proof. Assume t1 , t2. We then have

Xðt2; xÞ2 Xðt1; xÞ ¼ Aðt1; t2; xÞ þ Bðt1; t2; xÞ;

with

Aðt1; t2; xÞ ¼

ðt1

0

ð1

0

Gt22sðx; yÞ2 Gt12sðx; yÞ

 �

Bðds; dyÞ

and

Bðt1; t2; xÞ ¼

ðt2

t1

ð1

0

Gt22sðx; yÞBðds; dyÞ:

Hence

E


jXðt2; xÞ2 Xðt1; xÞj

2�
# 2 E A2ðt1; t2; xÞ


 �
þ E B2ðt1; t2; xÞ


 �� �
: ð17Þ

We first note that (11) and Lemma 2.1 imply

E B2ðt1; t2; xÞ

 �

¼ cH

ðt2

t1

ðt2

t1

dudsjs 2 uj
2H22

ð1

0

Gt22sðx; yÞGt22uðx; yÞdy

# c

ðt2

t1

dsðt2 2 sÞ21=2

ðt2

t1

js 2 uj
2H22

du # cðt2 2 t1Þ
2H2ð1=2Þ: ð18Þ

Now we will concentrate on the estimate on E½A2ðt1; t2; xÞ�. By (11), we have

E A2ðt1; t2; xÞ

 �

¼ cH

ðt1

0

ðt1

0

duds

js 2 uj
222H

Cxðs; uÞ; ð19Þ

with Cxðs; uÞ defined by

Cxðs; uÞ ¼

ð1

0

Gt22sðx; yÞ2 Gt12sðx; yÞ

 �

Gt22uðx; yÞ2 Gt12uðx; yÞ

 �

dy:

Thus, invoking Lemma 2.1, we obtain that, for a given a , 1=2,

Cxðs; uÞ # c
ðt2 2 t1Þ

2a

ðt1 2 uÞ3a=2ðt1 2 sÞ3a=2
Dxðs; uÞ;

where

Dxðs; uÞ ¼

ð1

0

Gt22sðx; yÞ2 Gt12sðx; yÞ
�� ��12a

Gt22uðx; yÞ2 Gt12uðx; yÞ
�� ��12a

dy:
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It is then easily seen that Dxðs; uÞ can be bounded by a sum of terms of the form

Fxðs; uÞ ¼

ð1

0

G12a
s2s ðx; yÞG12a

t2u ðx; yÞdy;

with s; t [ {t1; t2}. This latter expression can be bounded in the following way:

Fxðs; uÞ #

ð1

0

G2ð12aÞ
s2s ðx; yÞdy

� �1=2 ð1

0

G2ð12aÞ
t2u ðx; yÞdy

� �1=2

#
c

ðt1 2 sÞ1=42a=2ðt1 2 uÞ1=42a=2
:

We have thus obtained that

E A2ðt1; t2; xÞ

 �

# cðt2 2 t1Þ
2a

ðt1

0

ðt1

0

duds

js 2 uj
222H

ðt1 2 sÞ1=4þaðt1 2 uÞ1=4þa
:

Now thanks the change of variable v ¼ ðu 2 sÞ=ðt1 2 sÞ, the latter integral is finite

whenever a , H 2 1=4, which, together with (17) and (18), ends the proof. A

3. Itô’s formula for the heat equation

Let us turn to the main aim of this paper, namely the Itô-type formula for the process X

introduced in (14). The strategy of our computations can be briefly outlined as follows:

first we will try to represent X as a convolution of a certain kernel M with respect to W,

with reasonable bounds on M. Then we will be able to establish our Itô’s formula for a

smoothed version of X, involving a regularized kernel M 1 for 1 . 0, by applying the usual

Itô formula. Our main task will then be to study the limit of the quantities we will obtain as

1! 0.

3.1 Differential of X

Before getting a suitable expression for the differential of X, let us see how to represent

this process as a convolution with respect to W.

3.1.1 Representation of X

The expressions (9) and (10) lead to the following result (see Ref. [3]).

Lemma 3.1. Let w be a function in jHT j. Then

ðt

0

ð1

0

wðs; yÞBðds; dyÞ ¼

ðt

0

ð1

0

K*
H;T 1½0;t�w

h i
ðu; yÞWðdu; dyÞ;

with

K*
H;T 1½0;t�w

h i
ðu; yÞ ¼ 1½0;t�ðuÞ

ðt

u

wðr; yÞ›rKHðr; uÞdr:
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Remark 3.2. This result could also have been obtained by some heuristic arguments.

