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Abstract. In this article, we consider limit theorems for some weighted type random sums (or discrete rough integrals). We introduce
a general transfer principle from limit theorems for unweighted sums to limit theorems for weighted sums via rough path techniques.
As a by-product, we provide a natural explanation of the various new asymptotic behaviors in contrast with the classical unweighted
random sum case. We apply our principle to derive some weighted type Breuer–Major theorems, which generalize previous results to
random sums that do not have to be in a finite sum of chaos. In this context, a Breuer–Major type criterion in notion of Hermite rank
is obtained. We also consider some applications to realized power variations and to Itô’s formulas in law. In the end, we study the
asymptotic behavior of weighted quadratic variations for some multi-dimensional Gaussian processes.

Résumé. Dans cet article, nous étudions les théorèmes limite pour des sommes aléatoires pondérées (ou intégrales discrètes ru-
gueuses). Nous introduisons un principe de transfert général entre les théorèmes limite pour les sommes non pondérées et pour les
sommes pondérées, en utilisant des techniques de chemins rugueux. Comme conséquence, nous proposons une explication naturelle
pour la diversité des nouveaux comportements asymptotiques par rapport aux cas des sommes aléatoires non pondérées. Nous appli-
quons notre principe pour obtenir des théorèmes de type Breuer–Major pondérés, qui généralisent des résultats précédents aux cas de
sommes aléatoires qui ne sont pas dans une somme finie de chaos. Dans ce contexte, un critère de type Breuer–Major en termes de
rang d’Hermite est obtenu. Nous considérons aussi des applications pour réaliser des variations de puissance et pour les formules d’Itô
en loi. A cette fin, nous étudions le comportement asymptotique de variations quadratiques pondérées pour des processus Gaussiens
multidimensionnels.
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1. Introduction

For n ≥ 1, we consider the uniform partition Dn : 0 = t0 < t1 < · · · < tn = 1 of [0,1] (notice that more general parti-
tions could be considered, although this article is mostly restricted to the uniform case for sake of simplicity). Take a
1-increment process hn

st defined for s, t ∈ Dn such that s ≤ t and a “weight” process yt defined for t ∈ ⋃
n∈NDn. We

consider a “discrete integral” as a Riemann sum of the form:

J t
s

(
y;hn

) :=
∑

s≤tk<t

ytkh
n
tktk+1

. (1.1)

Recall that a classical limit theorem for such a process is a statement of the type:

1

an

J
(
1;hn

) = hn

an

−→ ω, as n → ∞. (1.2)

Here an is an increasing sequence such that limn→∞ an = ∞, ω is a non-zero continuous process and the limit is usually
understood as a finite dimensional distribution limit. A typical example of (1.2) is the convergence of a renormalized
random walk to Brownian motion (Donsker’s theorem, see [26]), but a wide range of more complex situations can occur.
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Indeed, it is well-known that the rate of growth of an and the nature of the limit process ω are determined by both the
marginal tails of hn and its dependence structure; see e.g. [11,12,41,42].

In this paper we are interested in the following related problem:

Problem 1. Given that hn converges to some “1-increment” process, say, the increment of a Wiener process, what is
the asymptotic behavior of the discrete integral J (y;hn) for a general weight y, and when would (or would not) the
asymptotic behavior of J (y;hn) be similar to that of hn?

This problem has drawn a lot of attention in recent articles due to its essential role in topics such as normal approxima-
tions (e.g. [33,34,36]), time-discretization based numerical approximations (e.g. [17,25,30]), parameter estimations (e.g.
[3,10,29,32]), and the so-called Itô’s formula in law (e.g. [4,6,18,19,21–23,38,39]). Let us, however, point out several
limitations in the existing results: (1) Each process hn is usually a functional of a Gaussian process x with stationary
increments, living in a fixed finite sum of chaos; (2) The underlying Gaussian process x is one-dimensional; (3) Only the
special case yt = f (xt ), t ≥ 0 is considered for the weight function. (4) To the best of our knowledge, there is no theoret-
ical explanation for the various “unexpected” asymptotic behaviors of the discrete integral observed in e.g. [6,19,38,40]
so far. (5) Satisfactory general criteria of convergence for sequences of discrete weighted integrals are still rare. This is in
sharp contrast with the simple Breuer–Major type conditions in the unweighted case.

The aim of the current paper is thus to give an account on limit theorems for discrete integrals thanks to rough paths
techniques combined with Gaussian analysis. In our setting, we will consider a general 1-increment process hn and a
general weight process (y, y′, . . . , y(�−1)) with y0 = 0 which is controlled by the increments of some rough path x =
(1, x1, . . . , x�−1). Here � is some constant in N. Notice that we will define the notion of controlled process later in the
paper, see Definition 2.3 below, but we can observe that this class of paths includes functions of the form y = f (x) or
solutions of differential equations driven by x. Let us label the following hypothesis:

Hypothesis 1.1. Take i ∈ {0,1, . . . , � − 1}. For any sequence of partitions 0 ≤ s0 < s1 < · · · < sm ≤ 1 of [0,1] with
|sj+1 − sj | ≤ 1/m, we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m∑

j=1

J sj+1
sj

(
xi;hn

)∣∣∣∣∣ = 0, (1.3)

where J (xi;hn) is defined by (1.1) and the limit is understood as a limit in probability.

Remark 1.2. Hypothesis 1.1 specifies that the random sums J (y,hn) corresponding to the weights y = xi are negligible
with respect to a main contribution in sums like (1.1). In practice, Hypothesis 1.1 is easier to check for a simple weight
like xi than for a general weight y.

We will be able to prove that if Hypothesis 1.1 holds for i = 1, . . . , � − 1 and y is a controlled process, then the
following convergence holds in distribution (see Theorem 3.8 for a more precise statement):

J
(
y;hn

) d−→ v, (1.4)

where the integral vst = ∫ t

s
yu dWu has to be understood as a conditional Wiener integral.

As alluded to above, our result can be seen as a general principle which allows to transfer limit theorems (1.3) taken on
monomials of the rough path to the corresponding limit theorems involving controlled processes as weights. Therefore,
potential applications of this result are numerous (see the aforementioned parameter estimation problem, Itô’s formula in
law, or numerical schemes for rough differential equations), and will be detailed throughout the paper.

As has already been observed in [19,33,36], the asymptotic behavior of (1.1) can be completely different from
(1.4). One of the first occurrences of this kind of result is provided by [33], where for a one-dimensional fractional
Brownian motion x with Hurst parameter ν ∈ (0, 1

4 ) the following limit theorem is obtained: consider the increment
hn

st = ∑
s≤tk<t [(nνδxtktk+1)

2 − 1], where δxtktk+1 = xtk+1 − xtk and (tk)k=0,...,n stands for the uniform partition of [0,1].
Let f be a continuous function with proper regularity. Then, as n → ∞, we have:

n2ν−1J 1
0

(
f (x);hn

) L2−→ 1

4

∫ 1

0
f ′′(xs) ds. (1.5)

Our approach allows to generalize our result to handle limits such as (1.5), weighted by controlled processes. In ad-
dition, our results provide an explanation of the appearance of f ′′ in the right-hand side of (1.5), based on the struc-
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tural understanding of the discrete integral from the rough path theory. Indeed, our next theorem shows that the limit
1
4

∫ 1
0 f ′′(xs) ds is the result of a “speed match” between different levels (1, x1, . . . , x�−1) of the rough path x and the fact

that f (x), f ′(x), . . . , f (�−1)(x) are the corresponding weight processes. Specifically, we shall show that if there is some
τ ∈ {1, . . . , �− 1} such that J t

s (xτ ;hn) → (t − s) in probability, and J t
s (xi;hn) are negligible for all i �= τ , then we have

the convergence in probability (see Theorem 3.11 for the precise statement):

lim
n→∞J

(
y;hn

) =
∫

y
(τ)
t dt.

A more complicated situation of asymptotic behavior is observed in [6,34,38]. This usually corresponds to a transition
in terms of roughness for the underlying rough path x. For example, in the critical cases when ν = 1

4 in (1.5), and for the
same f and hn as in (1.5), one obtains the convergence in distribution:

n−1/2J 1
0

(
f (x);hn

) d−→ σ

∫ 1

0
f (xs) dWs + 1

4

∫ 1

0
f ′′(xs) ds, (1.6)

where σ is some constant and recall that W is a standard Brownian motion independent of x. An explanation of the above
asymptotic behavior according to the technique of rough path is that the two levels 1 and x2 give contributions of the
same order in the limit theorem. This is then reflected into the fact that the components f (x) and f ′′(x) (respectively,
0th and 2nd derivatives of f (x) as a controlled process) give contributions of the same order. Our generalization of (1.6)
is thus the “double” limit theorem: Suppose that there exists a τ : 0 < τ < � such that for any sequence of partitions
0 ≤ s0 < s1 < · · · < sm ≤ 1 on [0,1] with |si+1 − si | ≤ 1

m
, and s0 = s, sm = t , we have the convergence in probability:

lim
m→∞ lim

n→∞

m−1∑
j=0

J sj+1
sj

(
xτ ;hn

) = t − s. (1.7)

Suppose further that Hypothesis 1.1 holds true for i ∈ {1, . . . , � − 1} \ {τ }. Then

J
(
y;hn

) d−→
∫

yt dWt +
∫

y
(τ)
t dt.

As mentioned previously, our results are abstract transfer principles from monomials of a rough path to a controlled
process for limit theorems of the form (1.2). For sake of illustration, let us mention an important application of this
transfer principle we will encounter in the article, namely a weighted type Breuer–Major theorem.

Recall that the Hermite polynomial of order q is defined as Hq(t) = (−1)qe
t2
2 dq

dtq
e− t2

2 , and we denote by γ the
standard normal distribution. We consider the following Breuer–Major type criterion:

Hypothesis 1.3. Take � ∈ N. Let f ∈ L2(γ ) be a function such that we have the expansion f = ∑∞
q=d aqHq for a given

d ≥ 1 and ad �= 0. We suppose that the coefficients aq satisfy:

∞∑
q=d

a2
qq!q2(�−1) < ∞. (1.8)

Note that (1.8) is equivalent to the fact that f belongs to a specific Sobolev space, namely f ∈ W 2�−2,2(R, γ ).

Following is our weighted type Breuer–Major theorem (see Theorem 4.7 and Theorem 4.14 for a more precise state-
ment):

Theorem 1.4. Let x be a one-dimensional fBm with Hurst parameter ν < 1
2 . Suppose that Hypothesis 1.3 holds true

for f ∈ L2(γ ) with some � ∈ N and d ≥ 1. Let (y, y′, . . . , y(�−1)) be a process controlled by x. We define a sequence
{hn;n ≥ 1} of increments by hn

st := n−1/2 ∑
s≤tk<t f (nνδxtktk+1) for s, t ∈ [0,1] such that s < t .

(i) When d > 1
2ν

, and � is the smallest integer such that � > 1
2ν

, we have the convergence:

J
(
y;hn

) d−→ σν,d

∫
yt dWt , as n → ∞,

where σν,d is a constant which can be computed explicitly and where we recall that J (y;hn) is defined by (1.1).
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(ii) When d = 1
2ν

and � = d + 1, the following convergence holds true:

J
(
y;hn

) d−→ σν,d

∫
yt dWt +

(
−1

2

)d

ad

∫
y(d)
u du, as n → ∞.

(iii) When d < 1
2ν

and � = d + 1, we have the convergence in probability:

n−( 1
2 −νd)J t

s

(
y;hn

) −→
(

−1

2

)d

ad

∫ t

s

y(d)
u du, as n → ∞.

The proof of Theorem 1.4 is based on the transfer principle results we have developed. Let us observe that Theorem 1.4
improves on the references on weighted Breuer–Major theorems quoted above in the following ways:

(i) The function f is not assumed to be in a finite sum of chaos. In fact a convenient sufficient condition for (1.8) to be
fulfilled is that the function f is an element of C2�−2

b . Note that if the focus is on the rate of convergence of J (y;hn)

(see e.g. [35]), it is generally assumed that f belongs to a finite sum of chaos.
(ii) Multidimensional versions of Theorem 1.4 (based on [2]) are easily conceived, where f (nνδxtktk+1) in the definition

of hn is replaced by f (nνδx1
tk tk+1

, . . . , nνδxd
tktk+1

), for a d-dimensional Gaussian process (x1, . . . , xd).
(iii) The weight y in Theorem 1.4 is obviously a controlled process instead of a mere function of x. It is worth noting

again that the class of controlled processes includes solutions of differential systems driven by x.
(iv) As mentioned above, the single and double limiting phenomenons in Theorem 1.4 can be explained in terms of speed

match on different levels of the rough path above x.
(v) The solution to Problem 1 above is expressed easily in terms of the Hurst parameter ν of x and the Hermite rank d

of f .

Throughout the paper we will give an account on other applications of our general transfer principle, such as real-
ized power variations, convergence of trapezoidal Riemann sums and quadratic variations of multidimensional Gaussian
processes. As the reader might see, the improvements (i)–(v) mentioned above will be a constant of our rough paths
method.

Let us briefly explain the general methodology we have followed for our proofs, separating the general principle from
the applications.

(a) The proofs of our transfer principle results are mostly based on rough path type expansions for the weight process
y and a more classical coarse graining argument (also called big block/small block in the literature). By handling
the remainder terms thanks to rough paths techniques, the convergence of J (y;hn) is reduced to those of J (y; ζ 1),
J (y′; ζ 2), . . . , J (y(�−1); ζ �), where each ζ i is a discrete process of the form ζ i

j = J sj+1
sj (xi;hn). The convergence of

these quantities are further reduced to those of J (1; ζ 1), J (1; ζ 2), . . . , J (1; ζ �), such as those in Hypothesis 1.1 and
relation (1.7). The random processes J (1; ζ 1), J (1; ζ 2), . . . , J (1; ζ �) will be the elementary bricks for our limiting
procedures.

(b) Our applications, such as the weighted type Breuer–Major Theorem 1.4, heavily rely on the criteria developed in the
transfer principle results. This ingredient is combined with some Malliavin calculus techniques in order to handle
the building bricks J (1; ζ i). More specifically, in case of the weighted Breuer–Major theorem 1.4, we shall invoke
integration by parts on the Wiener space. This step is similar to what is done in [34]. However, due to our rough
path reduction of the problem, we only have to consider integration by parts to compute moments of the elementary
bricks xi

tk
Hq(nνδxtktk+1) (as opposed to g(xtk )f (nνδxtktk+1) for a general nonlinear function g). This reduction to

computations in finite chaos is one of the crucial steps which allow to derive the Breuer–Major type criteria (1.8) for
a general function f .

The paper is organized as follows. In Section 2 we introduce the concept of discrete rough paths and discrete rough
integrals and recall some basic results of the rough paths theory. In Section 3, we prove our general limit theorems.
In Section 4, we apply them to the one-dimensional fractional Brownian motion, which allows us to derive a weighted
type Breuer–Major theorem. We also consider applications of the weighted type Breuer–Major theorem to parameter
estimation and Itô’s formula in law. In Section 5, we consider the limit theorem of a weighted quadratic variation in the
multi-dimensional Gaussian setting.

Notation. As mentioned above, for simplicity we mostly consider uniform partitions in the sequel. That is, we denote

tk = k

n
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for each k,n ∈ N. Take s, t ∈ [0,1]. We denote by Sk(s, t) the simplex {(r1, . . . , rk) ∈ [0,1]k; s ≤ r1 ≤ · · · ≤ rk < t}, and
for simplicity we will write Sk for Sk(0,1). In contrast, whenever we deal with a discrete interval [s, t) ∩ Dn, we set
S ′

k(s, t) = {(r1, . . . , rk) ∈Dk
n; s ≤ r1 < · · · < rk < t}, and similarly, when s = 0 and t = 1 we simply write S ′

k .

Throughout the paper we work on a probability space (
,F ,P ). If X is a random variable, we denote by |X|Lp the
Lp-norm of X. The letter K stands for a constant which can change from line to line. The letter G denotes a generic a.s.
finite random variable. We denote by 
a� the integer part of a.

2. Discrete rough paths

In this section, we introduce the concept of discrete rough paths and discrete rough integrals, and recall some basic results
of the rough paths theory. Then we derive our main estimates on discrete rough integrals.

