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Abstract

We consider a stochastic differential equation with additive fractional noise with Hurst parameter
H > 1/2, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic
Normality property (LAN) of this parametric model with rate

√
τ as τ → ∞, when the solution is observed

continuously on the time interval [0, τ ]. The proof uses ergodic properties of the equation and a Girsanov-
type transform. We analyze the particular case of the fractional Ornstein–Uhlenbeck process and show that
the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.
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1. Introduction

Let B be a d-dimensional fractional Brownian motion (fBm) with Hurst parameter H > 1/2.
Let us recall that B is a centered Gaussian process defined on a complete probability space
(Ω ,F , P). The law of B is thus characterized by its covariance function, which is defined by

Rs;t ≡ E
[
Bi

t B j
s

]
=

1
2

(
|t |2H

+ |s|2H
− |t − s|2H ) 1{0}(i − j), s, t ∈ R. (1)

The variance of the increments of B is then given by

E
[
|Bi

t − Bi
s |

2]
= |t − s|2H , s, t ∈ R, i = 1, . . . , d, (2)

and this implies that almost surely the fBm paths are γ -Hölder continuous for any γ < H .
In this article, we consider a time horizon τ ∈ (0, ∞) and the following Rd -valued stochastic

differential equation driven by B:

Yt = y0 +

∫ t

0
b(Ys; θ ) ds +

d∑
j=1

σ j B j
t , t ∈ [0, τ ]. (3)

Here y0 ∈ Rd is a given initial condition, B = (B1, . . . , Bd ) is the aforementioned fractional
Brownian motion, the unknown parameter θ lies in a certain set Θ which will be specified
later on, {b(·; θ ), θ ∈ Θ} is a known family of drift coefficients with b(·; θ ) : Rd

→ Rd ,
and σ1, . . . , σd ∈ Rd are assumed to be known diffusion coefficients.

There has been a wide interest in drift estimation for stochastic equations driven by fractional
Brownian motion in the recent past, partly motivated by inverse problems in a biomedical
context [20]. However, notice that the existing literature on the topic mainly focuses on the case
where the dependence θ ↦→ b(x; θ ) is linear and all coefficients are real-valued. In this situation
least squares and maximum likelihood estimators (MLE) for the unknown parameter θ can be
computed explicitly, and numerous results are available: the case of continuous observations of
Y and where the drift coefficient is linear in both θ and x (that is, fractional Ornstein–Uhlenbeck
type process) has been studied e.g. in [1,16,18,23], either in the ergodic (θ < 0) and non-ergodic
(θ > 0) case. See also the monograph [30] and the references therein. Results on parameter
estimation based on discrete observations of Y in the linear case can be found e.g. in [3,32]. The
case of a dependence of the form (θ, x) ↦→ θ b(x) is handled e.g. in [21,31].

However, the case of a general multi-dimensional coefficient b(θ, x) in Eq. (3) is also a very
natural situation to consider, though we are only aware of the articles [6,27] giving some positive
answers for such a dependence. The current contribution has thus to be thought of as a step in
this direction. Indeed, our main aim is to show that the model given by Eq. (3) satisfies the Local
Asymptotic Normality property (LAN) with rate

√
τ as τ → ∞, when the process Y is observed

continuously on the time interval [0, τ ].
Before we proceed to a specific statement of our results, let us describe the assumptions we

shall work with, which are similar to the ones used in [27]. We start with a standard hypothesis
on the parameter set Θ :

Hypothesis 1.1. The set Θ is compactly embedded in Rq for a given q ≥ 1.

In order to describe the assumptions on our coefficients b, we will use the following notation
for partial derivatives:
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Notation 1.2. Let f : Rd
× Θ → R be a C p1,p2 function for p1, p2 ≥ 0. Then for any tuple

(i1, . . . , i p) ∈ {1, . . . , d}
p, we set ∂

i1...i p
x f for ∂ p f

∂xi1 ...∂xi p
. Analogously, we use the notation ∂

i1...i p
θ f

for ∂ p f
∂θi1 ...∂θi p

, where (i1, . . . , i p) is a tuple in {1, . . . , q}
p. Moreover, we will write ∂x f resp. ∂θ f

for the Jacobi-matrices (∂x1 f, . . . , ∂xd f ) and (∂θ1 f, . . . , ∂θq f ). Finally, for the sake of simplicity,
we denote by ⟨·, ·⟩ the Euclidean scalar product in Rq or Rd , and by |·| the corresponding
Euclidean norm.

Let us now state the linear growth plus inward assumptions on our drift coefficient ensuring
ergodic properties for the process Y :

Hypothesis 1.3. (i) There exists α > 0 such that for every x, y ∈ Rd and θ ∈ Θ we have

⟨b(x; θ ) − b(y; θ ), x − y⟩ ≤ −α |x − y|
2.

(ii) We have b ∈ C2,1(Rd
× Θ;Rd ), with ∂x b and ∂2

xx b uniformly bounded in (x, θ).
(iii) We have b̂ := ∂θb ∈ C2,0(Rd

×Θ;Rd
×Rq ), with ∂x b̂ and ∂2

xx b̂ uniformly bounded in (x, θ).
(iv) There exists c > 0 such that for every x, y ∈ Rd and θ, θ0 ∈ Θ , the following Lipschitz and
growth conditions hold:

|b(x; θ )| ≤ c (1 + |x |) , |b̂(x; θ )| ≤ c (1 + |x |) ,

|b̂(x; θ ) − b̂(x; θ0)| ≤ c|θ − θ0|(1 + |x |).

Furthermore, we suppose that the coefficient σ fulfills an invertibility condition of the
following form:

Hypothesis 1.4. The dimension d of driving fBm equals the dimension of the state space Rd for
Y . In addition, denoting by σ the d × d matrix with columns σ1, . . . , σd , we assume that σ is
invertible.

Notice that Hypotheses 1.3 and 1.4 entail the following result (see next section for more
details): for a given θ ∈ Θ the solution to Eq. (3) satisfies a.s. limt→∞|Yt − Y t | = 0, where
Y = {Y t , t ≥ 0} is a stationary and ergodic stochastic process.

Let us now introduce the concept of the LAN property in our context. Towards this aim,
for any θ ∈ Θ and λ < H , we denote by Pθ (resp. Pτ

θ ) the probability laws of the solution
to Eq. (3) in the spaces Cλ(R+;Rd ) (resp. Cλ([0, τ ];Rd )). Moreover, we assume that the process
Y is observed continuously in [0, τ ]. In this context, the definition of the LAN property takes the
following form:

Definition 1.5. We say that the parametric statistical model {Pθ , θ ∈ Θ} satisfies the LAN
property at θ ∈ Θ if there exist:
(i) A q × q invertible matrix ϕτ (θ ),
(ii) A q × q positive definite matrix Σ (θ ),
such that for any u ∈ Rq , the following limit holds true as τ → ∞:

log
(dPτ

θ+ϕτ (θ)u

dPτ
θ

)
L(Pθ )

−−−→ uTN (0,Σ (θ )) −
1
2

uTΣ (θ )u,

where N (0,Σ (θ )) is a centered q-dimensional Gaussian random variable with covariance matrix
Σ (θ ).
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The LAN property is a fundamental concept in asymptotic theory of statistics, which was
developed by Le Cam [24]. The essence of LAN is that the local log-likelihood ratio is
asymptotically normally distributed, with a locally constant covariance matrix and a mean equal
to minus one half the variance. The main application of the LAN property is the following
Minimax Theorem. It asserts (if LAN holds true) an asymptotic (minimax) lower bound for
the risk with respect to a loss function, for any sequence θ̂τ of estimators of θ .

A loss function is defined as a function l : Rq
→ [0, +∞) satisfying the following properties:

• For any u ∈ Rq , ℓ(u) = ℓ(−u), ℓ is continuous at 0, ℓ(0) = 0 but is not identically 0.
• For all c > 0 the sets {u : ℓ(u) < c} are convex.
• ℓ(u) has growth as |u| → ∞ less that eϵ|u|

2
, for any ϵ > 0.