Indeed, a formal way to write (7) is to say that, for t . 0 and y [ ½0; 1�, the differential

Bðt; dyÞ is defined as

Bðt; dyÞ ¼

ðt

0

KHðt; sÞWðds; dyÞ:

Thus, if we differentiate formally this expression in time, since KHðt; tÞ ¼ 0, we obtain

›tBðt; dyÞ ¼

ðt

0

›tKHðt; sÞWðds; dyÞ

� �
dt:

Since ›tKHðt; sÞ is not a L 2-function, the last equality has to be interpreted in the following

way: if w is a deterministic function, then

ðt

0

ð1

0

wðs; yÞBðds; dyÞ ¼

ðt

0

ð1

0

wðs; yÞ

ðs

0

›sKHðs; uÞWðdu; dyÞ

� �
ds

¼

ðt

0

ð1

0

Wðdu; dyÞ

ðt

u

wðs; yÞ›sKðs; uÞds

� �
;

which recovers the result of Lemma 3.1.

We can now easily get the announced representation for X:

Corollary 3.3. The solution X to (13) can be written as

Xðt; xÞ ¼

ðt

0

ð1

0

Mt;sðx; yÞWðds; dyÞ; ð20Þ

with

Mt;sðx; yÞ ¼

ðt

s

Gt2uðx; yÞ›uKHðu; sÞdu: ð21Þ

Proof. The result is an immediate consequence of the proof of Proposition 2.3 and

Lemma 3.1. A

3.1.2 Some bounds on M

The kernel M will be algebraically useful in order to obtain our Itô’s formula, and we will

proceed to show now that it behaves similarly to the heat kernel G. To do so, let us first

state the following technical lemma:

Lemma 3.4. Let f be defined on 0 , r , t # T by

f ðr; tÞ ¼

ðt

r

ðt 2 uÞ21=2ðu 2 rÞ2a exp 2
kx2

t 2 u

� �
du;
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for a constant k . 0, x [ ½0; 2� and a [ ð0; 1Þ. Then, there exist some constants

c1; c2; c3; c4 . 0 such that

f ðr; tÞ # c1ðt 2 rÞ2ða21=2Þ exp 2
c2x2

t 2 r

� �
ð22Þ

and

›t f ðr; tÞ # c3ðt 2 rÞ2ðaþ1=2Þ exp 2
c4x2

t 2 r

� �
: ð23Þ

Proof. Recall that, in the remainder of the paper, k stands for a positive constant which can

change from line to line. Notice also that (22) is easy to see due to

f ðr; tÞ # exp 2
kx2

t 2 r

� �ðt

r

ðt 2 uÞ21=2ðu 2 rÞ2adr:

Now we will concentrate on (23): let us perform the change of variable

v ¼ ðu 2 rÞ=ðt 2 rÞ. This yields

f ðr; tÞ ¼ ðt 2 rÞ2ða21=2Þ

ð1

0

ð1 2 vÞ21=2v2a exp 2
kx2

ð1 2 vÞðt 2 rÞ

� �
dv;

and thus

›t f ðr; tÞ ¼ g1ðr; tÞ þ g2ðr; tÞ;

with

g1ðr; tÞ ¼ kx2ðt 2 rÞ2ðaþ3=2Þ

ð1

0

ð1 2 vÞ23=2 v2a exp 2
kx2

ð1 2 vÞðt 2 rÞ

� �
dv

and

g2ðr; tÞ ¼
1

2
2 a

� �
ðt 2 rÞ2ðaþ1=2Þ

ð1

0

ð1 2 vÞ21=2 v2a exp 2
kx2

ð1 2 vÞðt 2 rÞ

� �
dv:

Therefore, thanks to the fact that u 7! ue2u is a bounded function on Rþ, we have

g1ðr; tÞ # cðt 2 rÞ2ðaþ1=2Þ

ð1

0

ð1 2 vÞ21=2 v2a exp 2
kx2

2ð1 2 vÞðt 2 rÞ

� �
dv

# cðt 2 rÞ2ðaþ1=2Þ exp 2
kx2

2ðt 2 rÞ

� �ð1

0

ð1 2 vÞ21=2 v2adv;

which is an estimate of the form (22). Finally, it is easy to see that

g2ðr; tÞ # cðt 2 rÞ2ðaþ1=2Þ exp 2
kx2

2ðt 2 rÞ

� �ð1

0

ð1 2 vÞ21=2 v2adv;

which completes the proof. A
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We are now ready to prove our bounds on M:

Proposition 3.5. Let M be the kernel defined at (21). Then, for some strictly positive

constants c5; c6; c7; c8 . 0, we have

Mt;sðx; yÞ # c5ðt 2 sÞ2ð12HÞ t

s

� �H21=2

exp 2
c6ðx 2 yÞ2

t 2 s

� �
þ exp 2

c6ðx þ y 2 2Þ2

t 2 s

� �� �

and

j›tMt;sðx; yÞj# c7ðt 2 sÞ2ð22HÞ t

s

� �H21=2

exp 2
c8ðx 2 yÞ2

t 2 s

� �
þ exp 2

c8ðx þ y 2 2Þ2

t 2 s

� �� �
:

Proof. First of all, we will use the decomposition (16), which allows to write

Mt;sðx; yÞ ¼

ðt

s

G1;t2uðx; yÞ›uKHðu; sÞdu þ

ðt

s

Rt2uðx; yÞ›uKHðu; sÞdu:

Now the result is an immediate consequence of Lemma 3.4 applied to a , ð3=2Þ2 H, the

only difference being the presence of the term ðu=sÞH21=2, which can be bounded by

ðt=sÞH21=2 each time it appears. This yields the desired result. A

3.1.3 Differential of X

With the representation (20) in hand, we can now follow the heuristic steps in Remark 3.2

in order to get a reasonable definition of the differential of X in time. That is, we can write

formally that

Xðdt; xÞ ¼

ðt

0

ð1

0

›tMt;sðx; yÞWðds; dyÞ

� �
dt;

which means that if w : ½0; T� £ ½0; 1�! R is a smooth enough function, we have

ðT

0

wðt; xÞXðdt; xÞ ¼

ðT

0

wðt; xÞ

ðt

0

ð1

0

›tMt;sðx; yÞWðds; dyÞ

� �
dt

¼

ðT

0

ð1

0

Wðds; dyÞ

ðT

s

wðt; xÞ›tMt;sðx; yÞdt

� �
:

Note that this expression may not be convenient because it does not take advantage of the

continuity of w. But, by Proposition 3.5, we can writeðT

s

wðt; xÞ›tMt;sðx; yÞdt ¼

ðT

s

ðwðt; xÞ2 wðs; xÞÞ›tMt;sðx; yÞdt þ wðs; xÞMT ;sðx; yÞ:

Here again, we can formalize these heuristic considerations into the following:
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Definition 3.6. Let w : V £ ½0; T� £ ½0; 1�! R be a measurable process. We say that w is

integrable with respect to X if the mapping

ðs; yÞ 7! M*
T ;xw

h i
ðs; yÞ U

ðT

s

ðwðt; xÞ2 wðs; xÞÞ›tMt;sðx; yÞdt þ wðs; xÞMT ;sðx; yÞ ð24Þ

belongs to Dom ðdÞ, for almost all x [ ½0; 1�. In this case we set

ðT

0

wðt; xÞXðdt; xÞ ¼

ðT

0

ð1

0

M*
T ;xw

h i
ðs; yÞWðds; dyÞ:

Remark 3.7. Just like in the case of the fractional Brownian motion [2] or of the heat

equation driven by the space-time white noise [11], one can show that
Ð T

0
wðt; xÞXðdt; xÞ can

be interpreted as a divergence operator for the Wiener space defined by X.

Remark 3.8. It is easy to see that Proposition 3.5 implies that w : ½0; T�! R is integrable

with respect to X if it is b-Hölder continuous in time with b . 1 2 H.

3.2 Regularized version of Itô’s formula

The representation (20) of X also allows us to define a natural regularized version X 1 of X,

depending on a parameter 1 . 0, such that t 7! X 1ðt; xÞ will be a semi-martingale. Indeed,

set, for 1 . 0,

M1
t;sðx; yÞ ¼

ðt

s

Gt2uþ1ðx; yÞ›uKHðu þ 1; sÞdu;

and

X 1ðt; xÞ ¼

ðt

0

ð1

0

M1
t;sðx; yÞWðds; dyÞ: ð25Þ

We will also need a regularized operator M
1;*
t;x (see (24)), defined naturally by

M1;*
t; xw

h i
ðs; yÞ ¼

ðt

s

ðwðr; xÞ2 wðs; xÞÞ›rM
1
r;sðx; yÞdr þ wðs; xÞM1

t;sðx; yÞ:

Our strategy in order to get an Itô type formula for X will then be the following:

1. Apply the usual Itô formula to the semi-martingale t 7! X 1ðt; xÞ.

2. Rearrange terms in order to get an expression in terms of the operator M
1;*
t;x .

3. Study the limit of the different terms obtained through Steps 1 and 2, as 1! 0.

The current section will be devoted to the elaboration of Steps 1 and 2.

Lemma 3.9. Let 1 . 0. Then, the process t 7! X 1ðt; xÞ has bounded variations on ½0; T�, for

all x [ ½0; 1�.
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Proof. The Fubini theorem for W and the semigroup property of G imply

X 1ðt; xÞ ¼

ðt

0

ð1

0

Gt2uþð1=2Þðx; zÞ

ðu

0

ð1

0

G1=2ðz; yÞ›uKHðu þ 1; sÞWðds; dyÞ

� �
dzdu;

and notice that this integral is well-defined due to Kolmogorov’s continuity theorem.