2.1. Definition and algebraic properties

This subsection is devoted to introduce the main rough paths notations which will be used in the sequel. The reader is
referred to [15,16] for an introduction to the rough path theory.

Let V be a finite dimensional vector space. We denote by Ck(V) the set of functions g : Sk → V such that gt1···tk = 0
whenever ti = ti+1 for i ≤ k − 1. Such a function will be called a (k − 1)-increment. We define the operator δ as follows:

δ : Ck(V) → Ck+1(V), (δg)t1···tk+1 =
k+1∑
i=1

(−1)igt1···t̂i ···tk+1
,

where t̂i means that this particular argument is omitted. For example, for f ∈ C1(V) and g ∈ C2(V) we have

δfst = ft − fs and δgsut = gst − gsu − gut . (2.1)

A fundamental property of δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V) to
Ck+2(V).

Let us now introduce the notion of rough path which will be used throughout the paper.

Definition 2.1. Consider ν ∈ (0,1), � ∈N such that � ≤ 
 1
ν
� and p > 1. Let x = (x1, . . . , x�) be a continuous path on S2

and with values in
⊕�

k=1(R
d)⊗k . For p > 1 set

∣∣xk
∣∣[s,t],p,ν

:= sup
(u,v)∈S2([s,t])

|xk
uv|1/k

Lp

|v − u|ν . (2.2)

For convenience, we denote |xk|p,ν := |xk|[0,1],p,ν . We define a ν-Hölder semi-norm as follows:

|x|p,ν := ∣∣x1
∣∣
p,ν

+ · · · + ∣∣x�
∣∣
p,ν

. (2.3)

We call x a (Lp, ν, �)-rough path (or simply a rough path) if the following properties holds true:

(1) the semi-norms |xk|[s,t],p,ν in (2.2) are finite. In this case we say that xk , k = 1, . . . , � are respectively in
Cν(S2, (R

m)⊗k).
(2) For all k ∈ {2, . . . , �}, xk satisfies the identity

δxk
sut =

k−1∑
j=1

x
k−j
su ⊗ x

j
ut . (2.4)

Remark 2.2. Our definition of rough path differs slightly from the usual one in several aspects:

(i) We don’t impose � = 
 1
ν
�, so that the order of our rough path might be lower than in the standard theory. In the

sequel we will introduce another parameter α ∈ (0,1) such that ν� + α > 1.
(ii) We consider a rough path with values in Lp , and measure its regularity by looking at increments of the form |xk

st |Lp

for (s, t) ∈ S2.
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(iii) The regular case ν = 1 could also be included in our considerations. We have refrained to do so since our limiting
processes will mostly be non regular stochastic processes.

In this paper, we are mostly concerned with discrete sums. Recall that we are considering discrete simplexes related to
uniform partitions of [0,1], which are denoted by S ′

2. We now introduce a general notion of discrete controlled process.

Definition 2.3. Fix α > 0 and let � be the smallest integer such that ν� + α > 1. Let V be some finite dimensional vector
space. Let y, y′, y′′, . . . , y(�−1) be continuous processes on [0,1] measurable with respect to F := σ(xt , t ∈ [0,1]) and
with y0 = y

(0)
0 = 0. For convenience, we will also write: y(0) = y, y(1) = y′, y(2) = y′′, . . . . Suppose that y takes values

in V , and y(k) takes values in L((Rd)⊗k,V) for all k = 1, . . . , � − 1. For (s, t) ∈ S2 and k = 0,1, . . . , � − 2 we denote

r
(k)
st = δy

(k)
st − y(k+1)

s x1
st − · · · − y(�−1)

s x�−k−1
st , (2.5)

and r
(�−1)
st = δy

(�−1)
st . We call (y(0), . . . , y(�−1)) a discrete V-valued rough path in Lp controlled by (x,α) if |r(k)

st |Lp ≤
K(t − s)(�−k)ν for all k = 0,1, . . . , � − 1. The discrete path (y(0), . . . , y(�−1)) is controlled by (x,α) almost surely if
|r(k)

st | ≤ Gy(t − s)(�−k)ν , k = 0, . . . , � − 1 for some finite random variable Gy .

Remark 2.4. In some of our computations below we will rephrase (2.5) for k = 0 as the following identity for (s, t) ∈ S2:

yt =
�−1∑
i=0

y(i)
s xi

st + r
(0)
st , (2.6)

where we take x0 ≡ 1 by convention. Note that while we call y a discrete controlled path, it is actually continuously
defined on [0,1].

We label a simple algebraic property relating the remainders r(k).

Lemma 2.5. Let y = (y(0), . . . , y(�−1)) be a discrete rough path in Lp controlled by (x,α) for all p > 1. Then the
following identity holds true for all (s, u, t) ∈ S ′

3:

δr
(0)
sut =

�−1∑
i=1

r(i)
su xi

ut . (2.7)

In particular, we have the following estimate for p > 1:∣∣δr(0)
sut

∣∣
Lp

≤ K(t − s)ν�. (2.8)

Proof. By the definition of r(0) in (2.5) and the expression (2.1) of δg for g ∈ C2(V), some elementary computations
yield:

δr
(0)
sut = −

�−1∑
i=1

y(i)
s xi

st +
�−1∑
i=1

y(i)
u xi

ut +
�−1∑
i=1

y(i)
s xi

su =
�−1∑
i=1

δy(i)
su xi

ut −
�−1∑
i=2

y(i)
s δxi

sut , (2.9)

where we have used the fact that δx1
sut = 0. Therefore, invoking (2.5) and (2.4) again we obtain

δr
(0)
sut =

�−1∑
i=1

r(i)
su xi

ut +
�−2∑
i=1

�−1∑
j=i+1

y
(j)
s x

j−i
su ⊗ xi

ut −
�−1∑
i=2

y(i)
s

i−1∑
j=1

x
i−j
su ⊗ x

j
ut

=
�−1∑
i=1

r(i)
su xi

ut .

This concludes the identity (2.7). The inequality (2.8) follows by taking Lp-norm on both sides of (2.7) and taking into

account the assumption that |xi
st |Lp ≤ K(t − s)νi and |r(i)

st |Lp ≤ K(t − s)(�−i)ν . �
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2.2. Discrete rough integrals

In this subsection, we derive upper-bound estimates for some “discrete” integrals defined as Riemann type sums. Namely,
let f and g be functions on S ′

2. For a generic partition Dn = {0 = t0 < · · · < tn = 1} of [0,1], we set

ε(t) = tk for t ∈ (tk−1, tk]. (2.10)

We define the discrete integral of f with respect to g as:

J t
s (f ;g) :=

∑
s≤tk<t

fε(s)tk ⊗ gtktk+1 , (s, t) ∈ S2, (2.11)

where we highlight the fact that f is a function of two variables. Similarly, if f is a path on the grid 0 = t0 < · · · < tn = 1,
then we define the discrete integral of f with respect to g as:

J t
s (f ;g) :=

∑
s≤tk<t

δfε(s)tk ⊗ gtktk+1 , (s, t) ∈ S2. (2.12)

Remark 2.6. Notice that in (2.10), ε(t) is the upper endpoint of the partition when t ∈ (tk−1, tk]. As a result, the first
term of the Riemann sum (2.12) is always vanishing. In addition, we also have J tk+1

tk
(f ;g) = 0 for all (tk, tk+1) ∈ S ′

2.

The next proposition gives a basic estimate for discrete integrals. In the following, V and V ′ stand for some finite
dimensional vector spaces.

Proposition 2.7. Let y = (y(0), . . . , y(�−1)) be a discrete rough path on [0,1], controlled by (x,α) in L2, and let h be a
1-increment defined on S ′

2 with values in V ′. Suppose that h satisfies

∣∣J t
s

(
xi;h)∣∣

L2
≤ K(t − s)α+νi , (2.13)

for i = 0,1, . . . , �−1 and (s, t) ∈ S ′
2, where we recall that � is an integer such that α +ν� > 1. Then we have the estimate

|J t
s

(
r(0);h)|L1 ≤ K(t − s)ν�+α, (2.14)

which is valid for (s, t) ∈ S ′
2.

Proof. In order to bound the increment Rst := J t
s (r(0);h), we first note that Rtktk+1 = 0, due to the fact that r

(0)
tk tk

= 0. Let
us now calculate δR: for (s, u, t) ∈ S ′

3, it is readily checked that

δRsut = J t
s

(
r(0);h) −J u

s

(
r(0);h) −J t

u

(
r(0);h)

=
∑

u≤tk<t

(
r
(0)
stk

− r
(0)
utk

)
htktk+1 .

Writing r
(0)
stk

− r
(0)
utk

= δr
(0)
sutk

+ r
(0)
su and invoking relation (2.7), we thus obtain

δRsut =
�−1∑
i=0

r(i)
su J t

u

(
xi;h)

. (2.15)

Now take the L1-norm on both sides of (2.15), take into account condition (2.13) and the hypothesis ν�+α > 1, and then
apply the discrete sewing Lemma 2.7 in [30]. This easily yields the desired estimate (2.14). �

3. Limit theorems

In this section, we first prove a general limit theorem for discrete integrals. Then we will handle two more specific
situations which arise often in applications.
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3.1. General limit theorem

Recall that the discrete integral J t
s (y;h) is defined in (2.11). In this subsection, we prove a general limit theorem for

J t
s (y;h).

Theorem 3.1. Let V and V ′ be two finite-dimensional vector spaces. Let (y(0), . . . , y(�−1)) be a discrete V-valued rough
path on [0,1] controlled by (x,α) in L2 or almost surely (see Definition 2.3), and hn be a 1-increment which satisfies
(2.13) uniformly in n. Consider the family J t

s (xi;hn) defined by (2.11), and suppose that as n → ∞:

(
J

(
xi;hn

)
, i ∈ I ′) stable f.d.d.−−−−−−→ (

ωi, i ∈ I ′), (3.1)

where (ωi, i ∈ I ′) is a 1-increment independent of x, and
stable f.d.d.−−−−−−→ stands for F -stable convergence of finite dimensional

distributions; see e.g. [1,26] for the definition of stable convergence. Assume that for i ∈ I ′′ we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m−1∑
j=0

y(i)
uj
J uj+1

uj

(
xi;hn

)∣∣∣∣∣ = 0 (3.2)

in probability, where {uj , j = 0,1, . . . ,m} is a uniform partition of [0,1]. Here I ′, I ′′ are disjoint subsets of I :=
{0,1, . . . , � − 1} such that I ′ ∪ I ′′ = I . Suppose further that if J (y(i);ωi) is given by (2.11), we have

(
J

(
y(i),ωi

)
, i ∈ I ′) stable f.d.d.−−−−−−→ (

vi, i ∈ I ′), (3.3)

where vi , i ∈ I ′ are V ⊗ V ′-valued 1-increment. Then the following convergence holds true as n → ∞:

J
(
y;hn

) stable f.d.d.−−−−−−→
∑
i∈I ′

vi. (3.4)

Remark 3.2. If we particularize our limit theorem to the level i = 0 of J (xi;hn), we just get that hn stable f.d.d.−−−−−−→ ω0 as
part of the standing assumption. In return, we obtain that v0 = ∫ 1

0 ys dω0
s in relation (3.4).

Remark 3.3. As the reader might have observed, Theorem 3.1 gives a general transfer principle from limit theorems for
unweighted sums to limit theorems for weighted sums, within a rough paths framework.

Remark 3.4. Condition (3.1) is more demanding than condition (3.3) in Theorem 3.1. Indeed, condition (3.3) is usually
reduced to the convergence of a Riemann sum to an Itô or Riemann type integral.

Proof of Theorem 3.1. For sake of conciseness we will only show the F -stable convergence of J 1
0 (y;hn) and for the

case I ′ = I . The stable convergence of the finite dimensional distributions of J (y;hn) in the general case I ′ ⊂ I can be
shown in a similar way. The proof is divided into several steps.

Step 1: A decomposition of J 1
0 (y;hn). Take two uniform partitions on [0,1]: tk = k/n for k,n ∈ N and uj = j/m for

j,m ∈ N, and m � n. Set:

Dj = {tk : uj+1 > tk ≥ uj } and ūj = ε(uj ), (3.5)

where the function ε has been introduced in (2.10). By definition (2.12) we have

J 1
0

(
y;hn

) =
n−1∑
k=0

δy0tk ⊗ hn
tktk+1

=
n−1∑
k=0

ytk ⊗ hn
tktk+1

,

where the second identity is due to the fact that we have assumed y0 = 0 in Definition 2.3. Next we decompose the
Riemann sum thanks to the sets Dj . We get

J 1
0

(
y;hn

) =
m−1∑
j=0

∑
tk∈Dj

ytkh
n
tktk+1

.
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Now we invoke relation (2.6) with s = ūj and t = tk whenever tk ∈ Dj . This yields:

J 1
0

(
y;hn

) = ϕ0 + · · · + ϕ�−1 + Rϕ, (3.6)

where

ϕi =
m−1∑
j=0

∑
tk∈Dj

y
(i)
ūj

xi
ūj tk

⊗ hn
tktk+1

=
m−1∑
j=0

y
(i)
ūj
J uj+1

uj

(
xi;hn

)
,

Rϕ =
m−1∑
j=0

∑
tk∈Dj

r
(0)
ūj tk

⊗ hn
tktk+1

=
m−1∑
j=0

J uj+1
uj

(
r(0);hn

)
,

(3.7)

and where we have set x0
st = 1 by convention. Let us further decompose ϕi as follows:

ϕi =
m−1∑
j=0

y(i)
uj
J uj+1

uj

(
xi;hn

) +
m−1∑
j=0

(
y

(i)
ūj

− y(i)
uj

)
J uj+1

uj

(
xi;hn

)

:= ϕi
1 + ϕi

2.

We now study the convergence of ϕi
1 and ϕi

2 separately.
Step 2: Convergences of ϕi

2. In this step we show that for i = 1, . . . , � − 1, the random variable ϕi
2 converges to zero

in probability as n → ∞. To this aim, it suffices to consider the case when:(
y(0), . . . , y(�−1)

)
is controlled by (x,α) in Lp, for an arbitrary p > 1. (3.8)

Indeed, for ε > 0, we can find a constant K such that P(Gy > K) ≤ ε (see Definition 2.3 for the definition of Gy ). Define
(ȳ(0), . . . , ȳ(�−1)) such that ȳi = yi on {Gy ≤ K} and ȳi ≡ 0 on {Gy > K}. Then (ȳ(0), . . . , ȳ(�−1)) satisfies the condition
(3.8), and we can write

P
(∣∣ϕi

2

∣∣ > ε
) = P

(∣∣ϕi
2

∣∣ > ε,Gy ≤ K
) + P

(∣∣ϕi
2

∣∣ > ε,Gy > K
)

≤ P
(∣∣ϕ̃i

2

∣∣ > ε
) + ε,

where ϕ̃i
2 = ϕi

2 when Gy ≤ K and ϕ̃i
2 = 0 when Gy > K . So if we can show that ϕ̃i

2 → 0 in probability, then the same
convergence holds for ϕi

2.
Assume now that (3.8) is true. In this case we have

∣∣ϕi
2

∣∣ ≤
m−1∑
j=0

∣∣y(i)
ūj

− y(i)
uj

∣∣ · ∣∣J uj+1
uj

(
xi;hn

)∣∣. (3.9)

Taking the L1-norm on both sides of the inequality (3.9), invoking the fact that hn satisfies relation (2.13) uniformly in n,
and using the continuity of y(i) given by (3.8), we easily obtain the following convergence in probability:

lim
n→∞

∣∣ϕi
2

∣∣ → 0.

Step 3: Convergences of ϕi
1. The convergences of

∑�−1
i=0 ϕi

1 follows immediately from the assumptions of the theorem.
Indeed, fixing m and sending n to ∞, our assumption (3.1) directly yields the stable convergence:

�−1∑
i=0

ϕi
1 →

�−1∑
i=0

yi
uj

ωi
uj uj+1

. (3.10)

We now send m → ∞ in (3.10) and recall the convergence (3.3). This yields the stable convergence:

�−1∑
i=0

ϕi
1 →

�−1∑
i=0

vi,

as n → ∞ and m → ∞.
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Step 4: Convergences of the remainder term Rϕ . Going back to equation (3.6) and summarizing our computations, our
claim (3.4) is now reduced to show that we have

lim
m→∞ lim sup

n→∞
∣∣Rϕ

∣∣ = 0, (3.11)

in probability. Moreover, as in Step 2 it suffices to show the convergence (3.11) under condition (3.8). Eventually, applying
Proposition 2.7 to (3.7) we obtain:

∣∣Rϕ
∣∣
L1

≤ K

m−1∑
j=0

m−ν�−α ≤ Km1−ν�−α. (3.12)

The convergence (3.11) then follows from (3.12) and the fact that ν� + α > 1. �

Theorem 3.1 allows us to distinguish two predominant cases: (i) A usual asymptotic regime, for which only one level
vi remains. (ii) A critical case, for which more than one level survive as n goes to ∞.