Theorem 1.6 (Minimax Theorem [17, Theorem II.12.1], [22, Theorem 2.4]). Suppose that the
family of probability measures (Pθ )θ∈Θ satisfies the LAN property at a point θ . Let (θ̂τ )τ≥0 be a
family of estimators of the parameter θ . Then for any loss function ℓ we have:

lim
δ→0

lim inf
τ→∞

sup
θ ′∈Θ :|θ ′−θ |<δ

Eθ ′

[
ℓ
(
ϕ−1

τ (θ )
(
θ̂τ − θ ′

))]
≥ Eθ [ℓ (Z)] , (4)

where L(Z ) = N (0,Σ (θ )−1).

Observe that when ℓ(u) = |u|
2, the lower bound in (4) is simply the trace of Σ (θ )−1. A

sequence of estimators that attains this asymptotic bound for some loss function ℓ is called
asymptotically efficient for this loss function. Therefore, Theorem 1.6 opens the way to a theory
which mimics the concept of efficient estimators from the Cramér–Rao lower bound.

As one can see, the LAN property is an important tool in order to quantify the identifiability
of a system. The aim of this paper is thus to show the following result for our Eq. (3).

Theorem 1.7. Assume Hypothesis 1.3, and recall that Pτ
θ stands for the probability law of the

solution to Eq. (3) in the space Cλ([0, τ ];Rd ). Then, for any θ ∈ Θ and u ∈ Rq fixed, as τ → ∞,
we have:

log
dPτ

θ+
u√
τ

dPτ
θ

L(Pθ )
−−−→ uTN (0,Σ (θ )) −

1
2

uTΣ (θ )u, (5)

where the matrix Σ (θ ) is defined by:

Σ (θ ) := CH

∫
R2

+

Eθ [(b̂(Y 0; θ ) − b̂(Y r1; θ ))T(σ−1)Tσ−1(b̂(Y 0; θ ) − b̂(Y r2; θ ))]

r1/2+H
1 r1/2+H

2

dr1dr2, (6)

where the constant CH is defined by:

CH =
sin2(π (H − 1/2)) Γ 2 (H + 1/2)

2Hπ2 sin(π H )Γ (2H )
= [ sin(π H )Γ (1/2 − H )2Γ (2H + 1)]−1. (7)

The LAN property for stochastic processes has been widely explored in the literature. To
mention a few references close to our contribution, the case of ergodic diffusion processes
observed continuously (with an unknown parameter on the drift coefficient) is dealt with in
e.g. [22, Proposition 2.2]. The proof follows from Girsanov’s theorem, ergodic properties and
the central limit theorem for Brownian martingales. The rate of convergence achieved in [22,
Proposition 2.2] is

√
τ like in our Theorem 1.7, with a function Γ (θ ) given by:

Σ (θ ) = Eθ [b̂(Y ; θ )Tσ−1(Y )Tσ−1(Y )b̂(Y ; θ )],
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which should be compared to our expression (6). The case where the Brownian diffusion process
is observed discretely was solved in [14] using an integration by parts formula taken from the
Malliavin calculus. Let us also mention that the LAN property is obtained in [7] for some
discretely observed fractional noises including fractional Brownian motion. This last result is
achieved by a direct expansion of log-likelihood functions, plus a thorough analysis based on
properties of Toeplitz matrices.

Let us say a few words about the strategy we have followed in order to handle the case
of Eq. (3). In order to compare likelihood functions for different values of the parameter θ ,
we take the obvious choice of applying Girsanov’s theorem for fractional Brownian motion
(following the steps of [26]). We are then left with two technical difficulties in order to get
asymptotic results: (i) Handle the singularities popping out of the fractional derivatives in the
Girsanov exponent. (ii) Get ergodic results in Hölder type norms for our process Y . Let us
also mention that CLTs for martingales, which were an essential tool in the diffusion case, are
unavailable in our fBm situation.

Interestingly enough, our general Theorem 1.7 applies to the fractional Ornstein–Uhlenbeck
case (that is, d = 1 and b(x; θ ) = −θx for θ > 0.) In this context we find (i) that Σ (θ ) does
not depend on H . (ii) that the MLE reaches the lower bound in (4), and is thus asymptotically
minimax efficient.

Finally, the generalization of Theorem 1.7 to a fBm B with Hurst parameter H < 1/2 is
obviously a natural problem to consider. To this aim and following the strategy we have just
summarized above, one can try to apply Girsanov’s transform and ergodic theorems for the
solution process Y to (3). Then the main difficulty to implement this strategy stems from the
fact that one is always left with evaluations of integrals similar to the right-hand side of relation
(6). Indeed, when H < 1/2 it is easily seen that this kind of integral exhibits some divergences
as r1, r2 → ∞. After this paper was completed, a study concerning the case H ∈ (1/4, 1/2)
was completed (see [5]) for a 1-dimensional fractional Brownian motion (namely d = 1 in our
notation). The global strategy followed in [5] is the same as ours, and an extra care is taken in
order to bound the numerator in the right hand side of (6) thanks to Malliavin calculus techniques.
The fact that d = 1 is important in [5], since an explicit expression for the Malliavin derivative
of Y is available in this case. Therefore, to the best of our knowledge, the LAN property for a
multidimensional equation like (3) and a Hurst parameter H < 1/2 is still open.

Our paper is structured as follows: Section 2 is devoted to necessary preliminary results.
Then we prove Theorem 1.7 in Section 3, following the strategy described above. Eventually, in
Section 4, we analyze the particular case of the fractional Ornstein–Uhlenbeck process.

Let us close this introduction by giving a set of notations which will prevail until the end of
the paper.

Notation 1.8. We use the following conventions: for 2 quantities a and b, we write a ≲ b if there
exists a universal constant c such that a ≤ c b. In the same way, we write a ≍ b whenever a ≲ b
and b ≲ a. If f is a vector-valued function defined on an interval [0, τ ] and s, t ∈ [0, τ ], δ fst

designates the increment ft − fs .

2. Auxiliary results

In this section we first recall some basic facts about stochastic analysis for a fBm B, and also
about Young integrals. Then we shall derive some pathwise and probabilistic estimates for Eq. (3)
under the coercive Hypothesis 1.3.
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2.1. Stochastic analysis related to B

The ergodic properties of Eq. (3) are accurately encoded by the fBm representation given
in [15], which goes back to the original paper [25]. We present this construction here for a one-
dimensional fBm, for sake of simplicity. Obvious generalizations to the d-dimensional case are
left to the reader.

Let W be a two-sided Brownian motion, and H a Hurst parameter in (0, 1). We consider the
process B defined for t ∈ R by:

Bt = c1(H )
∫
R−

(−r )H−1/2 [dWt+r − dWr
]

(8)

= c1(H )
{∫ 0

−∞

[
(t − r )H−1/2

− (−r )H−1/2] dWr −

∫ t

0
(t − r )H−1/2dWr

}
,

where the constant c1(H ) is defined by:

c1(H ) =
[2H sin(π H )Γ (2H )]

1
2

Γ (H + 1/2)
. (9)

Then B is well-defined as a fBm, that is a centered Gaussian process with covariance given by
relation (1). Eq. (8) is often referred to as Mandelbrot’s representation of fractional Brownian
motion.

The process B defined as (8) is closely related to the following fractional derivatives: for
α ∈ (0, 1) and ϕ ∈ C∞

c (R) we set[
Dα

+
ϕ
]

t =
α

Γ (1 − α)

∫
R+

ϕt − ϕt−r

r1+α
dr, and

[
I α
+
ϕ
]

t =
1

Γ (α)

∫
R+

ϕt−r rα−1 dr. (10)

With this notation in mind, the following proposition identifies a convenient operator which
transforms W into B as in (8). We refer to [15, Lemma 3.6] for further details.

Proposition 2.1. For w ∈ C∞
c (R) such that w0 = 0 and H ∈ (0, 1), set

[K Hw]t = c1(H )
∫
R−

(−r )H−1/2 [ẇt+r − ẇr
]

dr.