Therefore, since t 7! Gt2uþ1=2ðx; zÞ is also a C 1-function on ½u; T�, we obtain that X 1 is

differentiable with respect to t [ ½0; T�, and

›tX
1ðt; xÞ ¼

ðt

0

ð1

0

›tGt2uþð1=2Þðx; zÞ

ðu

0

ð1

0

G1=2ðz; yÞ›uKHðu þ 1; sÞWðds; dyÞ

� �
dzdu

þ

ð1

0

G1=2ðx; zÞ

ðt

0

ð1

0

G1=2ðz; yÞ›tKHðt þ 1; sÞWðds; dyÞ

� �
dz;

which is a continuous process on ½0; T� £ ½0; 1�, invoking Kolmogorov’s continuity

theorem again in a standard manner. A

An immediate consequence of the previous lemma is the following:

Corollary 3.10. Let t [ ½0; T�, x [ ½0; 1� and 1 . 0. Then,

›tX
1ðt; xÞ ¼

ðt

0

ð1

0

ðt

s

›tGt2uþ1ðx; yÞ›uKHðu þ 1; sÞdu

� �
Wðds; dyÞ

þ

ðt

0

ð1

0

G1ðx; yÞ›tKHðt þ 1; sÞWðds; dyÞ

¼

ðt

0

ð1

0

›tM
1
t;sðx; yÞWðds; dyÞ:

Proof. The result follows from Fubini’s theorem for W and from the semigroup property

of G. A

Now we are ready to establish our regularized Itô’s formula in order to carry out Steps

1 and 2 of this section.

Proposition 3.11. Let f be a regular function in C2
bðRÞ, 1 . 0, and X 1 the process defined

by (25). Then, for t [ ½0; T� and x [ ½0; 1�, M
1;*
t;x f 0ðX 1Þ belongs to Dom ðdÞ and

f ðX 1ðt; xÞÞ ¼ f ð0Þ þ A1;1ðt; xÞ þ A2;1ðt; xÞ;

where

A1;1ðt; xÞ ¼

ðt

0

ð1

0

M1;*
t; x f 0ðX 1Þ

� �
ðs; yÞWðds; dyÞ

is defined as a Skorohod integral, and

A2;1ðt; xÞ ¼

ðt

0

f 00ðX 1ðs; xÞÞK1; xðdsÞ;
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with

K1;xðsÞ ¼

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞ Hð2H 2 1Þjv1 2 v2j

2H22
n

2 ›2
v1;v2

ðv1þ1

v1

KHðv1 þ 1; uÞKHðv2 þ 1; uÞdu

� �

2›v2
ðKHðv1 þ 1; v1ÞKHðv2 þ 1; v1ÞÞ

o
: ð26Þ

Proof. By Corollary 3.10, we are able to apply the classical change of variable formula to

obtain

f ðX 1ðt; xÞÞ ¼ f ð0Þ þ

ðt

0

f 0ðX 1ðs; xÞÞ

ðs

0

ð1

0

›sM
1
s;uðx; yÞWðdu; dyÞ

� �
ds: ð27Þ

Moreover, the derivative of f 0ðX 1ðs; xÞÞ in the Malliavin calculus sense is given by

Dv;z½ f 0ðX 1ðs; xÞÞ� ¼ M1
s;vðx; zÞf 00ðX 1ðs; xÞÞ1{v#s}:

Since the last quantity is bounded by c1v
ð1=2Þ2H for 1 . 0, then invoking formula (12) for

the Skorohod integral, we get

f 0ðX 1ðs; xÞÞ

ðs

0

ð1

0

›sM
1
s;uðx; yÞWðdu; dyÞ ¼

ðs

0

ð1

0

f 0ðX 1ðs; xÞÞ›sM
1
s;uðx; yÞWðdu; dyÞ

þ f 00ðX 1ðs; xÞÞ

ðs

0

ð1

0

›sM
1
s;uðx; yÞ

� �
M1

s;uðx; yÞdudy:

ð28Þ

Denote for the moment the quantity
Ð s

0

Ð 1

0
›sM

1
s;uðx; yÞ

� �
M1

s;uðx; yÞdudy by hxðsÞ. Then,

combining (27) and (28), proceeding as the beginning of Section 3.1.3 and applying

Fubini’s theorem for the Skorohod integral, we have

f ðX 1ðt; xÞÞ ¼ f ð0Þ þ A1;1ðt; xÞ þ

ðt

0

f 00ðX 1ðs; xÞÞhxðsÞds: ð29Þ

We can find now a simpler expression for hxðsÞ. Indeed, since M1
s;sðx; yÞ ¼ 0, it is easily

checked that

hxðsÞ ¼
1

2
›s

ðs

0

ð1

0

M1
s;uðx; yÞ

� �2

dudy

� �
: ð30Þ

Furthermore, the semigroup property for G yields

ðs

0

ð1

0

M1
s;uðx; yÞ

� �2

dudy ¼

ðs

0

du

ðs

u

dv1

ðs

u

dv2

ð1

0

dyGsþ12v1
ðx; yÞGsþ12v2

ðx; yÞ›v1

� KHðv1 þ 1; uÞ›v2
KHðv2 þ 1; uÞ;
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and this last expression is equal to