The following definition captures those different behaviors.

Definition 3.5. We will call a limit theorem single if I ′ in Theorem 3.1 has only one element. Similarly, a limit theorem
is called double when I ′ has two elements.

Remark 3.6. If the convergences in (3.1) and (3.3) hold true in probability, then in a similar way one can show that
J t

s (y(0);hn) converges to
∑

i∈I ′ vi
st in probability.

Remark 3.7. In the case ν > 1
2 and α ≥ 1

2 , we have � = 1 and I = {0}. Therefore, conditions (2.13), (3.1), (3.2) are

reduced to |hn|L2 ≤ K(t − s)α and hn stable f.d.d.−−−−−−→ ω. If hn → ω in Lp for all p ≥ 1, then J 1
0 (y;hn) also converges in Lq

for q ≥ 1. This situation allows to recover the results in [9] and [25, Proposition 7.1]. A more specific statement will be
given in Proposition 4.9 below.

3.2. Single limit theorem I

An important case in Theorem 3.1 is when hn converges in distribution to a Brownian motion and the discrete integral
J 1

0 (y(0);hn) converges to the Wiener integral
∫ 1

0 yt ⊗ dWt . In this subsection we investigate this type of limit theorems.

Theorem 3.8. Let x be a (Lp, ν, �)-rough path for p = 4, ν ∈ (0,1) and � such that ν�+ 1
2 > 1. Let y = (y(0), . . . , y(�−1))

be a process on [0,1] controlled by (x, 1
2 ) in L2 or almost surely (see Definition 2.3), and assume that hn satisfies the

inequality (2.13) uniformly in n. Suppose that the following assumptions are fulfilled:

(i) We have the convergence hn stable, f.d.d.−−−−−−→ W as n → ∞, where W is a standard Brownian motion independent of x.
(ii) For any sequence of partitions 0 ≤ s0 < s1 < · · · < sm ≤ 1 on [0,1] such that |sj+1 − sj | ≤ 1/m, we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m−1∑
j=0

J sj+1
sj

(
xi;hn

)∣∣∣∣∣ = 0 (3.13)

in probability for i = 1, . . . , � − 1.

Then we have the following convergence in distribution for the process y:

J
(
y;hn

) stable f.d.d.−−−−−−→ v, (3.14)

where the integral vst := ∫ t

s
yu ⊗ dWu has to be understood as a conditional Wiener integral.

Remark 3.9. A classical result giving a convergence result similar to our Theorem 3.8 can be found in the seminal paper
[27]. In this reference the authors consider convergences for general stochastic integrals of predictable processes with
respect to a sequence of semi-martingales. Notice that we could certainly apply our methods to this context provided
a rough path above the semi-martingale is given. However, the class of controlled paths is not as general as the class
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of arbitrary predictable processes. We shall thus not delve deeper into this direction. Also notice that the references
[19,33,36] deal with the fractional Brownian case (as already mentioned in the introduction). Our result generalizes the
considerations therein.

Remark 3.10. Theorem 3.8 can be generalized to some other interesting situations. For example, suppose that

hn stable f.d.d.−−−−−−→ ω, where ω is a continuous Gaussian process independent of x. Let H be the Hilbert space correspond-
ing to ω and assume that Cγ ⊂ H for γ < ν. We assume that for any f ∈ Cγ , we have the following convergences for a
generic partition 0 ≤ s0 < · · · < sm ≤ 1:

lim
m→∞

m∑
j,j ′=0

〈δfsj ,· , δfsj ′ ,·〉H = 0 and lim
m→∞

m−1∑
j=0

ftj 1[tj ,tj+1) = f (3.15)

where the second limit is a limit in H. Then following the lines of the proof of Theorem 3.8 one can show that

J 1
0

(
y;hn

) d−→
∫ 1

0
y ⊗ dω.

Proof of Theorem 3.8. Take I ′ = {0} and I ′′ = {1, . . . , �}. The theorem will be proved by applying Theorem 3.1 and
verifying the convergences (3.1), (3.2) and (3.3). The proof is divided into several steps.

Step 1: We will show by induction that

J t
s

(
xi;hn

) stable f.d.d.−−−−−−−→ ωi, i = 0,1, . . . , � − 1, (3.16)

where we denote

ωi
st ≡

∫ t

s

xi
su ⊗ dWu.

Note that the convergence (3.16) is equivalent to that for any z ∈ F :

(
z,J t

s

(
xi;hn

)) f.d.d.−−−→ (
z,ωi

)
, i = 0,1, . . . , � − 1,

a fact that we will use several times in our proof.
Since hn → W in f.d.d . sense, convergence (3.16) holds true when i = 0. Now assume that the convergence holds for

i = 0,1, . . . , τ − 1 with τ < �. Take m � n and uj = j/m, and set Dj = {tk : uj+1 > tk ≥ uj } as in (3.5). Take j1 such
that s ∈ Dj1 and j2 such that t ∈ Dj2 . Then a small variant of (2.4) shows that for all tk ∈ Dj ,

xτ
ε(s)tk

= δxτ
ε(s),ūj ∨ε(s),tk

+ xτ
ε(s),ūj ∨ε(s) + xτ

ūj ∨ε(s),tk
=

τ∑
l=0

xτ−l
ε(s),ūj ∨ε(s) ⊗ xl

ūj ∨ε(s),tk
,

where recall that the function ε is defined in (2.10) and ūj is given by (3.5). Hence it is readily checked that:

J t
s

(
xτ ;hn

) =
τ∑

l=0

j2∑
j=j1

xτ−l
ε(s),ūj ∨ε(s) ⊗J uj+1∧t

uj ∨s

(
xl;hn

) :=
τ∑

l=0

Al(s, t). (3.17)

Let us change the name of our variables in order to match the notation of our theorem and use relation (3.13). Namely, set
s0 = s, s1 = uj1+1, . . . , sj2−j1 = uj2, sj2−j1+1 = t . Then it is readily checked that Aτ (s, t) = ∑j2−j1

j=0 J sj+1
sj (xτ ;hn). Thus

invoking assumption (3.13), we directly have the following convergence in probability:

lim
m→∞ lim sup

n→∞
∣∣Aτ (s, t)

∣∣ = 0. (3.18)

In order to study the convergence of Al for l < τ , we first check that we can replace xτ−l
ε(s),ūj ∨ε(s) by xτ−l

s,uj ∨s . Indeed, we
have the identity:

xτ−l
ε(s),ūj ∨ε(s) − xτ−l

s,uj ∨s = δxτ−l
s,uj ∨s,ūj ∨ε(s) − δxτ−l

s,ε(s),ūj∨ε(s) + xτ−l
uj ∨s,ūj ∨ε(s) − xτ−l

s,ε(s).
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Therefore, if we set:

Ãl(s, t) :=
j2∑

j=j1

xτ−l
s,uj ∨s ⊗J uj+1∧t

uj ∨s

(
xl;hn

) =
j2−j1∑
j=0

xτ−l
ssj

⊗J sj+1
sj

(
xl;hn

)
,

then it is readily checked that:

lim
m→∞ lim sup

n→∞
∣∣Al(s, t) − Ãl(s, t)

∣∣ = 0 in probability. (3.19)

Let us now check the convergence for Ãl . Sending n → ∞ and applying the induction assumption (3.16) with l < τ , we
get

(z, Ãl)
f.d.d.−−−→ (z, Āl), (3.20)

where

Āl(s, t) :=
j2−j1∑
j=0

xτ−l
ssj

⊗
∫ sj+1

sj

xl
sj u ⊗ dWu.

We now separate the analysis of Ãl in two cases.
(a) For 0 < l < τ the square of the L2-norm of the right-hand side of (3.20) can be bounded thanks to Itô’s isometry

by:

KE

[
j2−j1∑
j=0

∣∣xτ−l
ssj

∣∣2
∫ sj+1

sj

∣∣xl
sj u

∣∣2
du

]
, (3.21)

which by property (2.2) applied to p = 4 and l ≥ 1 is less than

K

m−1∑
j=0

(sj+1 − sj )
2ν+1.

Owing to the fact that 2ν + 1 > 1, it is now trivially seen that as m → ∞, the right-hand side of (3.20) converges to zero.
Thus we get:

lim
m→∞ lim sup

n→∞
∣∣Ãl(s, t)

∣∣ = 0 (3.22)

in probability. In summary of (3.19) and (3.22), we have the convergence

lim
m→∞ lim sup

n→∞
∣∣Al(s, t)

∣∣ = 0, (3.23)

in probability for 0 < l < τ .
(b) When l = 0, the convergence (3.20) implies that, as n → ∞ and m → ∞ we obtain

(z, Ã0)
f.d.d.−−−→ (

z,ωτ
)
. (3.24)

Taking into account (3.19), the convergence (3.24) implies that

(z,A0)
f.d.d.−−−→ (

z,ωτ
)
. (3.25)

Putting together (a), (b) and the case l = τ , we can now propagate our induction hypothesis. Indeed, applying (3.18),
(3.23) and (3.25) to (3.17), we obtain

(
z,J

(
xτ ;hn

)) f.d.d.−−→ (
z,ωτ

)
(3.26)
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for ωτ
st = ∫ t

s
xτ
sr ⊗ dWr . This completes the proof of (3.16) for i = 0, . . . , � − 1. Note that this shows that condition (3.1)

in Theorem 3.1 holds true.
Step 2: In this step, we consider the convergence of J 1

0 (y(i);ωi), which will yield condition (3.2) in Theorem 3.1.
We first show that the discrete integral J 1

0 (y(i);ωi), � > i > 0 converges to zero in probability. As in the proof of
Theorem 3.1, by a truncation argument, it suffices to show the convergence when (y(0), . . . , y(�−1)) is controlled by
(x, 1

2 ) in Lp for p large enough. In this case, similarly to (3.21), we have

∣∣J 1
0

(
y(i);ωi

)∣∣2
L2

≤ KE

[
m−1∑
j=0

∣∣y(i)
uj

∣∣2
∫ uj+1

uj

∣∣xi
uj u

∣∣2
du

]

≤ K

m−1∑
j=0

m−2ν−1. (3.27)

Therefore, we have J 1
0 (y(i);ωi) → 0 in probability. Combining this convergence with (3.26) for i = 1, . . . , � − 1, we

obtain the convergence (3.2).
On the other hand, for the quantity J 1

0 (y(i);ωi) with i = 0, thanks to the convergences of Riemann sums related to
Wiener integrals the following convergence holds in L2:

J 1
0

(
y;ω0) = J 1

0 (y;W) →
∫ 1

0
yt ⊗ dWt .

So the condtion (3.3) holds true with v0 = ∫ 1
0 yt ⊗ dWt .

Summarizing our consideration, we can now apply Theorem 3.1 to J 1
0 (y;hn) and we obtain the convergence

(3.14). �

3.3. Single limit theorem II

In Section 3.2 we have investigated possible limit theorems under the assumption hn → W , which implies in particular
J t

s (x0;hn) → δWst . In the current section we analyze situations for which the convergence of J t
s (xi;hn) is assumed for

a more general i. Our results are summarized in the following theorem.

Theorem 3.11. Let y = (y(0), . . . , y(�−1)) be a V-valued rough path on [0,1] controlled by (x,α) in L2 or almost surely,
and consider hn satisfying the inequality (2.13). Recall that the increment J (y;hn) = {J t

s (y;hn); (s, t) ∈ S2} is defined
by (2.11). Suppose that x and hn verify the following assumptions:

(i) There is some τ ∈ I such that J t
s (xτ ;hn) → (t − s)� in probability for all (s, t) ∈ S2, where � ∈ (Rd)⊗τ ⊗ V ′ is a

constant matrix, and J t
s (xi;hn) → 0 in probability for all i < τ and (s, t) ∈ S2.

(ii) For any sequence of partitions 0 ≤ s0 < s1 < · · · < sm ≤ 1 on [0,1] such that |sj+1 − sj | ≤ 1/m, we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m−1∑
j=0

J sj+1
sj

(
xi;hn

)∣∣∣∣∣ = 0, (3.28)

in probability for i = τ + 1, . . . , � − 1.

Then the following convergence holds true for y:

lim
n→∞J

(
y;hn

) −→
(∫

y
(τ)
t dt

)
⊗ � (3.29)

in probability.

Proof. As for Theorem 3.8, we will prove our claim thanks to Theorem 3.1, and we are reduced to check (3.1), (3.2), and
(3.3). The difference with Theorem 3.8 is that we now consider I ′ = {τ } and I ′′ = I \ {τ }. We divide the proof in several
steps.

Step 1: Case i < τ . In this first situation it is immediate from our assumptions that (3.2) holds true for i < τ .



Discrete rough path 1743

Step 2: Case i ≥ τ . Similarly to the proof of Theorem 3.8 (Step 1), we prove by induction the following convergence
in probability for all � > i ≥ τ :

J
(
xi;hn

) −→ ωi where ωi
st =

(∫ t

s

xi−τ
su du

)
⊗ �. (3.30)

To this aim, notice that (3.30) is true for i = τ by assumption. Next assume that (3.30) holds for i = τ, . . . , τ ′ − 1. We
decompose the discrete interval �s, t � into the subintervals Dj again (see (3.5)), with m � n and tk = k

n
, uj = j

m
. Let

s0, . . . , sj2−j1+1 be as in Theorem 3.8 (Step 1). Then an approximation procedure similar to (3.19) allows to replace each

xτ ′−l
ε(s)tk

by an expression of the form:

τ ′∑
l=0

xτ−l
ssj

⊗ xl
sj tk

,

in the sum defining J t
s (xτ ′ ;hn). Therefore, we get an equivalent of (3.19) in our context:

lim
m→∞ lim sup

n→∞

∣∣∣∣∣J t
s

(
xτ ′ ;hn

) −
τ ′∑

l=0

Ãl

∣∣∣∣∣ = 0 (3.31)

with

Ãl =
j2−j1∑
j=0

xτ ′−l
ssj

⊗J sj+1
sj

(
xl;hn

)
.

We now handle each Ãl . For l < τ , each J sj+1
sj (xl;hn) converges to 0 in probability as n → ∞ for all j , according

to our assumption (i). Hence Ãl → 0 in probability as n → ∞ and m → ∞. When τ < l < τ ′, we proceed along the
same lines as for (3.20) and (3.21). Namely, we invoke the fact that limn→∞ J sj+1

sj (xl;hn) = (
∫ sj+1
sj

xl−τ
sj u du) ⊗ � for

each j1 ≤ j ≤ j2 and then use the extra regularity given by xl
sj u on each [sj , sj+1]. This yields the following limit in

probability:

lim
m→∞ lim sup

n→∞
|Ãl | → 0. (3.32)

Let now l = τ ′. Then

Ãτ ′ =
j2−j1∑
j=0

J sj+1
sj

(
xτ ′ ;hn

)
,

and it is immediate from identity (3.28) that (3.32) holds true for l = τ ′. In summary, we have proved that for all l ∈
{0, . . . , τ ′} \ {τ } we have:

lim
m→∞ lim sup

n→∞
|Ãl | = 0 (3.33)

in probability.
In the case l = τ , by sending n → ∞, our assumption (i) allows to write:

Ãτ −→
j2−j1∑
j=0

xτ ′−τ
ssj

(sj+1 − sj ) ⊗ �, (3.34)

in probability, and thus as n → ∞ and m → ∞, we obtain

Ãτ −→
(∫ t

s

xτ ′−τ
su du

)
⊗ � (3.35)
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in probability. Combining (3.33) and (3.35) and taking into account relation (3.31), we end up with:

J t
s

(
xτ ′ ;hn

) −→
(∫ t

s

xτ ′−τ
su du

)
⊗ �

in probability. This completes our induction and the proof of (3.30).
Step 3: Convergence of J 1

0 (y(i);ωi) In a similar way as in the proof of Theorem 3.8 (see relation (3.27)), we can show
the convergence

J 1
0

(
y(i);ωi

) −→ 0,

in probability for i �= τ , so the convergence (3.2) holds true. On the other hand, it is clear from classical integration theory
that:

J 1
0

(
y(τ);ωτ

) →
(∫ 1

0
y(τ)
u du

)
⊗ �,

which implies the convergence (3.3). Summarizing, we have proved (3.1)–(3.3) and the convergence (3.29) follows im-
mediately from Theorem 3.1. �

Remark 3.12. As in Remark 3.10, one can generalize Theorem 3.11 to some other interesting cases. For example,

suppose that J (xτ ;hn)
stable f.d.d.−−−−−−→ ω, where ω is a continuous Gaussian process independent of x and with values in

(Rd)⊗τ ⊗ V ′. As before, let H be the Hilbert space corresponding to ω and suppose that Cγ ⊂ H for all γ < ν. Suppose
that (3.15) holds true for any f ∈ Cγ . Then one can show in a similar way as in Theorem 3.11 that

J 1
0

(
y;hn

) d−→
∫ 1

0
y(τ) dω.