Then the following holds true:
(i) The operator K H admits the following expression:

[K Hw]t =

⎧⎪⎨⎪⎩
c2(H )

(
[I H−1/2

+ w]t − [I H−1/2
+ w]0

)
, for H >

1
2

−c2(H )
(

[D1/2−H
+ w]t − [D1/2−H

+ w]0

)
, for H <

1
2
,

where the constant c2(H ) is given by c2(H ) = c1(H )Γ (H +
1
2 ), with c1(H ) defined by (9).

(ii) Define for every w ∈ C∞
c (R) the norm

∥w∥H = sup
s,t∈R

|w(t) − w(s)|
|t − s|(1−H )/2(1 + |t | + |s|)1/2

.

Define the Banach space HH to be the closure of C∞
c (R) under the norm ∥ · ∥H . Then K H can

be extended continuously to HH .
(iii) For all H ∈ (0, 1) we have K −1

H = −(c2(H )c2(1 − H ))−1 K1−H .
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Also notice that in the sequel, our underlying Wiener space will be defined as (HH , P), where
HH is introduced in Proposition 2.1(ii), and P is the unique Wiener measure on HH (see [15]
for further details). The law Pτ

θ of the solution process Y |[0,τ ] is defined as the image of P by the
map ω ↦→ Y (ω)|[0,τ ].

2.1.1. Girsanov transform
Let us set the ground for our Girsanov transform by relating a general drift with respect to

a fractional Brownian motion with its counterpart with respect to W (we continue in the one-
dimensional setting for the sake of simplicity). This proposition is a slight extension of [15,
Lemma 4.2].

Proposition 2.2. Let H ∈ (1/2, 1), b1, b2 be two paths in I H−1/2
+ (L2(R)), and suppose that

b j
= K Hw j for j = 1,2, where K H is defined in Proposition 2.1. We also assume that for t ≥ 0,

b1 and b2 are linked by the relation:

b2
0 = b1

0 , and b2
t = b1

t +

∫ t

0
gb,s ds , t ≥ 0 (11)

where gb is a function in I H−1/2
+ (L2(R)) and gb = 0 for t < 0. Then we also have:

w2
t = w1

t +

∫ t

0
gw,s ds,

with

gw = c2(H )−1 DH−1/2
+ gb ,

where we recall that the constant c2(H ) = c1(H )Γ (H +
1
2 ) has been introduced in Proposi-

tion 2.1.

Proof. Let us write Gb,t =
∫ t

0 gb,s ds for t ≥ 0 and Gb,t = 0 for t < 0, so that (11) can be read
as:

b2
t = b1

t + Gb,t . (12)

Moreover, invoking the fact that b j
= K Hw j for j = 1,2, one can recast (12) into:

K Hw2
= K H

(
w1

+ Gw

)
, where Gw = K −1

H Gb.

Therefore, thanks to the relation K −1
H = −c2(H )−1c2(1 − H )−1 K1−H , we end up with:

gw = −c2(H )−1c2(1 − H )−1 D1
+

K1−H Gb . (13)

Since Gb ∈ I H−1/2(L2), the operator K1−H can be interpreted as a fractional differentiation.
Specifically, applying the definition of K1−H contained in Proposition 2.1(i), we have

K1−H Gb = −c2(1 − H )((DH−1/2Gb)t − (DH−1/2Gb)0). (14)

Substituting (14) into (13) we obtain

gw = c2(H )−1 D1
+

DH−1/2
+ Gb = c2(H )−1 DH−1/2

+ gb,

which is our claim. □

The previous proposition yields a version of Girsanov’s theorem in a fractional Brownian
context, inspired by [26] (see also [8,28]):
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Proposition 2.3. Let B be a fractional Brownian motion with Hurst parameter H ∈ (0, 1)
and let g be a process in I H−1/2

+ (L2(R)) adapted to σ (Ws, s ≤ t). We set Vt =
∫ t

0 gs ds and
Qt = Bt + Vt for t ≥ 0. Then Q is a fractional Brownian motion on [0, τ ], under the probability
P̃ defined by dP̃

dP |[0,τ ]
= e−L , where

L =
1

c2(H )

∫ τ

0
[DH−1/2

+ g]u dWu +
1

2(c2(H ))2

∫ τ

0
[DH−1/2

+ g]2
u du, (15)

provided DH−1/2
+ g satisfies Novikov’s conditions (see [10, Theorem 7.1.1]) on [0, τ ], that is, that

there exists λ > 0 such that

sup
t∈[0,τ ]

Eθ

[
exp

(
λ[DH−1/2

+ g]2
t

)]
< ∞. (16)

2.2. Generalized Riemann–Stieltjes integrals

We are focusing here on the case of a Hurst parameter H > 1/2, and the stochastic integrals
with respect to B should be understood in the Young (or Riemann–Stieltjes) sense. In order to
recall the definition of this integral, we set

| f |∞;[a,b] = sup
t∈[a,b]

| f (t)|, | f |λ;[a,b] = sup
s,t∈[a,b]

| f (t) − f (s)|
|t − s|λ

, (17)

where f : R → Rn and λ ∈ (0, 1). We also recall the classical definition of Hölder-continuous
functions:

Cλ([a, b];Rn) =
{

f : [a, b] → Rn
; | f |∞;[a,b] + | f |λ;[a,b] < ∞

}
.

Now, let f ∈ Cλ([a, b];R) and g ∈ Cµ([a, b];R) with λ + µ > 1. Then it is well known
that the Riemann–Stieltjes integral

∫ b
a fs dgs exists, and can be expressed as a limit of Riemann

sums.
In the sequel, the only property on Young’s integral we shall use is the classical chain rule for

changes of variables. Indeed, let f ∈ Cλ([a, b];R) with λ > 1/2 and F ∈ C1(R;R). Then we
have:

F( fy) − F( fa) =

∫ y

a
F ′( fs) d fs, y ∈ [a, b]. (18)

2.3. Basic properties of solutions to SDEs

In order to deal with stationary solutions, let us first extend our equation as a process indexed
by (−∞, τ ], by considering a process Y solution to:

dYt = b(Yt ; θ ) dt +

d∑
j=1

σ j d B j
t , t ∈ [0, τ ], and Yt = y0, t ∈ (−∞, 0]. (19)

We first state the existence and uniqueness result for Eq. (19) borrowed from [15, Lemma 3.9].

Proposition 2.4. Under Hypothesis 1.3, there exists a unique continuous pathwise solution to
Eq. (19) on any arbitrary interval [0, τ ]. Moreover the map Y : (y0, B) ∈ Rd

× C([0, τ ];Rd ) →

C([0, τ ];Rd ) is locally Lipschitz continuous.
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In addition, exploiting the integrability properties of the stationary fractional Ornstein–
Uhlenbeck process, the following uniform estimates hold true. Their proof is omitted, since it
is only a slight variation on the proof of [15, Proposition 3.12].

Proposition 2.5. Assume Hypothesis 1.3 holds true and let Y be the solution to Eq. (19). Then
for any θ ∈ Θ and p ≥ 1 there exist constants cp, kp > 0 such that

E
[
|Yt |

p]
≤ cp, and E

[
|δYst |

p]
≤ kp|t − s|pH ,

for all s, t ≥ 0, where we recall that we have set δYst = Yt − Ys as mentioned in Notation 1.8.

Let us now state a path-wise estimates on the increments of Y , where we translate the moment
estimates of Proposition 2.5 into path-wise bounds along the same lines as in [19].

Proposition 2.6. Assume Hypothesis 1.3 holds true and let Y be the solution to Eq. (19). Then
for all ε ∈ (0, H ) there exists a random variable Zε ∈ ∩p≥1L p(Ω ) such that almost surely we
have:

|Yt | ≤ Zε(1 + t)2ε, and |δYst | ≤ Zε(1 + t)2ε
|t − s|H−ε, (20)

uniformly for 0 ≤ s ≤ t .

Proof. We focus on the bound for δYst , the estimate on |Yt | being shown in the same manner.
Set γ = H − ε and consider n ≥ 1. Thanks to Garsia’s lemma (see e.g. [11]) and recalling our
Notation 1.8, for all s, t ∈ [0, n] we have |δYst | ≲ Nγ,p,n|t − s|γ , where p ≥ 1 and Nγ,p,n is
defined by:

Nγ,p,n ≡

(∫ n

0

∫ n

0

|δYuv|
p

|v − u|
γ p+2 dudv

) 1
p

.