2

ðs

0

du

ðs

u

dv1

ðs

v1

dv2G2ðsþ1Þ2v12v2
ðx; xÞð›v1

KHðv1 þ 1; uÞÞ›v2
KHðv2 þ 1; uÞ

¼ 2

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞ

ðv1

0

›v1
KHðv1 þ 1; uÞ

� �
›v2

KHðv2 þ 1; uÞdu

� �
: ð31Þ

Butðv1

0

›v1
KHðv1 þ 1; uÞ

� �
›v2

KHðv2 þ 1; uÞdu

¼ ›v2
›v1

ðv1

0

KHðv1 þ 1; uÞKHðv2 þ 1; uÞdu

� �
2 ›v2

½KHðv1 þ 1; v1ÞKHðv2 þ 1; v1Þ�

¼ Hð2H 2 1Þjv1 2 v2j
2H22

2 ›v2
›v1

ðv1þ1

v1

KHðv1 þ 1; uÞKHðv2 þ 1; uÞdu

� �

2 ›v2
½KHðv1 þ 1; v1ÞKHðv2 þ 1; v1Þ�: ð32Þ

By putting together (31) and (32), we have thus obtained that

1

2

ðs

0

ð1

0

M1
s;uðx; yÞ

� �2

dudy ¼ K1;xðsÞ;

where K1;xðsÞ is defined at (26). By plugging this equality into (29) and (30), the proof is

now complete. A

3.3 Itô’s formula

We are now ready to perform the limiting procedure which will allow to go from

Proposition 3.11 to the announced Itô formula. To this end we will need the following

technical result, which states that the modulus of continuity of t 7! X 1ðt; xÞ can be

bounded from below by any n , H 2 1=4, independently of 1.

Proposition 3.12. Let X 1 be given by (25). Then for t1; t2 [ ½0; T� and x [ ½0; 1�, there is

a positive constant c (independent of 1) such that

E X 1ðt2; xÞ2 X 1ðt1; xÞj j
2

� �
# cjt2 2 t1j

2n
;

for any n , H 2 ð1=4Þ.

Proof. Suppose that t1 , t2. Then

E X 1ðt2; xÞ2 X 1ðt1; xÞj j
2

� �
# 2

ðt1

0

ð1

0

M1
t2;s

ðx; yÞ2 M1
t1;s

ðx; yÞ
� �2

dyds

þ 2

ðt2

t1

ð1

0

M1
t2;s

ðx; yÞ
� �2

dyds: ð33Þ
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Now using the fact that ›uKHðu; sÞ . 0, we have

ðt2

t1

ð1

0

M1
t2;s

ðx;yÞ
� �2

dyds¼

ðt2

t1

ð1

0

ðt2þ1

sþ1

Gt2þ212uðx;yÞ›uKHðu;sÞdu

� �2

dyds

#

ðt2þ1

0

ð1

0

ðt2þ1

s

1½t1þ1;t2þ1�ðuÞGt2þ212uðx;yÞ›uKHðu;sÞdu

� �2

dyds

¼Hð2H21Þ

ðt2þ1

t1þ1

ðt2þ1

t1þ1

ð1

0

ju2vj
2H22

Gt2þ212uðx;yÞ

�Gt2þ212vðx;yÞdydudv# cðt22 t1Þ
2H2ð1=2Þ;

ð34Þ

where the last inequality follows as in (18).

On the other hand, it is not difficult to see that

ðt1

0

ð1

0

M1
t2;s

ðx; yÞ2 M1
t1;s

ðx; yÞ
� �2

dyds

# 2

ðt1

0

ð1

0

ðt1þ1

sþ1

Gt2þ212uðx; yÞ2 Gt1þ212uðx; yÞ

 �

›uKHðu; sÞdu

� �2

dyds

þ 2

ðt1

0

ð1

0

ðt2þ1

t1þ1

Gt2þ212uðx; yÞ›uKHðu; sÞdu

� �2

dyds

¼ B1 þ B2: ð35Þ

Observe now that we can proceed as in (34) to obtain

B2 # cðt2 2 t1Þ
2H2ð1=2Þ; ð36Þ

and it is also readily checked that

B1 # 2

ðt1þ21

0

ð1

0

ðt1þ21

s

Gt2þ212uðx; yÞ2 Gt1þ212uðx; yÞ
�� ��›uKHðu; sÞdu

� �2

dyds

¼ 2Hð2H 2 1Þ

ðt1þ21

0

ðt1þ21

0

ð1

0

ju 2 vj
2H22

Gt2þ212uðx; yÞ2 Gt1þ212uðx; yÞ
�� ��

� Gt2þ212vðx; yÞ2 Gt1þ212vðx; yÞ
�� ��dydudv:

Finally, the proof follows combining (19) and (33)–(36). A

Let us state now the main result of this paper.