3.4. Double limit theorem

In this subsection, we consider the double limit theorem case, which has been introduced in Definition 3.5. This usually
corresponds to a transition in terms of roughness for the underlying noise x.

Theorem 3.13. Let y = (y(0), . . . , y(�−1)) be a rough path on [0,1] controlled by (x,α) in L2 or almost surely, and
suppose that hn satisfies the inequality (2.13) uniformly in n. Furthermore, we assume that x and hn fulfill the following
conditions:

(i) We have the convergence hn stable f.d.d.−−−−−−→ W as n → ∞, where W is a standard Brownian motion independent of x.
(ii) There exists a constant matrix � ∈ (Rd)⊗τ ⊗ V ′ and some τ : 0 < τ < � such that for any sequence of partitions

0 ≤ s0 < s1 < · · · < sm ≤ 1 on [0,1] such that |sj+1 − sj | ≤ 1/m and s0 = s, sm = t , we have

lim
m→∞ lim

n→∞

m−1∑
j=0

J sj+1
sj

(
xτ ;hn

) = (t − s)�, (3.36)

where the limit has to be understood as a limit in probability for all (s, t) ∈ S2 and where J sj+1
sj (xi;hn) is defined

by (2.11).
(iii) For any i ∈ {1, . . . , � − 1} \ {τ } and any sequence of partitions 0 ≤ s0 < s1 < · · · < sm ≤ 1 in (ii) above, we have the

following convergence in probability:

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m−1∑
j=0

J sj+1
sj

(
xi;hn

)∣∣∣∣∣ = 0. (3.37)

Then the following stable f.d.d. convergence holds true for J (y;hn):

J
(
y;hn

) →
∫

yt ⊗ dWt +
∫

δy
(τ)
0t dt ⊗ �.
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Proof. As in Theorem 3.8 and Theorem 3.11, we apply Theorem 3.1 and we are reduced to show relations (3.1), (3.2),
and (3.3). In the current situation, we consider I ′ = {0, τ } and I ′′ = I \ I ′. We divide again the proof in several steps.

Step 1: Case i < τ . As in the proof of Theorem 3.8, by induction we can show that for i < τ we have the convergence

J t
s

(
xi;hn

) d−→ ωi
st ≡

∫ t

s

xi
su ⊗ dWu. (3.38)

Step 2: Case i = τ . An approximation argument similar to (3.19) and (3.31) yields:

lim
m→∞ lim sup

n→∞

∣∣∣∣∣J t
s

(
xi;hn

) −
i∑

l=0

Ãl,i

∣∣∣∣∣ = 0 (3.39)

with

Ãl,i =
j2−j1∑
j=0

xi−l
ssj

⊗J sj+1
sj

(
xl;hn

)
.

In the same way as in (3.22), and taking into account the convergence (3.38), for 0 < l < τ we have the convergence

lim
m→∞ lim

n→∞|Ãl,τ | = 0

in probability. On the other hand, in the same way as for relation (3.24), the following limit holds true for l = 0:

lim
m→∞ lim

n→∞ Ã0,τ
(d)=

∫ t

s

xτ
su ⊗ dWu.

In addition, owing to assumption (3.36) we have

lim
m→∞ lim

n→∞ Ãτ,τ = (t − s)�,

where the limit holds in probability. In summary of the convergences of Ãl,τ , l = 0, . . . , τ and taking into account (3.39),
we obtain

J t
s

(
xτ ;hn

) d−→
∫ t

s

xτ
su ⊗ dWu + (t − s)�.

Notice that we can add up limits in distribution here, since one of the limits is deterministic.
Step 3: Case i > τ . In the following, we show by induction the convergence

J t
s

(
xi;hn

) d−→ ωi
st ≡

∫ t

s

xi
su ⊗ dWu +

(∫ t

s

xi−τ
su du

)
⊗ �, (3.40)

for � > i ≥ τ . Indeed, we have shown that convergence (3.40) holds when i = τ . Now suppose that the convergence holds
for i = τ, . . . , τ ′ − 1, and we wish to propagate the induction assumption. Thanks to the induction assumption and in a
similar way as in (3.22) we can show that for l ∈ {1, . . . , τ ′ − 1} \ {τ } we have

lim
m→∞ lim

n→∞|Ãl,τ ′ | = 0, (3.41)

where the limit is understood in probability. Moreover, invoking assumption (3.37) we also have the following limit in
probability:

lim
m→∞ lim sup

n→∞
|Ãτ ′,τ ′ | = 0. (3.42)

On the other hand, we let the patient reader check that

Ãτ,τ ′ −
(∫ t

s

xi−τ
su du

)
⊗ � → 0 (3.43)
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in probability, similarly to what has been done in (3.34) and (3.35). Taking into account (3.41), (3.42), (3.43) and (3.39),
it is easily checked that (3.40) for i = τ ′ is reduced to the following convergence:

Ã0,τ ′ +
(∫ t

s

xτ ′−τ
su du

)
⊗ �

d−→
∫ t

s

xτ ′
u dWu +

(∫ t

s

xτ ′−τ
su du

)
⊗ �, (3.44)

as n → ∞ and then m → ∞. In order to prove (3.44), we first fix m and let n go to ∞. Then, owing to the fact that

(x,hn)
f.d.d.−−→ (x,W), we get that

lim
n→∞ Ã0,τ ′ +

(∫ t

s

xτ ′−τ
su du

)
⊗ �

(d)=
m−1∑
j=0

xτ ′
ssj

⊗ δWsj sj+1 +
(∫ t

s

xτ ′−τ
su du

)
⊗ �.

Then, conditioning on x and considering limits of Riemann sums for Wiener integrals, we end up with:

lim
m→∞

m−1∑
j=0

xτ ′
ssj

⊗ δWsj sj+1 +
(∫ t

s

xτ ′−τ
su du

)
⊗ �

L2=
∫ t

s

xτ ′
su dWu +

(∫ t

s

xτ ′−τ
su du

)
⊗ �,

from which (3.44), and thus (3.40) for i = τ ′ are easily deduced. Therefore, we can conclude by induction that the
convergence (3.40) holds for all i = τ, . . . , � − 1.

Step 4: Proof of (3.2) and (3.3). Recall that ωi is defined by relation (3.38) when i < τ and by (3.40) when i ≥ τ . For
i = 1, . . . , � − 1, i �= 0 and i �= τ , as in the proof of Theorem 3.8 (see relation (3.27)) we can show that (3.2) holds. On
the other hand, it is easy to show by classical integration arguments that

J 1
0

(
y(τ);ωτ

) →
(∫ 1

0
y(τ)
u du

)
⊗ � (3.45)

in probability and

J 1
0

(
y;ω0) −→

∫ 1

0
yu ⊗ dWu (3.46)

in probability, by convergence of Riemann sums for Wiener integrals. Putting together (3.45) and (3.46) and invoking the
same arguments as in Step 3, we can conclude that (3.3) is satisfied.

In conclusion, we have checked conditions (3.1)–(3.3), and our result follows directly from Theorem 3.1. �

4. Breuer–Major theorem

In this section, we consider generalizations of Breuer–Major’s theorem [5]. Notice that recent contributions (see e.g.
[33,34,36,38]) to this area involving weighted sums of stationary sequences mostly consider sequences of functionals of
one-dimensional fractional Brownian motions (fBm). This is why we also stick to the one-dimensional fBm case, though
multi-dimensional studies for more general Gaussian processes do not seem out of reach in our framework, given that
we have the stable convergence of the corresponding unweighted random sum. Also observe that the aforementioned
references focus on sequences in a fixed chaos or in a finite sum of chaos. In contrast, we will be able to handle general
sequences in L2 with respect to a Gaussian measure.

4.1. Weighted Breuer–Major theorem I

In this subsection, we consider the weighted type Breuer–Major theorem in the context of our single limit Theorem 3.8.
Let us first introduce some additional notation. Let dγ (t) = (2π)−1/2e−t2/2 dt be the standard Gaussian measure on

the real line, and let f ∈ L2(γ ) be such that
∫
R

f (t) dγ (t) = 0. It is well-known that the function f can be expanded into
a series of Hermite polynomials as follows:

f (t) =
∞∑

q=d

aqHq(t),
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where d ≥ 1 is some integer and Hq(t) = (−1)qe
t2
2 dq

dtq
e− t2

2 is the Hermite polynomial of order q . If ad �= 0, then d is
called the Hermite rank of the function f . Note that since f ∈ L2(γ ), we have

∑∞
q=d |aq |2q! < ∞.

Our underlying process X is a one-dimensional Gaussian sequence. For such a process the basic tools to measure
dependence are based on correlation functions. Throughout this subsection, we assume that the following hypothesis on
correlations holds true.

Hypothesis 4.1. Let Xk , k ∈ Z be a centered stationary Gaussian sequence such that Xk has unit variance. Denote
ρ(k) = E(X0Xk). We suppose that

∑
k∈Z |ρ(k)|d < ∞ for some d ≥ 1.

For sake of conciseness we will not recall the basic notions of Gaussian analysis which will be used in this section.
The interested reader is referred to [37] for further details.

We now recall a classical version of Breuer–Major’s theorem.

Theorem 4.2. Consider f ∈ L2(γ ) with rank d ≥ 1. Let {Xk, k ∈ Z} be a centered stationary Gaussian sequence satis-
fying Hypothesis 4.1 for d . For n ≥ 1, let 0 = t0 < · · · < tn = 1 be the uniform partition of [0,1] defined in Section 1. We
set hn

st = ∑
s≤tk<t f (Xk) for all (s, t) ∈ S2. Then the following central limit theorem holds true:

hn/
√

n
f.d.d.−−→ σW as n → ∞,

where the variance σ 2 ∈ [0,∞) is defined by:

σ 2 =
∞∑

q=d

q!a2
q

∑
k∈Z

ρ(k)q . (4.1)

In this subsection we specialize Theorem 4.2 to a situation where Xk = nνδxtktk+1 , where x is a fBm with Hurst
parameter ν. In this context we are interested in the following questions: (1) Do we have the convergence of the weighted
sum

1√
n

n−1∑
k=0

ykf (Xk) as n → ∞, (4.2)

for a general weight yk? (2) Does the central limit theorem for (4.2) still hold in general? We will give a complete answer
to these two questions when the weight process y is a controlled process as introduced in Definition 2.3.

Before we start our discussions, let us recall some basic facts about fBm. (i) If x is a one-dimensional fBm with Hurst
parameter ν, then x is almost surely γ -Hölder continuous for all γ < ν. (ii) For a fBm x, the covariance function ρ

alluded to in Hypothesis 4.1 is defined by

ρ(k) = E(δx01δxk,k+1). (4.3)

Then, whenever ν < 1
2 , we have

∑
k∈Z ρ(k) = 0.

We also label the following notation for further use.

Notation 4.3. Let x be a one-dimensional fBm with Hurst parameter ν on the probability space (
,P,F). We consider
x as a (Lp, ν, �) rough path according to Definition 2.1, where p is any real number in [1,∞) and � is the smallest integer
satisfying ν� + 1

2 > 1. In addition, we will choose xi
st = 1

i! (δxst )
i for all (s, t) ∈ S2 and i = 1, . . . , � for � ∈N.

Let us recall the following identity of multiple Wiener integrals. The reader is referred to e.g. [24,37,40] for more
details:

Lemma 4.4. Let f ∈ L2([0,1]p) and g ∈ L2([0,1]q) be symmetric functions. Then we have the identity

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (f ⊗r g), (4.4)

where Ip(f ) is the pth multiple Wiener integral of f , and
(
p
r

) = p!
r!(p−r)! .
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Let H be the completion of the space of indicator functions with respect to the inner product 〈1[u,v],1[s,t]〉H =
E(δxuvδxst ). Let 0 = t0 < · · · < tn = 1 be the uniform partition of [0,1] alluded to the above and 0 ≤ s0 < · · · < sm ≤ 1
be another partition of [0,1] with m � n. In the following, we take � such that � − 1 ≤ 1

2ν
< � (or equivalently � is the

smallest integer such that ν� + α > 1 with α = 1
2 ). We set

h
n,q
st =

∑
s≤tk<t

Hq

(
nνδxtk,tk+1

)
and ζ

i,q
j = J sj+1

sj

(
xi;hn,q

)
(4.5)

for k = 0, . . . , n − 1, j = 0, . . . ,m − 1, i = 0, . . . , � − 1 and q ∈ N, where J sj+1
sj (xi;hn,q) is given by (2.11). We denote

by ϑ(q, q ′, i) the following quantity

ϑ
(
q, q ′, i

) := E

(
m−1∑

j,j ′=0

ζ
i,q
j ζ

i,q ′
j ′

)
. (4.6)

We will need the following auxiliary result.

Lemma 4.5. Let x be a one-dimensional fBm on [0,1] with Hurst parameter ν ≤ 1
2 . Take i = 1, . . . , � − 1, where we

recall that � satisfies � − 1 ≤ 1
2ν

< �. Then for q ′, q ≥ � the following estimate holds true:

(i) When |q ′ − q| ≤ 2i, we have

ϑ
(
q, q ′, i

) ≤ K
(
n1−2ν + nm−2iν + n1−ν

) q∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
, (4.7)

where ϑ(q, q ′, i) is defined by (4.6) and K is a positive universal constant.
(ii) When |q ′ − q| > 2i, we have

ϑ
(
q, q ′, i

) = 0. (4.8)

(iii) When |q − q ′| ≤ 2i, the following inequality holds true for all (s, t) ∈ S2:

E
(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′)) ≤ Kn(t − s)2iν+1

q∧q ′∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
. (4.9)

(iv) When |q − q ′| > 2i, for all (s, t) ∈ S2 we have:

E
(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′)) = 0.

Remark 4.6. Notice that our assumption imply in particular that q ∧ q ′ > 1
2ν

. This is also the condition on the Hermite
rank of f which will feature in Theorem 4.7 below.

Proof of Lemma 4.5. Step 1: Without loss of generality let us assume that q ′ ≥ q . By the definition of ζ
i,q
j we can write

ϑ
(
q, q ′, i

) =
m−1∑

j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

a
(
j, j ′, k, k′), (4.10)

where, recalling that ε(sj ) is defined by (2.11), we have

a
(
j, j ′, k, k′) = E

(
xi
ε(sj )tk

xi
ε(sj ′ )tk′ Hq

(
nνδxtk,tk+1

)
Hq ′

(
nνδxtk′ ,tk′+1

))
.