Furthermore, owing to Proposition 2.5 we immediately get:

E1/p [N p
γ,p,n

]
≲ nε,

under the constraint p ≥ ε−1. Set now Zε = supn∈N
|Nγ,p,n |

n2ε . Then for all q > ε−1 we have:

E
[
Zq

ε

]
= E

[
sup
n∈N

|Nγ,p,n|
q

n2εq

]
≤

∞∑
n=1

E
[
|Nγ,p,n|

q]
n2εq

≲
∞∑

n=1

1
nεq

< ∞, (21)

namely we have found Zε ∈ ∩p>ε−1 L p(Ω ). Obviously this also yields Zε ∈ ∩p≥1L p(Ω ). Finally,
replace n ≥ 1 by [t] + 2 to obtain our pathwise bound (20). □

We shall need the following bound for the solution. This will be invoked while checking
Novikov’s condition.

Lemma 2.7. Assume Hypothesis 1.3 and let Y be the solution to (19). Then, for all t ≥ 0, Yt
satisfies the following bound:

|Yt | ≤ κ1eκ2t sup
s∈[0,t]

|Bs |, (22)

where κ1 and κ2 are two positive constants depending on b and σ . Furthermore, the increments
of Y are such that for all r < s:

|δYrs | ≤ κ3(s − r )(1 + eκ4s sup
u∈[0,s]

|Bu |) + κ5|δBrs |. (23)
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Proof. Using (19) and the linear growth of b, we have

|Yt | ≤ |y0| + ct + ∥σ∥|Bt | + c
∫ t

0
|Ys |ds.

Gronwall’s lemma concludes the proof of (22). In order to prove (23), we just write

δYrs =

∫ s

r
b(Yu; θ )du +

d∑
j=1

σ jδBrs . (24)

According to Hypothesis 1.3(iv) and (22) we have

|b(Yu; θ )| ≤ cb(1 + |Yu |) ≤ cb(1 + κ1eκ2u sup
v≤u

|Bv|).

Plugging this bound into (24) we easily get (23). □

2.4. Ergodic properties of the SDE

We recall here some basic facts about the limiting behavior of Eq. (19), mainly taken
from [12]. We still work on the Wiener space (HH , P) introduced in Section 2.1, and seen as
the canonical probability space. Together with the shift operators θt : Ω → Ω defined by

θtω(·) = ω(· + t) − ω(t), t ∈ R, ω ∈ Ω ,

our probability space defines an ergodic metric dynamical system, see e.g. [13]. In particular,
the measure P is invariant to the shift operators θt , i.e. the shifted process (Bs(θt ·))s∈R is still an
m-dimensional fractional Brownian motion and for any integrable random variable F : Ω → R
we have

lim
τ→∞

1
τ

∫ τ

0
F(θt (ω)) dt = E[F], (25)

for P-almost all ω ∈ Ω .
Under our coercive hypothesis on the drift coefficient of Eq. (19), the following limit theorem

is borrowed from [12, Section 4]. Notice that its proof is based on contraction properties for the
stochastic equation.

Theorem 2.8. Let Hypothesis 1.3 hold, and consider the unique solution Y to Eq. (19) as given
in Proposition 2.4. Then there exists a random variable Y : Ω → Rd such that

lim
t→∞

|Yt (ω) − Y (θtω)| = 0

for P-almost all ω ∈ Ω . Moreover, we have E[|Y |
p
] < ∞ for all p ≥ 1.

With Theorem 2.8 in hand, let us label a notation for further use.

Notation 2.9. In the sequel we will denote the stationary process Y (θtω) by Y t .

It is worth observing that the convergence of Y towards Y can also be quantified in Hölder
norm:
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Proposition 2.10. Assume Hypothesis 1.3 holds true. Let β ∈ (0, 1]. There exists a random
variable Z admitting moments of any order and 3 constants c1, c2, c3 > 0 such that for all
0 ≤ s ≤ t we have:⏐⏐Yt − Y t

⏐⏐ ≤ Z e−c1t and
⏐⏐δ[Y − Y

]
st

⏐⏐ ≤ c2 Z e−c3s(t − s)β .

Proof. The difference Yt − Y t satisfies

Yt − Y t = y0 − Y 0 +

∫ t

0
[b(Ys; θ ) − b(Y s; θ )] ds

Applying the change of variable formula in the Young setting (18) and using Hypothesis 1.3(i),
we get:⏐⏐Yt − Y t

⏐⏐2 =
⏐⏐y0 − Y 0

⏐⏐2 + 2
∫ t

0
⟨b(Ys; θ ) − b(Y s; θ ), Ys − Y s⟩ ds

≤
⏐⏐y0 − Y 0

⏐⏐2 − 2α

∫ t

0

⏐⏐Ys − Y s
⏐⏐2 ds.

The first claim follows by a direct application of Gronwall’s lemma.
Similarly, for our additional parameter β ∈ (0, H ), we have⏐⏐δ[Y − Y

]
st

⏐⏐ =

⏐⏐⏐⏐∫ t

s
[b(Yu; θ ) − b(Y u; θ )] du

⏐⏐⏐⏐ ≤ cb(Ist )
1−β I β

st ,

where cb is the uniform bound on the Lipschitz constant of b, and where

Ist =

∫ t

s

⏐⏐Yu − Y u
⏐⏐ du.

We now bound Ist in two different ways:
(i) Since we have just proved that |Yu − Y u | ≤ Z e−c1u , we get

Ist ≤ Z
∫ t

s
e−c1u du ≤ Z

∫
∞

0
e−c1u du =

Z
c1

. (26)

(ii) Still using the relation |Yu − Y u | ≤ Z e−c1u , it is also readily checked that:

Ist ≤ Z
∫ t

s
e−c1u du ≤ Z e−c1s(t − s).

Plugging those two bounds into (26), we get

Ist ≤
Z e−cβs

c1−β
(t − s)β,

from which our second claim is easily deduced. □

We now recall, similarly to [27], that the integrability of Y implies the ergodicity of Eq. (19):

Proposition 2.11. Assume Hypothesis 1.3 holds true. Consider a finite horizon ρ > 0, a generic
parameter θ ∈ Θ , and the set Cβ([−ρ, 0]) of Hölder continuous functions on the interval
[−ρ, 0] for an exponent β < H. Let F be a functional on Cβ([−ρ, 0]) such that F is Frechet
differentiable and

|F(g)| + ∥DF(g)∥ ≤ c
(
1 + |g|

N
β;[−ρ,0]

)
, g ∈ Cβ([−ρ, 0]),
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for some c > 0, N ∈ N. Then the following limit holds true:

lim
τ→∞

1
τ

∫ τ

0
F(Y |[t−ρ,t]) dt = E[ f (Y )|[−ρ,0]], P-a.s. (27)

Proof. This is a direct consequence of Proposition 2.10 and the fact that relation (25) holds true
for the ergodic system (w, Y ). □

3. Proof of Theorem 1.7

We can now gather the information we have obtained on the system (19) in order to complete
the proof of Theorem 1.7. This will be divided in different steps.

Step 1. The first step of the proof consists in applying Girsanov’s theorem.
We first notice that DH−1/2

+ b(Y ; θ ) is well defined on [0, τ ], which follows since the function
u ↦→ b(Yu; θ ) is (H − ε)-Hölder, and thus (H − 1/2)-Hölder.

Fix θ ∈ Θ , and set θτ = θ + τ−1/2u. Suppose that Novikov’s condition holds. Then our
Girsanov-type Proposition 2.3 implies that

log
(

dPτ
θτ

dPτ
θ

)
= −

1
c2(H )

∫ τ

0
⟨σ−1([DH−1/2

+ b(Y ; θ )]t − [DH−1/2
+ b(Y ; θτ )]t ), dWt ⟩

−
1

2(c2(H ))2

∫ τ

0
|σ−1([DH−1/2

+ b(Y ; θ )]t − [DH−1/2
+ b(Y ; θτ )]t )|2dt.