Theorem 3.13. Let X be the process defined by (14) and f [ C2
bðRÞ. Then, for t [ ½0; T�

and x [ ½0; 1�, the process M*
t;x f 0ðXÞ belongs to Dom ðdÞ and

f ðXðt; xÞÞ ¼ f ð0Þ þ A1ðt; xÞ þ A2ðt; xÞ;
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where

A1ðt; xÞ ¼

ðt

0

ð1

0

M*
t;x f 0ðXÞ

� �
ðs; yÞWðds; dyÞ

and

A2ðt; xÞ ¼
1

2

ðt

0

f 00ðXðs; xÞÞKxðdsÞ;

with

KxðsÞ ¼ Hð2H 2 1Þ

ðs

0

ðs

0

G2s2v12v2
ðx; xÞjv1 2 v2j

2H22
dv1dv2:

As mentioned before, in order to prove this theorem, we use the regularized Itô

formula of Proposition 3.11 and we only need to study the convergence of the terms A1;1

and A2;1 appearing there. However, this analysis implies long and tedious calculations.

This is why we have chosen to split the proof of our theorem into a series of lemmas which

will be given in the next section.

3.4 Proof of the main result

The purpose of this section is to present some technical results whose combination

provides us the proof of our Itô’s formula given at Theorem 3.13. We begin with the

convergence A2;1 ! A2, for which we provide first a series of lemmas.

Lemma 3.14. Let L1
1 be the function defined on ½0; T� by

L1
1ðsÞ ¼

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞKHðv1 þ 1; v1Þ›v2

KHðv2 þ 1; v1Þ:

Then s 7! ›sL
1
1ðsÞ converges to 0 in L1ð½0; T�Þ, as 1 # 0.

Proof. Note that by (16) we only need to study the convergence of ›sL
1
11ðsÞ, where

L1
11ðsÞ ¼

ðs

0

dv2

ðv2

0

dv1

KHðv1 þ 1; v1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs þ 1Þ2 v1 2 v2

p ›v2
KHðv2 þ 1; v1Þ: ð37Þ

Indeed, this term will show us the technique and the difficulties for the remaining terms.

We will now proceed to a series of change of variables in order to get rid of the

parameter s in the boundaries of the integrals defining L1
11: using first the change of variable

z ¼ ðv2 2 v1Þ=ðs 2 v1Þ and then u ¼ v1=s, we can write

L1
11ðsÞ ¼ cHs322H

ð1

0

ðsuþ1

su

ðu 2 suÞH2ð3=2Þ uH2ð1=2Þdu

� �
ð1 2 uÞ

u2H21

�

ð1

0

ð1þ suþ zsð1 2 uÞÞH2ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21þ sð1 2 uÞð2 2 zÞ

p ðzsð1 2 uÞ þ 1ÞH2ð3=2Þdzdu:
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Hence, the change of variable v ¼ u 2 su leads to

L1
11ðsÞ ¼ cHs322H

ð1

0

ð1
0

vH2ð3=2Þðv þ suÞH2ð1=2Þdv

� �
ð1 2 uÞ

u2H21

�

ð1

0

ð1þ suþ zsð1 2 uÞÞH2ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21þ sð1 2 uÞð2 2 zÞ

p ðzsð1 2 uÞ þ 1ÞH2ð3=2Þdzdu:

Therefore, by differentiating this expression in s, we end up with a sum of the type

›sL
1
11ðsÞ ¼

X5

j¼1

L1
11jðsÞ;

where

L1
111ðsÞ ¼ cHs222H

ð1

0

ð1
0

vH2ð3=2Þðv þ suÞH2ð1=2Þdv

� �
ð1 2 uÞ

u2H21

�

ð1

0

ð1þ suþ zsð1 2 uÞÞH2ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21þ sð1 2 uÞð2 2 zÞ

p ðzsð1 2 uÞ þ 1ÞH2ð3=2Þdzdu;

and where the terms L1
112; . . . ; L1

115, whose exact calculation is left to the reader for sake of

conciseness, are similar to L1
111.

Finally, we have

L1
111ðsÞ # cHs2H

ð1
0

vH2ð3=2Þdv

� � ð1

0

ð1 2 uÞH21

u2H21
du

� �ð1

0

zH2ð3=2Þdz # cH1
H21=2 s2H ;

and it is easily checked that this last term converges to 0 in L1ð½0; T�Þ. Furthermore, it can

also be proved that jL1
11jðsÞj # cL1

111ðsÞ for 2 # j # 5, which ends the proof. A

Lemma 3.15. Let L1
2 be the function defined on ½0; T� by

L1
2ðsÞ ¼

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞ›v1

ðv1þ1

v1

KHðv1 þ 1; uÞ›v2
KHðv2 þ 1; uÞdu

� �
:

Then s 7! ›sL
1
2ðsÞ converges to 0 in L1ð½0; T�Þ, as 1 # 0.