Now set βk = nν1[tk,tk+1]. Recalling that Hq(nνδxtktk+1) = Iq(β⊗q) and invoking identity (4.4), we easily obtain:

a
(
j, j ′, k, k′) =

q∑
r=0

r!
(

q

r

)(
q ′
r

)
E

(
xi
ε(sj )tk

xi
ε(sj ′ )tk′ Iq+q ′−2r

(
β

⊗q−r
k ⊗ β

⊗q ′−r

k′
))〈βk,βk′ 〉rH.
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Now observe that 〈βk,βk′ 〉H = ρ(k − k′), where the covariance function ρ is defined by (4.3). Therefore, owing to an
application of integration by parts, we end up with the following identity:

a
(
j, j ′, k, k′) =

q∑
r=0

r!
(

q

r

)(
q ′
r

)
b(r)ρ

(
k − k′)r

, (4.11)

where b(r) is the coefficient defined by:

b(r) = E
〈
Dq+q ′−2r

(
xi
ε(sj )tk

xi
ε(sj ′ )tk′

)
, β

⊗(q−r)
k ⊗ β

⊗(q ′−r)

k′
〉
H⊗(q+q′−2r) . (4.12)

Step 2: Consider q ≥ �. Due to the fact that xi belongs to the sum of the first i chaos, when q ′ − q > 2i, it is easy to see
that

Dq+q ′−2r
(
xi
ε(sj )tk

xi
ε(sj ′ )tk′

) = 0 (4.13)

for all r = 0, . . . , q . Taking into account (4.11), this implies that whenever q ′ − q > 2i we have

a
(
j, j ′, k, k′) = 0, (4.14)

and thus the estimate in (4.8) holds.
In the following, we assume that 0 ≤ q ′ − q ≤ 2i and we focus on inequality (4.7). Note first that since q ′ ≥ q and

q ≥ �, we have 1
2 (q + q ′) − i ≥ q − (� − 1) > 0.

We now recall that b(r) is defined by (4.12), and we separate the estimates on b(r) in several cases:

(i) Case 0 ≤ r < 1
2 (q +q ′)− i. In this case, going back to the definition (4.12), it is readily checked that we differentiate

the product xi
ε(sj )tk

xi
ε(sj ′ )tk′ more than 2i times, and hence b(r) = 0.

(ii) Case 1
2 (q + q ′) − i ≤ r ≤ q − 1. In this case we still have q + q ′ − 2r > 0. Then we start from relation (4.12) again,

taking into account the order of differentiation, and resorting to the relations

E
(∣∣xl

ε(sj )tk

∣∣p)1/p ≤ Km−lν

for any positive integer l, and

〈βk,1[a,b]〉H = n−ν〈1[k,k+1],1[na,nb]〉H, and
∣∣〈1[k,k+1],1[na,nb]〉H

∣∣ ≤ 1, (4.15)

which are valid for all k ≤ n and (a, b) ∈ S ′
2 whenever ν ≤ 1

2 . This yields

∣∣b(r)
∣∣ ≤ Kn−(q+q ′−2r)νm−(2i−(q+q ′−2r))ν ≤ Kn−(q+q ′−2r)ν ≤ Kn−2ν . (4.16)

(iii) Case r = q . If q < q ′, similarly to case (ii), we can get |b(r)| ≤ Kn−ν . If r = q and q = q ′, then |b(r)| becomes
|b(r)| = |E[xi

ε(sj )tk
xi
ε(sj ′ )tk′ ]|, from which is easily seen that this term is bounded by Km−2iν .

Now gathering the estimates obtained in (i)–(iii) and plugging them in (4.11), we end up with:

∣∣a(
j, j ′, k, k′)∣∣ ≤ K

(
q−1∑

r= 1
2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
n−2ν

∣∣ρ(
k − k′)∣∣r

+ q!
(

q ′
q

)(
m−2iν + n−ν

)∣∣ρ(
k − k′)∣∣q)

. (4.17)

Furthermore, observe that

Dn ∩ [s, t) =
m−1⋃
j=0

{tk; sj ≤ tk < sj+1}. (4.18)
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Hence, substituting (4.17) into (4.10) and using the fact that
∑

k∈N |ρ(k)| < ∞, we obtain

∣∣ϑ(
q, q ′, i

)∣∣ ≤ K

q−1∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
n−2ν

n−1∑
k,k′=0

∣∣ρ(
k − k′)∣∣r

+ Kq!
(

q ′
q

)(
m−2iν + n−ν

) n−1∑
k,k′=0

∣∣ρ(
k − k′)∣∣q

≤ K
(
n1−2ν + nm−2iν + n1−ν

) q∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
. (4.19)

This completes the proof of inequality (4.7).
Step 3: In this step, we prove the estimates in (iii) and (iv). For (s, t) ∈ S2 such that t − s < 1

n
and with Remark 2.6

in mind, we have J t
s (xi;hn,q) = 0. Therefore, in the following we assume that n(t − s) ≥ 1. Suppose that q ′ ≥ q . Then

similarly to (4.10) and (4.11), we can derive the following expression:

E
(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′))

=
∑

s≤tk,tk′<t

q∑
r=0

r!
(

q

r

)(
q ′
r

)
E

〈
Dq ′+q−2r

(
xi
ε(s)tk

xi
ε(s)tk′

)
, β

⊗(q−r)
k ⊗ β

⊗(q ′−r)

k′
〉
H⊗(q′+q−2r)ρ

(
k − k′)r

. (4.20)

As in the previous step, we now separate the case q ′ − q ≤ 2i and q ′ − q > 2i. Indeed, when q ′ − q ≤ 2i, we have seen
that 1

2 (q +q ′)− i > 0. Hence, thanks to the assumption that q ′ ≥ q , q ≥ � and i ≤ �−1, we obtain the following estimate
along the same lines as in the previous step:

∣∣E(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′))∣∣ ≤

q∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
n−(q+q ′−2r)ν(t − s)(2i−(q+q ′−2r))ν

×
∑

s≤tk,tk′<t

∣∣ρ(
k − k′)∣∣r . (4.21)

Thus, resorting to the inequality n(t − s) ≥ 1 and thanks to the fact that
∑n−1

k,k′=0 |ρ(k − k′)|r is of order n, we get

E
(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′)) ≤ Kn(t − s)2iν+1

q∑
r= 1

2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
,

which proves (iii).
The proof of (iv) is left to the reader. Indeed, it is done exactly as for (ii), taking advantage of the fact that

Dp(xi
ε(s)tk

xi
ε(s)tk′ ) = 0 whenever p > 2i. The proof is now complete. �

We are ready to derive the first main result of this section, which is a Breuer–Major type central limit theorem.

Theorem 4.7. Let x be a one-dimensional fBm with Hurst parameter ν ≤ 1
2 . Let � be an integer such that ν� + 1

2 > 1.
Let (y, y′, . . . , y(�−1)) be a process controlled by (x, 1

2 ) in L2 or almost surely. Let f ∈ L2(γ ) with Hermite rank strictly
bigger than 1

2ν
. Suppose that one of the following conditions holds true:

(a) We have the expansion f = ∑∞
q=d aqHq , and

∞∑
q=d

a2
qq!q2(�−1) < ∞, (4.22)

that is, the function f sits in the Soblev space W 2(�−1),2(R, γ ), where recall that γ denotes the standard Gaussian
measure on the real line; see see e.g. Page 28 in [40].
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(b) The function f is an element of C2�−3 and f (2�−3) is Lipschitz.

We define a family of increments {hn;n ≥ 1} by:

hn
st := 1√

n

∑
s≤tk<t

f
(
nνδxtktk+1

)
, (s, t) ∈ S2. (4.23)

Then we have the stable f.d.d. convergence:

J
(
y;hn

) → σ

∫
yt dWt , as n → ∞,

where σ is given by (4.1).

Remark 4.8. As mentioned in the introduction, Theorem 4.7 can be seen as a generalization as well as a simplification
of [33,36].

Proof of Theorem 4.7:. We first assume that condition (a) is true. We will prove the theorem thanks to our central limit
Theorem 3.8 applied to hn.

To this aim, it suffices to verify the F -stable f.d.d. convergence hn → ω, plus condition (2.13) in Proposition 2.7 and
the convergence in (3.13). We now prove that those conditions are satisfied in separate steps.

Step 1: Stable convergence of hn. The convergence in law of hn to W is a direct consequence of Theorem 4.2. One can
get the stable convergence by applying a multi-dimensional version of Theorem 6.3.1 in [37].

Step 2: Proof of condition (2.13). Recall that f = ∑∞
q=d aqHq , that hn is defined by (4.23), and that hn,q has been

introduced in (4.5). Then |J t
s (xi;hn)|2L2

can be expressed as

∣∣J t
s

(
xi;hn

)∣∣2
L2

= 1

n

∞∑
q,q ′=d

aqaq ′E
(
J t

s

(
xi;hn,q

)
J t

s

(
xi;hn,q ′))

.

We can now apply Lemma 4.5 (iii) and (iv) in order to get:

∣∣J t
s

(
xi;hn

)∣∣2
L2

≤ Kci(t − s)2iν+1, (4.24)

where K is defined by (4.9) and

ci =
∑

|q−q ′|≤2i

aqaq ′
q∧q ′∑

r= 1
2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
. (4.25)

In addition, we observe that r ≥ (q ∧ q ′) − � + 1 in the sum defining ci . Hence, invoking the elementary bounds(
q ′
r

)
≤ (

q ′)q ′−r and r!
(

q

r

)
≤ q!,

plus an application of Cauchy–Schwarz’s inequality for the sum over r , it is readily checked that

ci ≤
∞∑

q=d

a2
qq!q2(�−1). (4.26)

Taking square root in both sides of (4.24) and taking into account condition (4.22) we obtain the condition (2.13) in
Proposition 2.7.

Step 3: Proof of condition (3.13). Recall that the increment hn is defined by (4.23). For (s, t) ∈ S2, we set

ζ i
j = J sj+1

sj

(
xi;hn

) = 1√
n

∞∑
q=d

aqJ
sj+1
sj

(
xi;hn,q

) = 1√
n

∞∑
q=d

aqζ
i,q
j ,
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where the last identity is due to our convention (4.5). Then according to our notation (4.6), the following relation holds
true for i > 0:∣∣∣∣∣

m−1∑
j=0

J sj+1
sj

(
xi;hn

)∣∣∣∣∣
2

L2

= 1

n

∞∑
q,q ′=d

aqaq ′ϑ
(
q, q ′, i

)
.

According to Lemma 4.5, we have ϑ(q, q ′, i) = 0 when |q ′ − q| > 2i. Combining this with inequality (4.7), we obtain

∣∣∣∣∣
m−1∑
j=0

ζ i
j

∣∣∣∣∣
2

L2

= 1

n

∑
|q−q ′|≤2i

aqaq ′ϑ
(
q, q ′, i

)

≤ K
(
n−2ν + m−2ν + n−ν

) ∑
|q−q ′|≤2i

aqaq ′
q∧q ′∑

r= 1
2 (q+q ′)−i

r!
(

q

r

)(
q ′
r

)
.

We now refer to our definition (4.25) of ci , as well as inequality (4.26), which yields:

∣∣∣∣∣
m−1∑
j=0

ζ i
j

∣∣∣∣∣
2

L2

≤ K
(
n−2ν + m−2ν + n−ν

) ∞∑
q=d

a2
qq!q2(�−1).

Taking into account the assumption (4.22), this implies that

lim
m→∞ lim sup

n→∞

∣∣∣∣∣
m−1∑
j=0

ζ i
j

∣∣∣∣∣
L2

= 0. (4.27)

This complete the proof of the theorem under condition (a).
Step 4: Proof under conditions (b). One can show that condition (b) implies condition (a). Indeed, by Proposition 1.2.4

in [40], we obtain that f (2�−3) ∈ W 1,2(R, γ ). It is then easy to show that f (2�−4) ∈ L2(γ ) and (f (2�−4))′ = f (2�−3),
which implies that f (2�−4) ∈ W 2,2(R, γ ). Repeating this argument, we obtain that f ∈ W 2�−2,2(R, γ ). Our proof is now
finished. �

We now consider a central limit theorem for weights y which satisfies the Young pairing condition with respect to a
Brownian motion W (i.e. y is ν′-Hölder continuous for ν′ > 1

2 ).

Proposition 4.9. Let y be a ν′-Hölder continuous path for some ν′ > 1
2 and let x be a fBm with Hurst parameter

ν ∈ (0,1). Suppose that f ∈ L2(γ ) has Hermite rank d such that ν < 1 − 1
2d

. Then the following convergence holds true

1√
n

n−1∑
k=0

ytkf
(
nνxtktk+1

) d−→ σ

∫ 1

0
yt dWt as n → ∞, (4.28)

where σ is defined by (4.1).

Remark 4.10. It would be straightforward to generalize Proposition 4.9 to the case ν > 1 − 1
2d

. Indeed, the proof would
go exactly along the same lines as below, except for the fact that hn would converge to a Hermite process. We have
refrained to do so for sake of conciseness, since Hermite type limit theorems have already been obtained in [25] and also
because Young situations like the ν > 1 − 1

2d
case do not require rough paths techniques.

Proof of Proposition 4.9:. As in equation (4.23), for (s, t) ∈ S2 we set

hn
st = 1√

n

∑
s≤tk<t

f
(
nνxtktk+1

)
.

In a similar way as in (4.24), Lemma 4.5(iii) and (iv) we can show that

∣∣hn
st

∣∣
L2

≤ K(t − s)
1
2 . (4.29)
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Notice that we are working here under the assumption ν′ + 1
2 > 1. Therefore, an application of Theorem 3.8 combined

with Remark 3.7 yield our claim (4.28). �

4.2. Weighted Breuer–Major theorem II

In this subsection, we continue our discussion on the Breuer–Major theorem, handling situations with low order Hermite
ranks. We first derive some auxiliary results on the discrete integral J t

s (y;hn,q), where we recall that hn,q is defined by
(4.5).

Lemma 4.11. Let x be a fBm with Hurst parameter ν considered as a (Lp, ν, �) rough path as in Notation 4.3. Take
i = 1, . . . , � − 1 and q ∈N.

(i) Let ϑ(q, q, i) be defined by (4.6). Then for q < 1
2ν

and q < i, we have

ϑ(q, q, i) ≤ K
(
nm−4ν + n2−2qνm−2ν

)
. (4.30)

For q = 1
2ν

and 0 < i < q , we have

ϑ(q, q, i) ≤ K
(
n1−2ν + nm−2iν

)
. (4.31)

(ii) Recall that h
n,q
st = ∑

s≤tk<t Hq(nνδxtktk+1) is defined by (4.5). Then for q < 1
2ν

and q > i, we have

E
(∣∣J t

s

(
xi;hn,q

)∣∣2) ≤ Kn(t − s)2iν+1, for (s, t) ∈ S ′
2. (4.32)

For q ≥ 1
2ν

, we have

E
(∣∣J t

s

(
xi;hn,q

)∣∣2) ≤ Kn(t − s)2iν+1, for (s, t) ∈ S ′
2. (4.33)

For q < 1
2ν

, and q ≤ i, we have

E
(∣∣J t

s

(
xi;hn,q

)∣∣2) ≤ Kn2−2qν(t − s)2+2iν−2qν (s, t) ∈ S ′
2. (4.34)

Proof. The proof is divided into several steps.
Step 1: General estimate for ϑ . Recall that ϑ(q, q, i) is given by (4.10). Next we use expression (4.11) for

a(j, j ′, k, k′). We bound all the combination numbers by a constant and invoke the fact that b(r) (defined by (4.12))
satisfies (similarly to (4.16)):∣∣b(r)

∣∣ ≤ Kn−(2q−2r)νm−(2i−(2q−2r))ν

for all r ≥ q − i. Therefore, similarly to (4.17) we get

∣∣a(
j, j ′, k, k′)∣∣ ≤ K

(
q∑

r=0∨(q−i)

n−(2q−2r)νm−(2i−(2q−2r))ν
∣∣ρ(

k − k′)∣∣r). (4.35)

Step 2: Case q < 1
2ν

and q < i. In this situation, similarly to (4.19), substituting (4.35) into (4.10) we obtain

∣∣ϑ(q, q, i)
∣∣ ≤ K

q∑
r=1

n−(2q−2r)νm−(2i−(2q−2r))ν
n−1∑

k,k′=0

∣∣ρ(
k − k′)∣∣r

+ Kn−2qνm−(2i−2q)ν
n−1∑

k,k′=0

∣∣ρ(
k − k′)∣∣0

. (4.36)

Therefore, owing to the fact that
∑n−1

k,k′=0 |ρ(k − k′)|r = O(n) whenever r ≥ 1 and properly bounding the exponents in
(4.36), we end up with∣∣ϑ(q, q, i)

∣∣ ≤ K
(
nm−4ν + n2−2qνm−2ν

)
.