(28)

In the following, we show that Novikov’s condition (16) holds for b̄t := b(Yt ; θ ) − b(Yt ; θτ ),
that is, that there exists λ > 0 such that

sup
t∈[0,τ ]

Eθ

[
exp

(
λ|σ−1[DH−1/2

+ b̄]t |
2
)]

< ∞. (29)

Towards this aim, we extend the definition of Y to R− by setting Yt = y0 for all t ≤ 0. Then,

|σ−1[DH−1/2
+ b̄]t | = cH

⏐⏐⏐⏐ ∫
R+

σ−1(b̄t − b̄t−r )
r H+1/2 dr

⏐⏐⏐⏐ ≤ cH (A1,t + A2,t ), (30)

where

A1,t =

⏐⏐⏐⏐ ∫ t

0

σ−1(b̄t − b̄t−r )
r H+1/2 dr

⏐⏐⏐⏐ and A2,t =

⏐⏐⏐⏐ ∫ ∞

t

σ−1(b̄t − b̄0)
r H+1/2 dr

⏐⏐⏐⏐.
Using the mean value theorem and the uniform boundedness of ∂x b, the second term is easily
bounded as:

A2,t ≤ cH
|Yt − y0|

t H−1/2 .

In addition, Eq. (18), the linear growth of b and Lemma 2.7 yield

|Yt − y0| ≤ ct(1 + ect sup
r∈[0,t]

|Bt |) + c|Bt |.

Therefore, we obtain that

|A2,t |
2

≤ c
|Yt − y0|

2

t2H−1 ≤ cect (1 + |B|
2
∞;[0,t] + |B|

2
H−ε;[0,t]

)
. (31)
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Similarly, we get that for all 0 < ε < 1
2 ,

A1,s ≤ c sup
0<r≤s

|δYs−r,s |

r H−ε

∫ s

0

1

r
1
2 +ε

dr = cH s
1
2 −ε sup

0<r≤s

|δYs−r,s |

r H−ε
.

Moreover, inequalities (22) and (23) yield:

|δYs−r,s | ≤ cr (1 + ecs sup
u∈[0,t]

|Bu |) + c|δBs−r,s |,

and thus A1,s satisfies the following bound:

A2
1,t ≤ cect (1 + |B|

2
∞;[0,t] + |B|

2
H−ϵ;[0,t]

)
. (32)

Plugging our estimates (31) and (32) into (30), we have thus obtained

|σ−1[DH−1/2
+ b̄]t |

2
≤ cect (1 + |B|

2
∞;[0,t] + |B|

2
H−ε;[0,t]).

Finally, Fernique’s theorem [9] implies (29).

Step 2. We next linearize relation (28). To this aim, recall that b̂ is defined in Hypothesis 1.3 as
b̂ = ∂θb. We add and subtract the d-dimensional vector

[DH−1/2
+ b̂(Y ; θ )]t (θτ − θ ) =

1
√

τ
[DH−1/2

+ b̂(Y ; θ )]t u,

where we abbreviate ⟨[DH−1/2
+ b̂(Y ; θ )]t , u⟩Rq into [DH−1/2

+ b̂(Y ; θ )]t u for notational sake. This
easily yields:

log
(

dPτ
θτ

dPτ
θ

)
= I1 + I2 −

1
2

I3 − I4, (33)

where

I1 =
1

τ 1/2 c2(H )

∫ τ

0
⟨σ−1[DH−1/2

+ b̂(Y ; θ )]t u, dWt ⟩

−
1

2(c2(H ))2τ

∫ τ

0
|σ−1[DH−1/2

+ b̂(Y ; θ )]t u|
2dt

I2 =
1

c2(H )

∫ τ

0
⟨σ−1([DH−1/2

+ b(Y ; θτ )]t − [DH−1/2
+ b(Y ; θ )]t

− [DH−1/2
+ b̂(Y ; θ )]t (θτ − θ )), dWt ⟩

I3 =
1

(c2(H ))2

∫ τ

0
|σ−1([DH−1/2

+ b(Y ; θτ )]t − [DH−1/2
+ b(Y ; θ )]t

− [DH−1/2
+ b̂(Y ; θ )]t (θτ − θ ))|2dt

and

I4 =
1

(c2(H ))2

∫ τ

0
⟨σ−1([DH−1/2

+ b(Y ; θτ )]t − [DH−1/2
+ b(Y ; θ )]t

− [DH−1/2
+ b̂(Y ; θ )]t (θτ − θ )), σ−1[DH−1/2

+ b̂(Y ; θ )]t (θτ − θ )⟩dt.

Step 3. In this step we set the ground for the identification of the main contribution to our log-
likelihood. That is, we wish to show that as τ → ∞ we have:

1
τ (c2(H ))2

∫ τ

0
|σ−1[DH−1/2

+ b̂(Y ; θ )]t u|
2dt

Pθ
−→ uTΣ (θ )u, (34)
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where Σ (θ ) is given by (6). Observe that (34) together with the multivariate central limit theorem
for Brownian martingales (cf. [22, Proposition 1.21]), imply that I1 is the term that contributes
to the limit in (5). In Steps 4 and 5 below we will show that I2, I3 and I4 are negligible terms
with respect to this main contribution.

In order to prove (34), we first write
1

τ (c2(H ))2

∫ τ

0
|σ−1[DH−1/2

+ b̂(Y ; θ )]t u|
2dt = uT I (τ )u,

where we have set

I (τ ) =
1

τ (c2(H ))2

∫ τ

0
[DH−1/2

+ b̂(Y ; θ )T ]t (σ−1)T σ−1[DH−1/2
+ b̂(Y ; θ )]t dt. (35)

To prove the convergence (34) we are then reduced to show the limit

Pθ - lim
τ→∞

I (τ ) = Σ (θ ). (36)

Next recall that for α ∈ (0, 1) and ϕ ∈ C∞
c (R) the fractional derivative operator Dα

+
is defined

by (10). In particular we can write:

[DH−1/2
+ b̂(Y ; θ )]t =

H − 1/2
Γ (3/2 − H )

∫
R+

b̂(Yt ; θ ) − b̂(Yt−r ; θ )
r H+1/2 dr. (37)

Now substituting (37) into (35) we obtain:

I (τ ) =
c4(H )

τ

∫ τ

0

∫
R2

+

Et (r, r̃ )
r̃ H+1/2r H+1/2 drdr̃dt, (38)

where we have denoted the constant c4(H ) = ( (H−1/2)
Γ (3/2−H )c2(H ) )

2, and where E stands for the
function:

Et (r, r̃ ) =

(
b̂(Yt ; θ ) − b̂(Yt−r̃ ; θ )

)T
(σ−1)T σ−1

(
b̂(Yt ; θ ) − b̂(Yt−r ; θ )

)
. (39)

We now specify the constant c4(H ) appearing in (38). Indeed, owing to the definition of c2(H )
given in Proposition 2.1 and resorting to the elementary identity:

Γ (z)Γ (1 − z) sin(π z) = π, z > −1, (40)

we get the following alternative expression for c4(H ):

c4(H ) =

(
sin(π (H −

1
2 ))

π c1(H )

)2

. (41)

In addition, taking into account the expression for the constant c1(H ) given in relation (9), it is
readily checked that c4(H ) = CH , where CH is the constant displayed in our main Theorem 1.7.

We now further analyze I (τ ) as given by (38) by exchanging the order of the integrals.
Specifically, we introduce the following notation:

µ(dr, dr̃ ) =
1

r̃ H+1/2

1
r H+1/2 drdr̃ and Jτ (r, r̃ ) =

1
τ

∫ τ

0
Et (r, r̃ )dt. (42)

Then a standard application of Fubini’s theorem to relation (38), plus the fact that c4(H ) = CH ,
yield:

I (τ ) = CH

∫
R2

+

Jτ (r, r̃ )µ(dr, dr̃ ). (43)
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Moreover, sending τ to ∞ and invoking Proposition 2.11 for the term Et (r, r̃ ) defined by (39),
we get the following almost sure limit:

lim
τ→∞

Jτ (r, r̃ ) = J (r, r̃ ), (44)

where we denote:

J (r, r̃ ) = Eθ

[(
b̂(Y 0; θ ) − b̂(Y −r̃ ; θ )

)T
(σ−1)T σ−1

(
b̂(Y 0; θ ) − b̂(Y −r ; θ )

)]
.