Proof. As in the proof of Lemma 3.14 we only show the convergence of ›sL
1
21ðsÞ, where

L1
21ðsÞ ¼

ðs

0

dv2

ðv2

0

dv1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs þ 1Þ2 v1 2 v2

p ›v1
L̂ðv1; v2Þ;

with

L̂ðv1; v2Þ ¼

ðv1þ1

v1

KHðv1 þ 1; uÞ›v2
KHðv2 þ 1; uÞdu:

Towards this end, we will proceed again to a series of changes of variables in order to

eliminate the parameter s from the boundaries of the integrals: notice first that the
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definition of KH and the change of variables u ¼ ðu 2 v1Þ=ðr 2 v1Þ and z ¼ r 2 v1 yield

L̂ðv1; v2Þ ¼ cHðv2 þ 1ÞH2ð1=2Þ

ð1
0

ðv1 þ zÞH2ð1=2Þ

ð1

0

ðv1 þ uzÞ122H zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H

� ðv2 þ 12 v1 2 uzÞH2ð3=2Þdu dz:

Thus

›v1
L̂ðv1; v2Þ ¼ ðv2 þ 1ÞH2ð1=2Þ cH

ð1
0

ðv1 þ zÞH2ð3=2Þ

ð1

0

ðv1 þ uzÞ122H zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H

�

� ðv2 þ 12 v1 2 uzÞH2ð3=2Þdudz 2 cH

ð1
0

ðv1 þ zÞH2ð1=2Þ

ð1

0

ðv1 þ uzÞ22H

�
zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H
ðv2 þ 12 v1 2 uzÞH2ð3=2ÞdudzþcH

ð1
0

ðv1 þ zÞH2ð1=2Þ

�

ð1

0

ðv1 þ uzÞ122H zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H
ðv2 þ 12 v1 2 uzÞH2ð5=2Þdudz

�
:

ð38Þ

Hence, it is easily seen that L1
21 is a sum of terms of the form

Qa;b;nðsÞ ¼

ðs

0

dv2

ðv2

0

dv1

ðv2 þ 1ÞH2ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs þ 1Þ2 v1 2 v2

p

ð1
0

ðv1 þ zÞa
ð1

0

ðv1 þ uzÞb
zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H

� ðv2 þ 12 v1 2 uzÞndu dz

¼ s2

ð1

0

dh

ð1

0

du
hðshþ 1ÞH2ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðs þ 1Þ2 ush2 sh
p

ð1
0

ðushþ zÞa

�

ð1

0

ðushþ uzÞb
zH2ð1=2Þ

ð1 2 uÞð3=2Þ2H
ðshþ 12 shu þ uzÞndudz;

by applying the changes of variable u ¼ v1=v2 and h ¼ v2=s. Differentiating this last

relation, we are now able to compute ›sL
1
21ðsÞ, and see that this function goes to 0 as 1 # 0

in L1ð½0; T�Þ, similarly to what we did in the proof of Lemma 3.14. A

Lemma 3.16. Let L1
3 be the function defined on ½0; T� by

L1
3ðsÞ ¼ Hð2H 2 1Þ

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞðv2 2 v1Þ

2H22:

Then ›sL
1
3ðsÞ tends to ð1=2ÞKxðdsÞ in L1ð½0; T�Þ, as 1 # 0.

Proof. As in the proofs of Lemmas 3.14 and 3.15, we only need to use the change of

variables z ¼ v1=v2 and u ¼ v2=s. A

Lemma 3.17. Let X and X 1 be given in (20) and (25), respectively. Then X 1ð·; xÞ converges

to Xð·; xÞ in L2ðV £ ½0; T�Þ and, for t [ ½0; T�, X 1ðt; xÞ goes to Xðt; xÞ in L2ðVÞ, as 1 # 0.
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Proof. The result is an immediate consequence of the definitions of the processes X 1ð·; xÞ

and Xð·; xÞ, the fact that jM1
t;sðx; yÞj # cðt 2 sÞH21s ð1=2Þ2H and of the dominated

convergence theorem. A

We are now ready to study the convergence of the term A2;1:

Lemma 3.18. Let t [ ½0; T� and x [ ½0; 1�. Then the random variable

B1
2ðt; xÞ U Hð2H 2 1Þ

ðt

0

f 00ðX 1ðs; xÞÞ›s

ðs

0

dv2

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞðv2 2 v1Þ

2H22

� �
ds

converges to A2ðt; xÞ in L2ðVÞ as 1 # 0.