This completes the proof of (4.30).
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Step 3: Case q = 1
2ν

and 0 < i < q . If q = 1
2ν

and � is the smallest integer such that ν� > 1
2 , we have � = q + 1. Since

0 < i < q , then substituting (4.35) into (4.10) we obtain the same inequality as (4.36), except for the fact that the term
with ρ(k − k′)0 is missing. We get

∣∣ϑ(q, q, i)
∣∣ ≤ K

q∑
r=q−i

n−(2q−2r)νm−(2i−(2q−2r))ν

n−1∑
k,k′=0

∣∣ρ(
k − k′)∣∣r

≤ K
(
n1−2ν + nm−2iν

)
,

where we have followed the same lines as in the previous step for the second inequality. This completes the proof of
(4.31).

Step 4: General estimate for J t
s (xi;hn,q). By (4.1), we have the expression:

E
(∣∣J t

s

(
xi;hn,q

)∣∣2)
=

∑
s≤tk,tk′<t

q∑
r=0

r!
(

q

r

)2

E
〈
D2q−2r

(
xi
ε(s)tk

xi
ε(s)tk′

)
), β

⊗(q−r)
k ⊗ β

⊗(q−r)

k′
〉
H⊗(2q−2r)ρ

(
k − k′)r

.

Therefore, proceeding similarly to Step 1 and (4.21) and bounding all the combination numbers by a constant K , we
obtain the estimate

E
(∣∣J t

s

(
xi;hn

)∣∣2) ≤ Kn−2iν

q∑
r=0∨(q−i)

(
n(t − s)

)(2i−(2q−2r))ν
∑

s≤tk ,tk′<t

∣∣ρ(
k − k′)∣∣r . (4.37)

Step 5: Proof of (4.32), (4.33) and (4.34). In order to prove (4.33), note that when q > 1
2ν

, since i ≤ � − 1 ≤ 1
2ν

, we have
q > i, and so the estimate (4.37) implies (4.33) due to the fact that

∑
s≤tk,tk′<t |ρ(k − k′)|r ≤ Kn(t − s) when r ≥ 1.

Similarly, we can show that estimate (4.33) still holds when q = 1
2ν

.
In a similar way, it stems from the inequality (4.37) that in the case q < 1

2ν
and q > i we have (4.32), and that in the

case q < 1
2ν

and q ≤ i, we have the estimate (4.34). �

In case of a low rank q , we now derive some deterministic limits for Riemann sums related to xq and hn,q .

Lemma 4.12. Let n ≥ 1 and let 0 = t0 < · · · < tn = 1 be the uniform partition of [0,1] of order n. Let x be a standard
fBm with Hurst parameter ν ∈ (0, 1

2 ). Recall that hn,q is defined by (4.5). Consider also n � m, and a partition 0 ≤ s0 <

· · · < sm ≤ 1 of [0,1]. We assume that |si+1 − si | ≤ 1
m

, and s0 = s, sm = t . Then the following limits hold true:

(i) For ν = 1
2q

, we have

lim
m→∞ lim

n→∞
1√
n

m−1∑
j=0

J sj+1
sj

(
xq;hn,q

) =
(

−1

2

)q

(t − s) (4.38)

in L2, for all (s, t) ∈ S2.
(ii) For ν < 1

2q
, we have

lim
n→∞

1

n1−qν
J t

s

(
xq;hn,q

) =
(

−1

2

)q

(t − s) (4.39)

in L2, for all (s, t) ∈ S2.

Proof. We shall only prove item (i), since item (ii) can be treated along the same lines. Our global strategy is based on
identity (4.10) and (4.11), as in the proof of Lemma 4.11, with a more in-depth analysis of the terms appearing in our
decomposition.

Indeed, formula (4.10) together with (4.11) assert that

E

[(
1√
n

m−1∑
j=0

J sj+1
sj

(
xq;hn,q

))2]
= n−1ϑ(q, q, q) =

q∑
r=0

a(r),
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where

a(r) = n−1
m−1∑

j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

r!
(

q

r

)2

ρ
(
k − k′)r

b(r), (4.40)

and where

b(r) = E
〈
D2q−2r

(
x

q

ε(sj )tk
x

q

ε(sj ′ )tk′
)
, β

⊗(q−r)
k ⊗β

⊗(q−r)

k′
〉
H⊗(2q−2r) . (4.41)

We now split the analysis of the terms a(r) and b(r).
Step 1: Case r > 0. The term a(r) for r > 0 can be bounded as follows, along the same lines as in the proof of

Lemma 4.5 and Lemma 4.11. Namely, we bound all the combination numbers by a constant, we use identity (4.18) and
the fact that

∑n−1
k,k′=0 |ρ(k − k′)|r = O(n) in order to get

∣∣a(r)
∣∣ ≤ K

∣∣b(r)
∣∣.

In order to bound b(r), we resort to identity (4.41). Then we observe that each term D2q−2r (x
q

ε(sj )tk
x

q

ε(sj ′ )tk′ ) is of order

m−rν , while each contribution of the form 〈1⊗(q−r)
[a,b] , β

⊗(q−r)
k 〉H⊗(q−r) can be bounded by a constant (similarly to (4.15)).

This yields

a(r) ≤ Km−2ν .

Therefore, it is readily checked that limm→∞ limn→∞ a(r) = 0.
Step 2: Decomposition of a(0) and b(0). When r = 0, formula (4.40) can be read as:

a(0) = n−1
m−1∑

j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

b(0).

Notice that D2q(x
q

ε(sj )tk
x

q

ε(sj ′ )tk′ ) can be written as a sum of deterministic functions of the form h2q = g1,q ⊗ g2,q , where

h2q is a function of 2q variables, and each g1,q , g2,q is a function of q variables. In addition, the reader can check that
g1,q contains q ′ (resp. q − q ′) tensor products of indicator functions 1[ε(sj ),tk] (resp. 1[ε(sj ′ ),tk′ ]), and g2,q contains q − q ′
tensor products of functions 1[ε(sj ),tk], for some 0 ≤ q ′ ≤ q . Pairing those functions with βk and βk′ , we get the following
identity:

b(0) =
q∑

q ′=0

b
(
0, q ′),

where

b
(
0, q ′) =

(
q

q ′
)2

〈1[ε(sj ),tk], βk〉q−q ′
H 〈1[ε(sj ′ ),tk′ ], βk′ 〉q−q ′

H 〈1[ε(sj ′ ),tk′ ], βk〉q
′

H〈1[ε(sj ),tk], βk′ 〉q ′
H.

Step 3: Study of b(0, q ′) for q ′ > 0. Let us observe that, thanks to the fact that 2qν = 1, we have

b
(
0, q ′) =

(
q

q ′
)2

n−1b̂
(
0, q ′)b̃(

0, q ′), (4.42)

where

b̂
(
0, q ′) = 〈

nν1[ε(sj ),tk], βk

〉q−q ′
H

〈
nν1[ε(sj ′ ),tk′ ], βk′

〉q−q ′
H

and

b̃
(
0, q ′) = 〈

nν1[ε(sj ′ ),tk′ ], βk

〉q ′
H

〈
nν1[ε(sj ),tk], βk′

〉q ′
H.
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In order to bound b̂(0, q ′) we can proceed as in (4.15) and we just get∣∣b̂(
0, q ′)∣∣ ≤ K. (4.43)

We now turn to a bound on b̃(0, q ′). Some scaling arguments similar to (4.15) reveal that

∣∣b̃(
0, q ′)∣∣ ≤ 〈1[�nsj ′ �,k′],1[k,k+1]〉q

′
H〈1[�nsj �,k′],1[k′,k′+1]〉q

′
H. (4.44)

We now obtain uniform bounds on b̃(0, q ′) according to the values of j , j ′.
(i) If |j − j ′| ≥ 2, then we also have |k − k′| ≥ n

m
in (4.44). Hence it is readily checked that

∣∣〈1[�nsj ′ �,k′],1[k,k+1]〉H
∣∣ ≤ Kν

∫
[�nsj ′ �,k′]×[k,k+1]

dudv

|u − v|2−2ν

≤ Kν

(
n

m

)2ν−2(
n

m

)
=

(
m

n

)1−2ν

,

and the same bound holds true for 〈1[�nsj �,k′],1[k′,k′+1]〉H. Hence we have

∣∣b̃(
0, q ′)∣∣ ≤ Kν

(
m

n

)1−2ν

.

(ii) If |j − j ′| ≤ 2, then we simply bound b̃(0, q ′) by a constant, just as in (4.15) and (4.43). Plugging those estimates
into (4.42), it is now readily checked that

lim
n→∞n−1

m−1∑
j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

b
(
0, q ′) ≤ Kν lim

n→∞n−2
n−1∑

k,k′=0

(
m

n

)1−2ν

= 0.

Therefore, the limit of a(0) is equal to the limit of

ã(0) := n−1
m−1∑

j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

b(0,0).

Step 4: Convergence of a(0). We use some notation of the previous step: we have b(0,0) = b̂(0,0), and we apply the
same scaling arguments as before. We end up with

ã(0) = 1

n2

m−1∑
j,j ′=0

∑
sj ≤tk<sj+1

∑
sj ′≤tk′<sj ′+1

〈1[�nsj �,k],1[k,k+1]〉qH〈1[�nsj ′ �,k′],1[k′,k′+1]〉qH

=
(

n−1
m−1∑
j=0

∑
sj ≤tk<sj+1

〈1[�nsj �,k],1[k,k+1]〉qH
)2

=
(

m−1∑
j=0

mj

n

1

mj

∑
sj ≤tk<sj+1

〈1[�nsj �,k],1[k,k+1]〉qH
)2

, (4.45)

where mj = #{tk : sj ≤ tk < sj+1}. Note that by the stationarity of increments of x and recalling that ρ(i) =
E[δx01δxi,i+1] we have

1

mj

∑
sj ≤tk<sj+1

〈1[�nsj �,k],1[k,k+1]〉qH = 1

mj

∑
sj <tk<sj+1

(k−nε(sj )∑
i=1

ρ(i)

)q

= 1

mj

∑
0<k<mj

(
k∑

i=1

ρ(i)

)q

.
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Taking into account the fact that limn→∞
∑k

i=1 ρ(i) = − 1
2ρ(0) (remember that

∑
k∈Z ρ(k) = 0), a Cesaro mean argument

shows that

lim
n→∞

1

mj

∑
0<k<mj

(
k∑

i=1

ρ(i)

)q

=
(

−ρ(0)

2

)q

=
(

−1

2

)q

.

Plugging this information back into (4.45) and taking into account the fact that limn→∞
mj

n
= (sj+1 − sj ), we obtain that

lim
n→∞ ã(0) =

(
m−1∑
j=0

(sj+1 − sj )

(
−1

2

)q
)2

=
(

(t − s)

(
−1

2

)q)2

.

We can thus conclude that

lim
m→∞ lim

n→∞E

[(
1√
n

m−1∑
j=0

J sj+1
sj

(
xq;hn,q

))2]
= lim

m→∞ lim
n→∞a(0) =

(
−1

2

)2q

(t − s)2. (4.46)

Step 5: Conclusion. With relation (4.46) in hand, the convergence (4.38) is reduced to show the convergence of the first
moment of J sj+1

sj (xq;hn,q). Furthermore, we have

1√
n
E

[
J sj+1

sj

(
xq;hn,q

)] = n− 1
2

∑
sj ≤tk<sj+1

E
[
x

q

ε(sj )tk
Hq

(
nνxtk,tk+1

)]
.

Rescaling and integrating by parts we get:

1√
n
E

[
J sj+1

sj

(
xq;hn,q

)] = 1

n

∑
sj ≤tk<sj+1

〈1[nε(sj ),k],1[k,k+1]〉qH.

With the same arguments as for (4.46), we end up with:

lim
m→∞ lim

n→∞
1√
n
E

m−1∑
j=0

J sj+1
sj

(
xq;hn,q

) = (t − s)

(
−1

2

)q

.

The proof of (4.38) is now complete. �

We are now ready to state a weighted type Breuer–Major theorem which generalizes [34, Theorem 5.3] and [38,
Theorem 1.1] to weights given by a controlled process.

Proposition 4.13. Let x be a fBm with Hurst parameter ν ∈ (0, 1
2 ) considered as a (Lp, ν, �) rough path as in Notation

4.3, and consider q > 0.
We define hn,q by relation (4.5). Let y be a discrete process controlled by (x,1 − qν) in L2 or almost surely. Then the

following convergences hold true:

(i) When ν = 1
2q

, we have

n− 1
2 J 1

0

(
y;hn,q

) stable f.d.d.−−−−−−→ σ

∫
yu dWu +

(
−1

2

)q ∫
y

(q)
u du,

where σ = q!∑k∈Z ρ(k)q .
(ii) When ν < 1

2q
, we get

n−(1−qν)J 1
0

(
y;hn,q

) −→
(

−1

2

)q ∫ 1

0
y

(q)
u du,

where the convergence holds in probability.
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Proof. In the case ν = 1
2q

, the condition ν� + (1 − qν) = ν� + 1
2 > 1 can be read as � = q + 1. We now invoke Theo-

rem 3.13. Indeed, condition (2.13) is ensured by (4.33), condition (i) in Theorem 3.13 is just Breuer–Major’s Theorem 4.2,
and condition (3.36) has been proved in (4.38). Moreover, in our situation, condition (3.37) has to be checked for i < q ,
and is easily shown thanks to inequality (4.31). Therefore, a direct application of Theorem 3.13 yields our claim (i).

In order to get item (ii), we apply Theorem 3.11. In this case, condition (2.13) is a consequence of (4.32) and (4.34).
Item (i) in Theorem 3.11 is a consequence of (4.39) and (4.32). Eventually, (3.28) is obtained through (4.30). This
concludes the proof. �

We now go one step further in the generalization, and handle the case of a weighted sum in an infinite number of chaos.

Theorem 4.14. Let x be a fBm with Hurst parameter ν ∈ (0, 1
2 ) considered as a (Lp, ν, �) rough path as in Notation 4.3.

Let (y, y′, . . . , y(�−1)) be a discrete process controlled by (x,1 − νd) as in Proposition 4.13 and take � = d + 1. Let f =∑∞
q=d aqHq ∈ L2(γ ) be a function with Hermite rank d > 0 satisfying one of the conditions (a) and (b) of Theorem 4.7.

Set

hn
st = ndν−1

∑
s≤tk<t

f
(
nνδxtktk+1

)
, (s, t) ∈ S2.

Then the following limits hold true.

(i) When d = 1
2ν

we have the stable f.d.d. convergence:

J
(
y;hn

) → σ

∫
yt dWt +

(
−1

2

)d

ad

∫
y(d)
u du, as n → ∞, (4.47)

where σ is given by (4.1).
(ii) When d < 1

2ν
we get the following convergence in probability:

J t
s

(
y;hn

) −→
(

−1

2

)d

ad

∫ t

s

y(d)
u du, as n → ∞.

Proof. Step 1: A decomposition of f . In order to prove the convergence (4.47) we invoke Theorem 3.13. It remains to
verify that conditions in Theorem 3.13 are satisfied. To this aim, we define a new function

f̃ := f − adHd =
∞∑

q=d+1

aqHq, (4.48)

and denote

h̃n
st = 1√

n

∑
s≤tk<t

f̃
(
nνδxtktk+1

)
, (s, t) ∈ S2.

Now recalling that hn,d is defined by (4.5), we write

J t
s

(
xi;hn

) = ad n− 1
2 J t

s

(
xi;hn,d

) +J t
s

(
xi; h̃n

)
. (4.49)

This decomposition will be used in order to verify the assumptions of Theorem 3.13.
Step 2: Proof of condition (2.13). We first note that relation (4.33) implies that the quantity J t

s (xi;hn,d) on the right-
hand side of (4.49) satisfies condition (2.13). On the other hand, since f̃ satisfies the conditions of Theorem 4.7, it follows
from the proof of Theorem 4.7 that J t

s (xi; h̃n) also satisfies (2.13). Combining these two observations and applying the
triangle inequality for the L2-norm to (4.49), we obtain (2.13) for J t

s (xi;hn).
Step 3: Stable convergence of hn. The proof of the stable convergence of hn follows the same lines as in Theorem 4.7.