Provided one can pass the limit through the integral in (43), we thus get the almost sure limit:

lim
τ→∞

I (τ ) = I := CH

∫
R2

+

J (r, r̃ )µ(dr, dr̃ ). (45)

Notice that, thanks to relation (20) for small r , r̃ and Cauchy–Schwarz’s inequality for large r or
r̃ , it can be easily checked that I is a convergent integral.

Let us identify the right-hand side of (45) with the announced expression (6) for Σ (θ ). To this
aim, we consider the expansion

J (r, r̃ ) =Eθ [b̂(Ȳ0; θ )T(σ−1)Tσ−1b̂(Ȳ0; θ )] − Eθ [b̂(Ȳ−r̃ ; θ )T(σ−1)Tσ−1b̂(Ȳ0; θ )]

− Eθ [b̂(Ȳ0; θ )T(σ−1)Tσ−1b̂(Ȳ−r ; θ )] + Eθ [b̂(Ȳ−r̃ ; θ )T(σ−1)Tσ−1b̂(Ȳ−r ; θ )].

Invoking the stationarity of Ȳ in each of the four terms on the right-hand side above yields the
following identity:

J (r, r̃ ) =Eθ [b̂(Ȳ0; θ )T(σ−1)Tσ−1b̂(Ȳ0; θ )] − Eθ [b̂(Ȳ0; θ )T(σ−1)Tσ−1b̂(Ȳr̃ ; θ )]

− Eθ [b̂(Ȳr ; θ )T(σ−1)Tσ−1b̂(Ȳ0; θ )] + Eθ [b̂(Ȳr ; θ )T(σ−1)Tσ−1b̂(Ȳr̃ ; θ )],

or otherwise stated:

J (r, r̃ ) = Eθ [(b̂(Ȳ0; θ ) − b̂(Ȳr ; θ ))T(σ−1)Tσ−1(b̂(Ȳ0; θ ) − b̂(Ȳr̃ ; θ ))].

The expression (6) of Σ (θ ) is obtained by substituting this expression of J into (45) and
exchanging the order of the integrals in r̃ and r .

Step 4. Summarizing our considerations, in order to prove (34) we are now reduced to take limits
in τ in relation (43). To this aim, take an arbitrary constant ε > 0. In the following, we show that
there exists τ (ω) < ∞, Pθ a.s. such that |I (τ ) − I | < ε for all τ > τ (ω), where I is defined by
(45).

Since I is a convergent integral, we can take a constant A = A(ε) > 0 such that⏐⏐⏐⏐I − CH

∫
[0,A]2

J (r, r̃ )µ(dr, dr̃ )
⏐⏐⏐⏐ < ε and

∫
∞

A
r−H−1/2dr < ε. (46)

For V, V ′
⊂ R+ we set

I (τ, V × V ′) = CH

∫
V ×V ′

Jτ (r, r̃ )µ(dr, dr̃ ). (47)

In the following, we show that one can take limits in (43) if the integral domain R2
+

is replaced
by [0, A]2. Namely, we will prove that

lim
τ→∞

I (τ, [0, A]2) = CH

∫
[0,A]2

J (r, r̃ )µ(dr, dr̃ ). (48)
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We first derive some estimates for Et (r, r̃ ) and Jτ (r, r̃ ), where we recall that Et (r, r̃ ) is defined
in (39). Take 0 < δ < 1/2. Proposition 2.6 on the (H − δ)-Hölder continuity of the solution
process Y allows to write the relation

|Et (r, r̃ )| ≤ K |Y |
2
H−δ,[t−A,t]r

H−δr̃ H−δ, (49)

which holds true for all 0 ≤ r, r̃ ≤ A. Applying relation (49) to Jτ (r, r̃ ) in (42), we then get the
following upper bound for Jτ (r, r̃ ):

|Jτ (r, r̃ )| ≤
1
τ

∫ τ

0
K |Y |

2
H−δ,[t−A,t]r

H−δr̃ H−δdt. (50)

Notice that Proposition 2.11 implies the almost sure convergence

lim
τ→∞

1
τ

∫ τ

0
K |Y |

2
H−δ,[t−A,t]dt = K E

[
|Y |

2
H−δ,[−A,0]

]
.

In particular, we can find τ1(ω) > 0 such that for τ > τ1(ω)

1
τ

∫ τ

0
K |Y |

2
H−δ,[t−A,t]r

H r̃ H dt ≤ g(r, r̃ ) :=

(
1 + K E

[
|Y |

2
H−δ,[−A,0]

])
r H−δr̃ H−δ. (51)

So the estimate (50) implies that for τ > τ1(ω)

|Jτ (r, r̃ )| ≤ g(r, r̃ ). (52)

On the other hand, it is clear that
∫

[0,A]2 g(r, r̃ )µ(dr, dr̃ ) < ∞. Thus taking into account
relation (44) and (52), one can apply the dominated convergence theorem in (47) with V = V ′

=

[0, A]. This yields (48). In the sequel, we will thus consider τ2(ω) < ∞ such that for τ > τ2(ω)
we have⏐⏐⏐⏐I (τ, [0, A]2) − CH

∫
[0,A]2

J (r, r̃ )µ(dr, dr̃ )
⏐⏐⏐⏐ < ε. (53)

In the following, we show that |I (τ )− I (τ, [0, A]2)| < ε for τ sufficiently large. We first show
that the quantities 1

τ

∫ τ

0 |b̂(Yt ; θ )|2dt and 1
τ

∫ τ

0 |b̂(Yt−r ; θ )|2dt can be bounded by some constants.
In fact, by Proposition 2.11 again we have the almost sure convergence

lim
τ→∞

1
τ

∫ τ

0
|b̂(Yt ; θ )|2dt = E|b̂(Y 0; θ )|2.

In particular, there exists τ3(ω) satisfying τ2(ω) ≤ τ3(ω) < ∞, such that the following upper
bound estimate holds true for all τ > τ3(ω):

1
τ

∫ τ

0
|b̂(Yt ; θ )|2dt ≤ K1 := 1 + E|b̂(Y 0; θ )|2. (54)

On the other hand, due to the fact that Yu = Y0 for u ≤ 0, the following holds true for r ≤ τ :

1
τ

∫ τ

0
|b̂(Yt−r ; θ )|2dt =

1
τ

∫ τ

r
|b̂(Yt−r ; θ )|2dt +

1
τ

∫ r

0
|b̂(Y0; θ )|2dt

≤ K1 + |b̂(Y0; θ )|2 := K2, (55)

while (55) is also trivially true for r > τ . In conclusion, the estimate (55) is valid for all τ ≥ τ3(ω)
and all r ≥ 0.

We will now bound the quantity |I (τ ) − I (τ, [0, A]2)| by sums of elements of the form
I (τ, V × V ′). Recall that I (τ, V × V ′) is defined in (47). Those elements will then be estimated
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thanks to (54) and (55). To this aim, we first recall that Jτ (r, r̃ ) is defined by (42). Therefore, an
elementary application of Hölder’s inequality yields

|Jτ (r, r̃ )| ≤ K
(

1
τ

∫ τ

0
|b̂(Yt ; θ ) − b̂(Yt−r ; θ )|2dt

)1/2

×

(
1
τ

∫ τ

0
|b̂(Yt ; θ ) − b̂(Yt−r̃ ; θ )|2dt

)1/2

. (56)

Then applying (56) to the definition (47) of I (τ, V × V ′) we obtain

|I (τ, V × V ′)| ≤ K FV FV ′ , (57)

where the quantity FV is defined by

FV =

∫
V

(
1
τ

∫ τ

0
|b̂(Yt ; θ ) − b̂(Yt−r ; θ )|2dt

)1/2

r−H−1/2dr. (58)

As a last preliminary step, let us bound trivially b̂(Yt ; θ ) − b̂(Yt−r ; θ ) as follows:

|b̂(Yt ; θ ) − b̂(Yt−r ; θ )|2 ≤ 2|b̂(Yt ; θ )|2 + 2|b̂(Yt−r ; θ )|2.