Proof. Since f 00 is a bounded function, then

E B1
2ðt; xÞ2 A2ðt; xÞ

�� ��2� �
# c

ðt

0

E ðf 00ðXðs; xÞÞ2 f 00ðX 1ðs; xÞÞÞ2
� �

j›sKxðsÞjds

þ c

ðt

0

j›sKxðsÞ2 H H 2
1

2

� �
›s

ðs

0

dv2

�

�

ðv2

0

dv1G2ðsþ1Þ2v12v2
ðx; xÞðv2 2 v1Þ

2H22jds

�2

:

Hence, the result is a consequence of Lemmas 3.16 and 3.17 and the dominated

convergence theorem. A

Now we study the convergence of A1;1 to A1 in L2ðVÞ.

Lemma 3.19. Let X and X 1 be given in (20) and (25), respectively. Then, for t [ ½0; T� and

x [ ½0; 1�,

E

ðt

0

ð1

0

M*
t; x f 0ðXÞ

� �
ðs; yÞ2 M1;*

t; x f 0ðX 1Þ
� �

ðs; yÞ
h i2

dyds

� �
! 0

as 1 # 0.

Proof. We first note that

E

ðt

0

ð1

0

M*
t; x f 0ðXÞ

� �
ðs; yÞ2 M1;*

t; x f 0ðX 1Þ
� �

ðs; yÞ
h i2

dyds

� �
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can be bounded from above by:

cE

ðt

0

ð1

0

ðt

s

ð f 0ðXðr; xÞÞ2 f 0ðXðs; xÞÞ2 f 0ðX 1ðr; xÞÞ þ f 0ðX 1ðs; xÞÞÞ›rMr;sðx; yÞdr

� �2

dyds

 !

þ cE

ðt

0

ð1

0

ðt

s

ð f 0ðX 1ðr; xÞÞ2 f 0ðX 1ðs; xÞÞÞ ›rMr;sðx; yÞ2 ›rM
1
r;sðx; yÞ

� �
dr

� �2

dyds

 !

þ cE

ðt

0

ð1

0

ð f 0ðXðs; xÞÞ2 f 0ðX 1ðs; xÞÞÞMt;sðx; yÞ

 �2

dyds

� �

þ cE

ðt

0

ð1

0

f 0ðX 1ðs; xÞÞ Mt;sðx; yÞ2 M1
t;sðx; yÞ

� �h i2

dyds

� �

¼ cðB1 þ · · · þ B4Þ:

ð39Þ

Next observe that

B2 #

ðt

0

ð1

0

ðt

s

E ð f 0ðX 1ðr; xÞÞ2 f 0ðX 1ðs; xÞÞÞ2
� �

›rMr;sðx; yÞ2 ›rM
1
r;sðx; yÞ

��� ���dr

� �

�

ðt

s

›uMu;sðx; yÞ2 ›uM
1
u;sðx; yÞ

��� ���du� �
dyds:

Now notice that Proposition 3.12 and the inequality

›rM
1
r;sðx; yÞ

��� ��� # c
r þ 1

s

� �H2ð1=2Þ

ðr 2 s þ 1ÞH22

� exp 2c1

ðx 2 yÞ2

1þ ðr 2 sÞ

� �
þ exp 2c1

ðx þ y 2 2Þ2

1þ ðr 2 sÞ

� �� �

imply, for b small enough, that

Eðð f 0ðX 1ðr; xÞÞ2 f 0ðX 1ðs; xÞÞÞ2Þ ›rMr;sðx; yÞ2 ›rM
1
r;sðx; yÞ

��� ���
goes to 0 as 1 # 0 and that it is bounded by cs ð1=2Þ2Hðr 2 sÞ3H2ð5=2Þ2b. Thus

B2 ! 0 ð40Þ

because of the dominated convergence theorem.

Since f 0 is a bounded function, then

B4 # c

ðt

0

ð1

0

Mt;sðx; yÞ2 M1
t;sðx; yÞ

� �2

dyds;

which goes to 0 due to the definition of M 1 and the dominated convergence theorem.

Hence, by (39) and (40), we only need to show that B1 þ B3 ! 0 as 1 # 0 to finish the
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proof. This can been seen using Lemma 3.17 and proceeding as the beginning of this

proof. A

Lemma 3.20. Let X and X 1 be given by (20) and (25), respectively. Then, for t [ ½0; T�

and x [ ½0; 1�, M*
t;x f 0ðXÞ belongs to Dom (d). Moreover

d M1;*
t;x f 0ðX 1Þ

� �
! d M*

t;x f 0ðXÞ
� �

as 1 # 0 in L2ðVÞ.

Proof. The result follows from Lemmas 3.14–3.19 and from the fact that d is a closed

operator. A
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