It is omitted for sake of conciseness.
Step 4: Proof of (3.36). We have already noticed that f̃ defined in (4.48) satisfies the conditions of Theorem 4.7. So it

follows from the proof of Theorem 4.7 that h̃n satisfies the relation (3.13). More precisely, the following convergence for
i = 1, . . . , d is obtained similarly to (4.27):

lim
m→∞ lim

n→∞

∣∣∣∣∣
m−1∑
j=0

J sj+1
sj

(
xi; h̃n

)∣∣∣∣∣
L2

= 0. (4.50)
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On the other hand, it follows from (4.38) that n− 1
2 hn,d satisfies (3.36). Putting together (4.50) and the convergence of

J sj+1
sj (xi;hn,d) and taking into account (4.49) we obtain the convergence (3.36) for hn.

Step 5: Proof of (3.37). As in the previous step, invoking relation (4.49), it suffices to consider the relation (3.37) for
h̃n and hn,d separately. Notice that relation (3.37) for h̃n follows directly from (4.50). On the other hand, relation (3.37)
for hn = hn,q is obtained exactly as in the proof of Proposition 4.13, thanks to (4.31). This completes the proof of (3.37)
for hn.

Step 6: Proof of item (ii). Item (ii) is obtained by applying Theorem 3.11. We have to verify the same kind of conditions
as in the previous steps. Resorting to our decomposition (4.49), this is done similarly to Step 2–5, applying Proposition
4.13 and Theorem 4.7. Details are left to the reader. The proof is now complete. �

4.3. Realized power variations and parameter estimations

The convergence of realized power variations is closely related to the parameter estimation problem of the volatility
process (see e.g. [3] and [29] in a fBm context). Here we shall consider generalizations of realized power variations to
rougher situations, and then discuss briefly the parameter estimation problem.

Let us start by introducing some additional notation. For p > −1, we denote

cp = E
(|N |p) = 2p/2

√
π

�

(
p + 1

2

)
. (4.51)

Notice that when p is an even integer we can also write cp = E(Np) = (p−1)(p−3) · · ·1. We also consider the function
H :R→ R defined by H(x) = |x|p − cp .

It is easy to see that H ∈ L2(γ ) when p > − 1
2 and H has Hermite rank d = 2. One can also verify that H has the

decomposition H(x) = ∑∞
q=1 a2qH2q(x), where the constants a2q are obtained by expanding the function |x|p − cp on

the Hermite basis, and are expressed in terms of the cp’s:

a2q =
q∑

r=0

(−1)r

2r r!(2q − 2r)! (c2q−2r+p − cpc2q−2r ). (4.52)

For example, we will use the fact that a2 = pcp/2.
Our first result in this subsection concerns the weighted power variations of x by a controlled process y. We focus on

the rough situation ν ≤ 1
2 , since more regular situations are handled in e.g. [3,29] and implied by our Proposition 4.9.

Theorem 4.15. Let x be a fBm with Hurst parameter ν ∈ (0, 1
2 ), considered as a (Lp, ν, �) rough path as in Notation

4.3. Let (y(0), . . . , y(�−1)) be a discrete process controlled by (x,α), in L2 or almost surely, with ν� + α > 1. Then the
following limits for weighted power variations hold true:

(i) Suppose that 1
2 ≥ ν > 1

4 and α = 1
2 . Then for p ≥ 2 we have the convergence:

1√
n

n−1∑
k=0

ytk

(∣∣nνδxtktk+1

∣∣p − cp

) d−→ σ

∫ 1

0
yt dWt , (4.53)

where W is a Wiener process independent of x and σ 2 is defined by (recall that a2q is defined by (4.52)):

σ 2 =
∞∑

q=1

(2q)!a2
2q

∑
k∈Z

ρ(k)2q . (4.54)

(ii) Suppose that ν = 1
4 and α = 1

2 . Then for p ≥ 4 we have the convergence:

1√
n

n−1∑
k=0

ytk

(∣∣nνδxtktk+1

∣∣p − cp

) d−→ σ

∫ 1

0
yt dWt + a2

4

∫ 1

0
y′′
t dt,

where σ is defined by (4.54) and where we recall that, according to (4.52), we have a2 = pcp

2 .
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(iii) Suppose that ν < 1
4 and α = 1 − 2ν. Then for p ≥ 4 we have the following convergence in probability:

n2ν−1
n−1∑
k=0

ytk

(∣∣nνδxtktk+1

∣∣p − cp

) −→ a2

4

∫ 1

0
y′′
t dt.

Proof. Recall that we have set H(x) = |x|p − cp and that the Hermite rank of H is d = 2. Then item (i) follows im-
mediately from Theorem 4.7. Indeed, since ν > 1

4 , we have 1
2ν

< 2, and so the Hermite rank of |x|p − cp is larger than
1

2ν
. On the other hand, it is easy to see that � = 2 for the definition of our controlled process y under the condition that

ν� + α > 1 and α = 1
2 . So for p ≥ 2 we have H ∈ C2�−2 and thus H satisfies condition (c) in Theorem 4.7. Therefore,

a direct application of Theorem 4.7 yields the convergence (4.53). Item (ii) and item (iii) follow from Theorem 4.14. The
proof is similar and is omitted. �

We now consider a controlled process of order 2 with respect to x, called (z, z′). Recall that (z, z′) satisfies:∣∣rz
st

∣∣ ≤ G(t − s)2ν, with rz
st := δzst − z′

sδxst , (4.55)

where G is some almost surely finite random variable. In the following we prove the convergence of the p-variation of z

with the help of Theorem 4.15. We will see that, with a proper normalization, the p-variation of the (first-order) increments∑n−1
k=0 |δztktk+1 |p converges almost surely to the quantity cp

∫ 1
0 |z′

s |p ds (one can also use “longer filters”, i.e. replacing
the increments δztktk+1 by the second-order increments δztktk+1 − δztk−1tk or higher-order increments for instance; see e.g.
[43]). Observe that our motivation for this limit result is the parameter estimation of the diffusion coefficient for SDEs;
see e.g. [3,29]. Indeed, consider the following equation governed by a fBm with Hurst parameter ν ∈ (0, 1

2 ]:

zt =
∫ t

0
b(zs) ds +

∫ t

0
v(zs) dxs. (4.56)

In equation (4.56), the coefficient b and v are assumed to be C2
b and C3

b , respectively. The stochastic integral in (4.56) is
understood thanks to the abstract rough paths theory (see e.g. [15,16,20]), by considering the rough path {xi, 1 ≤ i ≤ 
 1

ν
�},

where xi is given in Notation 4.3. Taking z′ = v(z), it is well-known that the pair (z, z′) is a process controlled by x. Then
our limit result for (z, z′) implies that the p-variation of the solution of (4.56) converges almost surely to the average of
the volatility cp

∫ 1
0 |v(zs)|p ds.

Corollary 4.16. Let x be a one-dimensional fBm with Hurst parameter 0 < ν ≤ 1
2 , and let (z, z′) be a controlled process

of x satisfying (4.55). Let n ≥ 1 and consider the uniform partition 0 = t0 < · · · < tn = 1 of [0,1]. Then for p > 1
2ν

, we
have almost surely the convergence of p-variations of z:

1

n

n−1∑
k=0

∣∣nνδztktk+1

∣∣p → cp

∫ 1

0

∣∣z′
t

∣∣p dt. (4.57)

Proof. Set ϕ := npν−1 ∑n−1
k=0 |z′

tk
|p|δxtktk+1 |p . We write

1

n

n−1∑
k=0

∣∣nνδztktk+1

∣∣p = ϕ + Rn, (4.58)

where Rn is simply 1
n

∑n−1
k=0 |nνδztktk+1 |p − ϕ. Using the inequality ||a|p − |b|p| ≤ p(|a|p−1 + |b|p−1)|a − b| for p > 1

and the regularity of z and x, we obtain

|Rn| ≤ pnpν−1
n−1∑
k=0

(|δztktk+1 |p−1 + ∣∣z′
tk
δxtktk+1

∣∣p−1)∣∣δztktk+1 − z′
tk
δxtktk+1

∣∣

≤ Gnpν−1
n−1∑
k=0

n−(p−1)νn−2ν = Gn−ν.
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In particular, we have limn→∞ Rn = 0 almost surely as n → ∞. On the other hand, a direct application of Theorem 4.15
shows that ϕ → cp

∫ 1
0 |z′

t |p dt . Putting together the convergence of Rn and ϕ and taking into account (4.58), we obtain
the desired limit (4.57). �

4.4. Stratonovich integrals

In this subsection we are shedding a new light on another problem which has drawn a lot of attention in the recent
stochastic analysis literature. Namely, we are interested in the convergence of the following trapezoidal-rule Riemann
sum:

tr-J 1
0 (y;x) :=

n−1∑
k=0

ytk + ytk+1

2
δxtktk+1 . (4.59)

This quantity has been considered by many authors (see e.g. [6,8,18,21–23,36,39]) in the case ys = f (xs). Thanks to the
rough paths technique developed in this paper, we will be able to get shorter proofs than in the aforementioned articles,
and obtain results which are valid for a wider class of weight processes y. We will also see that the limit of (4.59) can be
identified with the rough integral

∫ 1
0 ys dxs for ν > 1

6 and that it is equal to the same rough integral plus a “correction”
term when ν = 1

6 .
Let us start by some preliminary results.

Lemma 4.17. Let q be an integer such that q > 1, and assume that ν ∈ ( 1
2q

, 1
2 ). Let x and y be as in Theorem 4.7. Then

the following convergence holds as n → ∞:

n− 1
2 J t

s

(
y;hn,q

) d−→ σ

∫ t

s

yu dWu, (4.60)

where σ 2 = q!∑k∈Z ρ(k)q .

Proof. The lemma follows immediately from Theorem 4.7 with f = Hq . Notice that ν > 1
2q

by assumption, thus we also

have q > 1
2ν

, which is one of the assumption in Theorem 4.7. �

Our second preliminary result concerns weighted power variations of the fBm x.

Lemma 4.18. Let x be a fBm with Hurst parameter ν ∈ (0, 1
2 ) considered as a (Lp, ν, �) rough path as in Notation 4.3.

(i) Let (y, y′) be a discrete process controlled by (x,1 − ν). When q ≥ 3 is odd, we have the following convergence in
probability:

n(q+1)ν−1
n−1∑
k=0

ytk (δxtktk+1)
q −→ −cq+1

2

∫ 1

0
y′
s ds, (4.61)

where the constants cp are defined by (4.51).
(ii) Let (y, . . . , y(�−1)) be a discrete process controlled by (x,α), in L2 or almost surely, with ν� + α > 1, where α = 1

2
for ν ∈ [ 1

4 , 1
2 ) and α = 1 − 2ν for ν ∈ (0, 1

4 ). When q is even, we have the convergence in probability:

nqν−1
n−1∑
k=0

ytk (δxtktk+1)
q −→ cq

∫ 1

0
ys ds. (4.62)

Proof. We first show the convergence (4.61) with the help of Theorem 4.14. Note that whenever q is odd the function
f (x) = xq has rank d = 1, so we have d < 1

2ν
. The convergence (4.61) then follows from Theorem 4.14 (ii). In order to

prove (4.62) we start by observing that an easy consequence of (4.53) is that the following limit in probability holds true:

lim
n→∞

1

n

n−1∑
k=0

ytk

((
nνδxtktk+1

)q − cq

) = 0. (4.63)
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Then observe that y is a continuous process. Therefore, we trivially have the following limit in probability:

lim
n→∞

1

n

n−1∑
k=0

ytk =
∫ 1

0
ys ds. (4.64)

Combining (4.63) and (4.64), the convergence (4.62) is established for ν ∈ ( 1
4 , 1

2 ). The cases ν = 1
4 and ν < 1

4 are treated
in the same way, thanks to (respectively) Theorem 4.15 (ii) and (iii). �

We can now state a convergence result for trapezoidal Riemann sums.

Theorem 4.19. Let x be a one-dimensional fBm with Hurst parameter ν ∈ (0, 1
2 ). Let y be an almost sure controlled

process of order � = 8 (see Definition 2.3). Recall that the trapezoidal sums of y with respect to x are defined by (4.59),
and we set∫ 1

0
ysd

trxs = lim
n→∞ tr-J 1

0 (y;x), (4.65)

whenever the limit in the right-hand side is properly defined. Then the following assertions hold true:

(i) When ν > 1
6 , the convergence (4.65) holds almost surely and we have the identity:

∫ 1

0
ysd

trxs =
∫ 1

0
ys dxs, (4.66)

where
∫ 1

0 ys dxs stands for the rough path integral of y with respect to x.
(ii) When ν = 1

6 , the convergence (4.65) holds in distribution and the following relation holds true:

∫ 1

0
ys d trxs =

∫ 1

0
ys dxs + σ

12

∫ 1

0
y′′
s dWs, (4.67)

where
∫ 1

0 ys dxs is understood in the rough path sense and σ = 6
∑

k∈Z ρ(k)3.

Proof. Step 1: Decomposition of tr-J 1
0 (y;x). Owing to the Definition 2.3 of a controlled process, we have

δyst =
5∑

i=1

1

i!y
(i)
s (δxst )

i + r
y
st , (4.68)

where the remainder r satisfies |ry
st |L2 ≤ K(t − s)6ν . Plugging (4.68) into (4.59) we obtain

tr-J 1
0 (y;x) =

n−1∑
k=0

ytk δxtktk+1 + 1

2

n−1∑
k=0

δytktk+1δxtktk+1

=
n−1∑
k=0

(
ytk δxtktk+1 + 1

2

5∑
i=1

1

i!y
(i)
tk

(δxtktk+1)
i+1 + 1

2
rtktk+1δxtktk+1

)
,

where we notice that our rough path type expansion is a natural generalization of the Taylor type expansions of f (x)

performed in e.g. [21,39]. We now split the expansion as

tr-J 1
0 (y;x) = a0 + a1 + a2 + a3, (4.69)

where

a0 =
n−1∑
k=0

5∑
i=0

1

(i + 1)!y
(i)
tk

(δxtktk+1)
i+1;

a1 = 1

12

n−1∑
k=0

y
(2)
tk

(δxtktk+1)
3 + 1

24

n−1∑
k=0

y
(3)
tk

(δxtktk+1)
4 := a11 + a12,

(4.70)
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and

a2 = 1

80

n−1∑
k=0

y
(4)
tk

(δxtktk+1)
5 + 1

360

n−1∑
k=0

y
(5)
tk

(δxtktk+1)
6; a3 = 1

2

n−1∑
k=0

r
y
tk tk+1

δxtktk+1 . (4.71)

We now consider these terms separately.
Step 2: Terms a0 and a3. The remainder ry has a Hölder regularity of order 6ν ≥ 1. Therefore, it is readily checked

that a3 → 0 almost surely for ν ≥ 1
6 . In addition, we have the convergence a0 → ∫ 1

0 yu dxu almost surely whenever
ν ≥ 1

6 , ensured by the abstract rough paths theory (see e.g. [15,20]). It is worth noticing at this point that the convergence
of a0 is obtained in a much easier way in a rough path context than by means of integrations by parts as performed in e.g.
[21,22,36].

Step 3: Decomposition of a1 for ν > 1
6 . Among the terms defining a1 (4.70), we focus on the lower order term a11

(which potentially brings most difficulties). Thus we expand a11 by writing ξ3 = H3(ξ) − 3H1(ξ), where we recall that
Hk stands for the Hermite polynomial of order k. This yields a11 = b1 + b2, where

b1 = 1

12n3ν

n−1∑
k=0

y
(2)
tk

H3
(
nνδxtktk+1

)
, and b2 = 1

4n2ν

n−1∑
k=0

y
(2)
tk

δxtktk+1 . (4.72)

Moreover, thanks to Lemma 4.17, it is readily checked that b1 → 0 in probability when ν > 1
6 . We now focus on the term

b2. Since y(2) is itself a controlled process of order 6, a slight elaboration of [16, Corollary 10.15] shows that

∫ tk+1

tk

y(2)
s dxs −

3∑
i=0

1

(i + 1)!y
(i+2)
tk

(δxtktk+1)
i+1 := r

y(2)

tk tk+1
,

where r
y(2)

tk tk+1
is a remainder of order 5ν:

∣∣ry(2)

tk tk+1

∣∣
L2

≤ Kn−5ν . (4.73)

Summing this identity over k, we thus get

b2 = 1

4n2ν

∫ 1

0
y(2)
s dxs −

3∑
i=1

b
(i)
3 − 1

4n2ν

n−1∑
k=0

r
y(2)

tk tk+1
, (4.74)

where each b
(i)
3 is defined by

b
(i)
3 = 1

4n2ν

n−1∑
k=0

1

(i + 1)!y
(i+2)
tk

(δxtktk+1)
i+1. (4.75)

In expression (4.74), it is easily seen that, thanks to (4.73), we have

lim
n→∞

1

n2ν

n−1∑
k=0

r
y(2)

tk tk+1
= 0 and lim

n→∞
1

n2ν

∫ 1

0
y(2)
s dxs = 0,

where the limits stand for limits in probability. Owing to (4.61) and (4.62), the reader can also check that limn→∞ b
(i)
3 = 0

for i = 2,3. In order to analyze the right-hand side of (4.74) we are thus left with the term b
(1)
3 defined by (4.75).