So invoking relations (54) and (55), we obtain the estimate

FV ≤ 2
∫

V

(
1
τ

∫ τ

0

(
|b̂(Yt ; θ )|2 + |b̂(Yt−r ; θ )|2

)
dt
)1/2

r−H−1/2dr

≤ 2(K1 + K2)1/2
∫

V
r−H−1/2dr. (59)

We now analyze FV for three different choices of set V .
(i) Take V1 = (A, ∞). Then applying (59) and taking into account the second relation in (46) we
obtain

FV1 ≤ 2(K1 + K2)1/2ε := K3ε. (60)

(ii) Similarly, consider V2 = (1, A), then the estimate (59) implies

FV2 ≤ K (K1 + K2)1/2
:= K4. (61)

(iii) Take now V3 = (0, 1). Similarly to (49), for r ∈ V3 we have:

|b̂(Yt ; θ ) − b̂(Yt−r ; θ )|2 ≤ K |Y |
2
H−δ,[t−1,t] r2(H−δ).

Hence invoking expression (58) of FV and along the same lines as for (51) we obtain

FV3 ≤ K
(

1
τ

∫ τ

0
|Y |

2
t−1,t dt

)1/2 ∫
V3

r−1/2−δdr ≤ K (1 + E|Y |
2
−1,0)1/2

:= K5, (62)

for all τ > τ3(ω).
With these preparations, we now consider the difference I (τ ) − I (τ, [0, A]2) for τ > τ3(ω).

Owing to relation (57) and recalling that V1 = (A, ∞) , V2 = (1, A) and V3 = (0, 1) we have

|I (τ ) − I (τ, [0, A]2)| = |I (τ, V1 × (0, A)) + I (τ, (0, A) × V1) + I (τ, V1 × V1)|
≤ 2FV1 (FV2 + FV3 ) + F2

V1
.

We then apply (60), (61), (62), which yields

|I (τ ) − I (τ, [0, A]2)| ≤ 2K3(K4 + K5)ε + K 2
3 ε2

≤ K ε. (63)
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We can now conclude the proof of (34). Indeed, combining (46), (53) and (63), we easily get
the estimate

|I (τ ) − I | < K ε for τ > τ3(ω),

from which (34) is trivially deduced. Notice that we have obtained in fact a stronger statement
than (34), since our limit holds in the almost sure sense.

Step 5. We next show that the term I3 in (33) converges to zero in Pθ -probability as τ → ∞. For
this, set gt (θ ) = σ−1[DH−1/2

+ b(Y ; θ )]t . One can recast I3 into:

I3 =

∫ τ

0
|gt (θτ ) − gt (θ ) − ∂θ gt (θ )(θτ − θ )|2 dt,

and we also recall that θτ − θ = τ−1/2u. In addition, a simple application of Taylor’s expansion
for multivariate functions yields the existence of a λ ∈ (0, 1) such that:

gt (θτ ) − gt (θ ) = ∂θ gt (ξλ)(θτ − θ ), where ξλ = θ + λ(θτ − θ ).

Notice that under our standing Hypothesis 1.3 we have ∂θ gt (ξλ) = σ−1[DH−1/2
+ b̂(Y ; ξλ)]t . We

thus get:

I3 =
1
τ

∫ τ

0
|σ−1 Mt (Y )u|

2 dt, where Mt (Y ) =

∫
R+

δ[b̂(Y ; ξλ) − b̂(Y ; θ )]t−r,t

r1/2+H
dr.

Next we decompose Mt (Y ) into M1,t (Y ) + M2,t (Y ), where

M1,t (Y ) =

∫ t

0

δ[b̂(Y ; ξλ) − b̂(Y ; θ )]t−r,t

r1/2+H
dr,

M2,t (Y ) =

∫
∞

t

δ[b̂(Y ; ξλ) − b̂(Y ; θ )]t−r,t

r1/2+H
dr.

Recall that we have extended the definition of Y to R− by setting Yt = y0 for all t ≤ 0. Therefore
a simplified expression for M2,t (Y ) is as follows:

M2,t (Y ) =

[
b̂(Yt ; ξλ) − b̂(Yt ; θ )

] ∫ ∞

t

dr
r H+1/2 ,

and using Hypothesis 1.3 we obtain that:

τ−1
∫ τ

0
|σ−1 M2,t (Y )u|

2 dt ≲ τ−2
∫ τ

0

(1 + |Yt |
2)

t2H−1 dt.

Thus, by Proposition 2.5, the L1(Ω )-norm of this term is bounded by cHτ−2H . Hence, this term
converges in Pθ -probability to zero as τ → ∞.

On the other hand, fix α ∈ ( 1
1+2H , 1

2H ), and write

M1,t (Y ) ≤

∫ t

0

⏐⏐⏐δ[b̂(Y ; ξλ) − b̂(Y ; θ )]t−r,t

⏐⏐⏐α ·

⏐⏐⏐δ[b̂(Y ; ξλ) − b̂(Y ; θ )]t−r,t

⏐⏐⏐1−α

r1/2+H
dr.

Then, appealing to Hypothesis 1.3, we get that

|M1,t (Y )| ≲
1

τ α/2

∫ t

0

(1 + |Yt |
α

+ |Yt−r |
α) |Yt − Yt−r |

1−α

r H (1−α)r1/2+αH
dr.
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Therefore,

|M1,t (Y )|2

≲
1
τ α

∫ t

0

∫ t

0

(
1 + |Yt |

α
+ |Yt−r1 |

α
)
|Yt − Yt−r1 |

1−α

r H (1−α)
1 r1/2+αH

1

×

(
1 + |Yt |

α
+ |Yt−r2 |

α
)
|Yt − Yt−r2 |

1−α

r H (1−α)
2 r1/2+αH

2

dr1dr2.

Thus, again by Proposition 2.5, the L1(Ω )-norm of the term 1
τ

∫ τ

0 |σ−1 M1,t (Y )u|
2dt is bounded

by

cH

τ 1+α

∫ τ

0

∫ t

0

∫ t

0

1

r1/2+αH
1

1

r1/2+αH
2

dr1dr2dt =
cH

τ 1+α

∫ τ

0
t1−2Hαdt =

cH

τ α(2H+1)−1 ,

which converges to zero as τ → ∞ since α > 1
2H+1 .

Step 6. We finally show that I2 and I4 are also negligible terms. Since I3 is the quadratic variation
of the martingale I2, this implies that I2 converges to zero in Pθ -probability as τ → ∞. On the
other hand, applying the Cauchy–Schwarz inequality to I4, we get that

|I4| ≤

(
1
τ

∫ τ

0
|σ−1[DH−1/2

+ b̂(Y ; θ )]t u|
2dt
)1/2

× I 1/2
3 ,

Thus, by the results in Steps 3 and 4, we obtain that I4 converges to zero in Pθ -probability as
τ → ∞, which completes the proof of Theorem 1.7.

4. Ornstein–Uhlenbeck case

Though our result encompasses a wide range of coefficients b, it is worth illustrating it
on a simple linear case, that is for the real-valued fractional Ornstein–Uhlenbeck process
corresponding to b(x; θ ) = −θ x and σ ≡ 1. In addition, we will assume that our parameter
θ is an element of the set Θ , which is a compact interval in (0, ∞). Specifically, the equation
followed by Y is the following:

Yt = −θ

∫ t

0
Ys ds + Bt , t ∈ [0, τ ], θ > 0, (64)

and the stationary solution is given by:

Y t =

∫ t

−∞

e−θ (t−s) d Bs .

4.1. Computation of the LAN variance

One of the advantages of the Ornstein–Uhlenbeck case is that it allows explicit computations
of the LAN variance Σ (θ ). We summarize this possibility in the following proposition:

Proposition 4.1. Let Y be the fractional Ornstein–Uhlenbeck process solution to (64). Then the
LAN property (5) is satisfied with

Σ (θ ) =
1

2θ
.
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Remark 4.2. As mentioned in the introduction, we observe that in this case Σ (θ ) does not
depend on H , and is equal to the asymptotic variance of the LAN property of the Ornstein–
Uhlenbeck process driven by a standard Brownian motion.

Proof of Proposition 4.1. By (6), we have the following expression for Σ (θ )

Σ (θ ) = CH

∫
R2

+

Eθ [Y
2
0] − Eθ [Y 0Y r1 ] − Eθ [Y 0Y r2 ] + Eθ [Y 0Y r2−r1 ]

r1/2+H
1 r1/2+H

2

dr1dr2,

where CH is given by (7).
We start by computing the covariance of Y between times 0 and t . Namely, thanks to [29,

(3.4)], we obtain

Eθ [Y 0Y t ] =
1

c5(H )

∫
R

|ξ |
1−2HF(1(−∞,t)e−θ (t−·))(ξ )F(1(−∞,0)eθ ·)(ξ ) dξ

=
1

c5(H )

∫
R

|ξ |
1−2H ei tξ

(iξ + θ )
1

(−iξ + θ )
dξ

=
1

c5(H )

∫
R

|ξ |
1−2H

θ2 + ξ 2 ei tξ dξ,

where F( f )(ξ ) =
∫
R f (t)ei tξ dt and

c5(H ) =
2π

Γ (2H + 1) sin(π H )
. (65)

Therefore, using Fubini’s theorem, we obtain

Σ (θ ) =
CH

c5(H )

∫
R2

+

∫
R

|ξ |
1−2H

θ2 + ξ 2

(
1 − eir1ξ

− eir2ξ
+ ei(r2−r1)ξ

)
r1/2+H

1 r1/2+H
2

dξ dr1dr2

=
CH

c5(H )

∫
R

|ξ |
1−2H

θ2 + ξ 2

∫
R2

+

(
1 − eir1ξ

) (
1 − e−ir2ξ

)
r1/2+H

1 r1/2+H
2

dr1dr2 dξ

=
CH

c5(H )

∫
R

|ξ |
1−2H

θ2 + ξ 2

⏐⏐⏐⏐ ∫ ∞

0

1 − eirξ

r1/2+H
dr
⏐⏐⏐⏐2 dξ

=
2CH

c5(H )

∫
∞

0

ξ 1−2H

θ2 + ξ 2

⏐⏐⏐⏐ ∫ ∞

0

1 − eirξ

r1/2+H
dr
⏐⏐⏐⏐2 dξ.

Thus, setting y = rξ in the integral above, we get

Σ (θ ) =
2CH

c5(H )

∫
∞

0

1
θ2 + ξ 2 dξ

⏐⏐⏐⏐ ∫ ∞

0

1 − eiy

y1/2+H
dy
⏐⏐⏐⏐2

=
πCH

θc5(H )

⏐⏐⏐⏐ ∫ ∞

0

1 − eiy

y1/2+H
dy
⏐⏐⏐⏐2. (66)

We next write⏐⏐⏐⏐ ∫ ∞

0

1 − eiy

y1/2+H
dy
⏐⏐⏐⏐2 =

(∫
∞

0

1 − cos(y)
y1/2+H

dy
)2

+

(∫
∞

0

sin(y)
y1/2+H

dy
)2

.

For the first integral on the right hand side we use the integration by parts u = 1 − cos(y),

dv = y−
1
2 −H , du = sin(y), v =

y
1
2 −H

( 1
2 −H )

. For the second integral, we use u = sin(y), du = cos(y),
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to get that⏐⏐⏐⏐ ∫ ∞

0

1 − eiy

y1/2+H
dy
⏐⏐⏐⏐2 =

(
1

(H −
1
2 )

∫
∞

0

sin(y)
yH−1/2 dy

)2

+

(
1

(H −
1
2 )

∫
∞

0

cos(y)
yH−1/2 dy

)2

=

⎛⎜⎜⎝ π

2(H −
1
2 )Γ (H −

1
2 ) sin

(
π (H−

1
2 )

2

)
⎞⎟⎟⎠

2

+

⎛⎜⎜⎝ π

2(H −
1
2 )Γ (H −

1
2 ) cos

(
π (H−

1
2 )

2

)
⎞⎟⎟⎠

2

=
π2

4Γ 2(H +
1
2 )sin2

(
π (H−

1
2 )

2

)
cos2

(
π (H−

1
2 )

2

)
=

π2

Γ 2(H +
1
2 )sin2 (π (H −

1
2 )
) ,

where in the second equation we have used some standard formulas for improper integrals (see
e.g. [33, Page 331–332]). Plugging this identity into the expression (66) we have obtained for
Σ (θ ), and using the definition of CH in (7) and of c5(H ) in (65), we obtain that

Σ (θ ) =
πCH

θc5(H )
π2

Γ 2(H +
1
2 )sin2 (π (H −

1
2 )
) =

Γ (2H + 1)
4θ HΓ (2H )

=
1

2θ
,

which concludes the result. □

4.2. Efficiency of the mle

Consider now the MLE θ̂τ of θ from the observation of a fractional Ornstein–Uhlenbeck
process Y in [0, τ ], as defined in [18]. It is well-known (see [2,4,18]) that θ̂τ is uniformly
consistent on Θ (recall that Θ is assumed to be a compact subinterval of (0, ∞) in the Ornstein–
Uhlenbeck sense). That is, for any λ > 0, we have

lim
τ→∞

sup
θ∈Θ

Pτ
θ

(⏐⏐⏐θ̂τ − θ

⏐⏐⏐ > λ
)

= 0.

The estimator θ̂τ is also uniformly asymptotically normal:

L(Pθ ) − lim
τ→∞

√
τ (θ̂τ − θ ) = N (0, 2θ ),

where the limit is uniform in θ ∈ Θ . Moreover, we have a uniform convergence of moments.
Namely, for any p > 0, one gets:

lim
τ→∞

sup
θ∈Θ

⏐⏐⏐Eθ

[⏐⏐⏐√τ (θ̂τ − θ )
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐ = 0, (67)

where L(Z ) = N (0, 1). In particular, the last two results already suggest that the rate of
convergence for the LAN property in this case is τ−1/2, as mentioned in [30, p. 162]. Our
Theorem 1.7 confirms this intuition, and one can see that the MLE reaches this optimal rate
of order τ−1/2.

Moreover, as a consequence of Theorem 1.7 and Proposition 4.1, we obtain the asymptotic
efficiency for polynomial loss functions of the MLE for the fractional Ornstein–Uhlenbeck
process, in the sense of Theorem 1.6.
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Proposition 4.3. Let Y be the fractional Ornstein–Uhlenbeck process solution to (64). Then the
MLE is asymptotically minimax efficient for any loss function ℓ(u) = |u|

p, p > 0.

Proof. Fix θ ∈ Θ . Then, for all δ > 0 and p > 0,

sup
θ ′∈Θ :|θ ′−θ |<δ

⏐⏐⏐Eθ ′

[⏐⏐⏐√τ (θ̂τ − θ ′)
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐

≤ sup
θ ′∈Θ

⏐⏐⏐Eθ ′

[⏐⏐⏐√τ (θ̂τ − θ ′)
⏐⏐⏐p]

− Eθ ′

[⏐⏐⏐√2θ ′ Z
⏐⏐⏐p]⏐⏐⏐

+ sup
θ ′∈Θ :|θ ′−θ |<δ

⏐⏐⏐Eθ ′

[⏐⏐⏐√2θ ′ Z
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐ ,

where L(Z ) = N (0, 1). Then, the uniform convergence of the moments (67) implies that

lim
τ→∞

sup
θ ′∈Θ :|θ ′−θ |<δ

⏐⏐⏐Eθ ′

[⏐⏐⏐√τ (θ̂τ − θ ′)
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐

≤ sup
θ ′∈Θ :|θ ′−θ |<δ

⏐⏐⏐Eθ ′

[⏐⏐⏐√2θ ′ Z
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐ .

Therefore,

lim
δ→0

lim
τ→∞

sup
θ ′∈Θ :|θ ′−θ |<δ

⏐⏐⏐Eθ ′

[⏐⏐⏐√τ (θ̂τ − θ ′)
⏐⏐⏐p]

− Eθ

[⏐⏐⏐√2θ Z
⏐⏐⏐p]⏐⏐⏐ = 0.

Thus, by Proposition 4.1, the lower bound in (4) is achieved by the MLE when ℓ(u) = |u|
p,

which completes the proof. □
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