Step 4: Terms b
(1)
3 and a12. Comparing b

(1)
3 with the expression (4.70) for a12, we see that

a12 − b
(1)
3 = 1

24n4ν

n−1∑
k=0

y
(3)
tk

f
(
nνδxtktk+1

)
, (4.76)

where the function f is given by f (ξ) = ξ4 − 3ξ2. In addition, invoking elementary properties of Hermite polynomials,
it is easily seen that f has a Hermite rank of d = 2. Hence, according to the values of ν, we can either apply Theorem 4.7
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(for 1
4 < ν < 1

2 ), Theorem 4.14(i) (for ν = 1
4 ) or Theorem 4.14(ii) (for 1

6 < ν < 1
4 ). As an example, when 1

6 < ν < 1
4 , we

get

∣∣a12 − b
(1)
3

∣∣
L2

≤ K

n6ν−1
,

which obviously goes to 0 as n goes to ∞. In summary of the convergence of a12 − b
(1)
3 and the analysis in Step 3, we

obtain the convergence a1 → 0 in probability as n → ∞.
Step 5: Terms a2 and conclusion for ν > 1

6 . The convergence in the case ν > 1
6 is now easily obtained. Indeed, due to

Lemma 4.18, it is readily checked that limn→∞ a2 = 0 in probability. Therefore, combining the convergence of a0, a1, a2,
a3 and taking into account (4.69) we obtain the convergence tr-J 1

0 (y;x) → ∫ 1
0 y

(0)
u dxu in probability, which identifies

the two sides of equation (4.66).
Step 6: Case ν = 1

6 . The proof for the case ν = 1
6 follows the same arguments as for ν > 1

6 . However, in the current

situation more terms are contributing to the limit. Specifically, the terms a2, b1, b
(2)
3 , b

(2)
3 and a12 − b

(1)
3 , respectively

defined by (4.71), (4.72), (4.75) and (4.76), are now converging to non-zero limits. In order to handle the term b1, we
apply Proposition 4.13 (i) with q = 3. This yields the convergence:

(x, b1)
f.d.d.−−→

(
x,

1

12
σ

∫ 1

0
y(2)
s dWs − 1

96

∫ 1

0
y(5)
s ds

)
,

where σ = 3!∑k∈Z ρ(k)3. On the other hand, applying (4.61), (4.62) respectively to the two terms of a2 in (4.71), we

obtain the convergence in probability: limn→∞ a2 = − 5
96

∫ 1
0 y

(5)
s ds. Moreover, owing respectively to (4.61), (4.62) and

Theorem 4.14(ii) (with d = 2 and ν = 3) we obtain the convergence:

lim
n→∞b

(2)
3 = − 1

16

∫ 1

0
y

(5)
t dt, lim

n→∞b
(3)
3 = 1

32

∫ 1

0
y

(5)
t dt, lim

n→∞(a12 − b̃1) = 1

32

∫ 1

0
y

(5)
t dt.

Putting together those additional convergences, and noticing that the terms involving y(5) cancels, we end up with relation
(4.67). The proof is now complete. �

5. Multi-dimensional Gaussian processes

Our method of analysis for limit theorems has potentially many applications in multidimensional settings. For sake of
conciseness, we will restrict ourselves to an application concerning multidimensional quadratic variations. In this way
we recover (in a more elementary way) a central limit theorem contained in [31] and used in [30]. We are also able to
generalize this central limit theorem to a wide class of Gaussian processes (Section 5.1), and obtain a weighted version
in Section 5.2.

5.1. Preliminaries on Gaussian rough paths

Throughout the section we assume that X = (x1, . . . , xd) is a centered continuous Gaussian process with i.i.d. compo-
nents. We shall write X1

uv for the increments δXuv = Xv − Xu of the process X. Then we define the covariance of the
increments of X as:

E
(
X1,i

uv X
1,i
st

) = R

(
u v

s t

)
,

where i stands for any of the components of X. We now recall some basic facts about the constructions of a rough path
lift above X, borrowed from [16].

The basic assumption in order to be able to lift X as a rough path is that R admits a two-dimensional ρ-variation for
ρ ∈ [1,2). Denote ν = 1

2ρ
. For sake of simplicity, we will moreover assume that the ρ-variation of R satisfies:

|R|ρ-var,[s,t] ≤ K(t − s)2ν, (5.1)

where |R|ρ-var,[s,t] stands for the 2-dimensional ρ-variation of R in the interval [s, t]2:

|R|ρ-var,[s,t] = sup
(ti ),(t

′
j )∈D([s,t])

⎛
⎝∑

i,j

∣∣∣∣R
(

ti ti+1
t ′j t ′j+1

)∣∣∣∣
ρ
⎞
⎠

1/ρ

,
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where D([s, t]) denotes the set of partitions on the interval [s, t]. As mentioned in [7, Remark 2.4], the condition that R

has finite ρ-variation for ρ ∈ [1,2) is (essentially) equivalent to (5.1) up to a deterministic time change. Then it is shown
in [16] that there exists a canonical continuous G3(Rd)-valued process X = (1,X1,X2,X3), where G3(Rd) stands for
the free nilpotent Lie group of order 3 endowed with the Carnot–Caratheodory distance d on G3(Rd), such that:

(i) X “lifts” the Gaussian process X in the sense π1(X) = X1
t − X1

0;
(ii) There exists C = C(ν) such that for all s < t in [0,1] and q ∈ [1,∞),

|Xst |Lq ≤ C
√

q|s − t |ν.

(iii) For all γ < ν there exists ε = ε(p, ν,C) > 0 such that

E
(
exp

(
ε|X|2γ

))
< ∞,

where |X|γ designates the γ -Hölder semi-norm of X.

5.2. Unweighted limit theorem

With the construction of Section 5.1 in hand, let us consider the second level X2 of the rough path above X considered as
a R

d×d -valued increment. In this subsection, we are interested in the convergence of the following random sum:

n−1∑
k=0

(
n2νX2

tk tk+1
− 1

2
Id

)
. (5.2)

Here Id stands for the identity matrix. It is clear that (5.2) is the generalization of the quadratic variation
∑n−1

k=0(|nνδ ×
Xtktk+1 |2 − 1) to a multi-dimensional setting. Moreover, the quantity (5.2) is related to the analysis of numerical schemes
for rough SDEs (see e.g. [30]).

The following assumption will be used heavily in our future computations.

Hypothesis 5.1. Consider a Gaussian process X whose covariance R satisfies (5.1). Suppose that X has stationary
increments in the sense that the variance of its increments is given by

E
(∣∣X1

st

∣∣2) = F
(|t − s|) ≥ 0,

with F continuous, nonnegative and with F(0) = 0. In addition, the following properties hold true:

(i) Either F ′′ ≥ 0 or F ′′ ≤ 0, in distributional sense on (0, T ). In other word, either F ′′ or −F ′′ is a nonnegative Radon
measure on (0, T ).

(ii) There exists a constant θ : 2 − 2ν ≥ θ > 1
2 such that

∣∣F ′′∣∣ ≤ C/tθ

holds true for t large, in distributional sense on (0, T ) for some C > 0.

Remark 5.2. Condition (i) in Hypothesis 5.1 says that the Gaussian process X1 has either negative or positive correlation,

that is, the covariance R
(u v

s t

)
has the same sign for all disjoint intervals [u,v] and [s, t]. Condition (ii) implies that the

correlation of two disjoint increments E(X1
s,s+hX

1
t,t+h) decays at a rate of |t − s|−θ , where h, s, t are such that t > s +h.

In terms of the covariance function, Condition (ii) implies the relation

R

(
s s + h

t t + h

)
≤ Ch2/|t − s|θ (5.3)

for |t − s| large. Examples of Gaussian processes satisfying Hypothesis 5.1 include (sums of) multi-dimensional fBms
with Hurst parameters ν ∈ ( 1

4 , 3
4 ). The readers are referred to [14] for a discussion on the properties of this type of

Gaussian processes.
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Let us now define some parameters that will appear in the limit of (5.2). Namely, denote by X
2,kl
st the (k, l)th element

of the matrix X2 for k, l ∈ N, and set:

λn
kl = n4ν

E
(
X

2,12
tk tk+1

X
2,12
tl tl+1

)
, ρn

kl = n4ν
E

(
X

2,12
tk tk+1

X
2,21
tl tl+1

)
. (5.4)

We will need the following hypothesis:

Hypothesis 5.3. Let ρkl , λkl be the sequences defined by (5.4). We assume that the following limit holds true:

λ = lim
n→∞

1

n

n−1∑
k,l=0

λn
kl, ρ = lim

n→∞
1

n

n−1∑
k,l=0

ρn
kl, (5.5)

where ρ and λ are finite constant. (This type of assumption also appears in [2], for instance.)

Remark 5.4. It is readily checked that Hypothesis 5.3 is satisfied for a 2-dimensional enhanced fractional Brownian
motion with Hurst parameter ν ∈ ( 1

4 , 1
2 ), and λ and ρ can be computed explicitly (see [30, Proposition 9.1], with λ and ρ

respectively replaced by P and Q).

With those preliminaries in hand, let us state the main result of this subsection.

Proposition 5.5. Let X = (1,X1,X2,X3) be the enhanced Gaussian process above the d-dimensional Gaussian process
X1. Suppose that Hypothesis 5.1 and Hypothesis 5.3 holds. Set

hn
st =


nt�−1∑
k=�ns�

(
n2νX2

tk tk+1
− 1

2
Id

)
(5.6)

for t ≥ 1
n

and hn
t = 0 for t < 1

n
. Then the finite dimensional distributions of (n− 1

2 hn,X) converge weakly to those of
(W,X), where W = (Wij ) is an m × m-dimensional Brownian motion, independent of X, such that

E
[
W

ij
t W

i′j ′
s

] = (λδii′δjj ′ + ρδij ′δji′)(t ∧ s). (5.7)

In formula (5.7), we have set δij = 1 if i = j and δij = 0 if i �= j . Furthermore, the quantities ρ and λ are defined by
relation (5.5).

We will state and prove several intermediate results, and then prove Proposition 5.5 at the end of the subsection. The
first of these lemmas concerns covariances of X2, for which we introduce some additional notation. Namely, we consider
the specific case when d = 2, and analyze the weak convergence of the two processes zn and z̃n defined by:

zn
t = n2ν


nt�∑
k=0

X
2,12
tk tk+1

, and z̃n
t = n2ν


nt�∑
k=0

X
2,21
tk tk+1

. (5.8)

We first prove a lemma on the moment convergence of zn, z̃n.

Lemma 5.6. Let X1,1 and X1,2 be two independent real-valued (incremental) Gaussian processes. We set the 2-
dimensional process X1 = (X1,1,X1,2) and consider the rough path X above X1, as in Proposition 5.5. Let zn and
z̃n be defined in (5.8). Suppose that Hypothesis 5.1 and Hypothesis 5.3 hold for X1. Then the following limits hold true:

lim
n→∞n−1

E
[∣∣zn

t

∣∣2] = λt and lim
n→∞n−1

E
[
zn
t z̃

n
t

] = ρt, (5.9)

where λ and ρ are defined in (5.5).

Proof. First, by the definition of zn and λn
kl it is readily checked that:

E
(∣∣zn

t

∣∣2) =

nt�∑
k,l=0

λn
kl. (5.10)
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Therefore, we can write

1

n
E

(∣∣zn
t

∣∣2) = t

nt�
nt

1


nt�

nt�∑
k,l=0

λn
kl .

Sending n → ∞ we obtain the first point in (5.9) thanks to relation (5.5). In the same way, we can show the convergence
of n−1

E[zn
t z̃

n
t ]. The proof is complete. �

In order to get our central limit theorem for the process zn, we will apply a corollary of the fourth moment theorem.
This relies on Malliavin calculus tools, for which we first introduce some basic notations.

Notation 5.7. We define the Hilbert space H as the completion of indicator functions with respect to the inner product
〈1[s,t],1[u,v]〉H = E(X

1,1
st X

1,1
uv ), where s, t, u, v ∈ [0,1]. Denote by H := {h : h(·, i) ∈ H, i = 1,2} the Hilbert space

defined by the following inner product:

〈h, h̄〉H = 〈
h(·,1), h̄(·,1)

〉
H + 〈

h(·,2), h̄(·,2)
〉
H. (5.11)

Then, it is readily checked that the Gaussian family {W(h) = ∫
h(·,1)δX1,1 + ∫

h(·,2)δX1,2 : h ∈ H} is an isonormal
Gaussian process, where we recall that (X1,1,X1,2) is our couple of independent Gaussian process and where

∫
f δX1,1

stands for the Wiener integral. The random variable W(h) is called the (first-order) Wiener integral of h with respect to
(X1,1,X1,2) and is also denoted by I1(h).

The operator I1 can be generalized to H⊗k . Indeed, for h = ∑n
j=1 fj ⊗ gj , where fj ∈ H and gj ∈ H⊗(k−1), we set

I1(h) = ∑n
j=1 I1(fj )gj . Since vectors in the form of h are dense in H⊗k , we see that I1 can be extended to a bounded

operator from H⊗k into L2(
,H⊗(k−1)). The reader is referred to Page 35 in [37] for details on this construction.
Denote by Ik the kth iteration of the integration operator I1, namely, Ik = I1 ◦ · · · ◦ I1. For h ∈H⊗q , Iq(h) is called the

qth-order Wiener integral of h.

Example 5.8. Since X1,1 and X1,2 are independent, for t ∈ [0,1] the random variable zn
t can be represented as a 2nd-

order Wiener integral. Indeed, define φn ∈ H⊗2 as follows:{
φn((u,2), (s,1)) = n2ν

∑
nt�
k=0 1tk≤u≤s≤tk+1

φn((u, i), (s, j)) = 0 for (i, j) �= (2,1).
(5.12)

We also denote by φ̃n the symmetrization of φn, that is,

φ̃n
(
(u, i), (s, j)

) = 1

2

(
φn

(
(u, i), (s, j)

) + φn
(
(s, j), (u, i)

))
. (5.13)

Then it is easily checked (see e.g. [13] and Page 23 in [40]) that

zn
t = I2

(
φn

) = I2
(
φ̃n

)
. (5.14)

Now that we have expressed zn
t as a multiple Wiener integral, we can use the 4th moment theorem in order to study its

limiting law. We thus recall the following result borrowed from Theorem 5.2.7 in [37]:

Proposition 5.9. Fix q ≥ 1. Let {zn = Iq(fn) = Iq(f̃n); n ≥ 1} be a sequence of centered random variables belonging to
the qth chaos of X1 = (X1,1,X1,2), where f̃n denotes the symmetrization of fn in H⊗q . Assume that

lim
n→∞E

[∣∣zn
∣∣2] = 1.

Then zn converges in distribution to a centered Gaussian random variable if and only if the following condition is met:

lim
n→∞‖f̃n ⊗r f̃n‖H⊗(2q−2r) = 0, for all r = 1, . . . , q − 1.

The reader is referred to [37, Appendix B.4] for the definition of the contraction f̃n ⊗r f̃n.
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In view of Proposition 5.9, Lemma 5.6 and Example 5.8, we are reduced to the analysis of the contraction ‖φ̃⊗1 φ̃‖H⊗2

in order to get our central limit theorem for zn, where φ̃n is defined by (5.13). This is what is done in the next lemma.

Lemma 5.10. Let the assumptions of Lemma 5.6 prevail, and consider zn
t = I2(φ̃

n) defined by (5.14). Then we have the
convergence

lim
n→∞n−2

∥∥φ̃n ⊗1 φ̃n
∥∥2
H⊗2 = 0. (5.15)

Proof. We will divide the proof in several steps. We denote e = ‖φ̃n ⊗1 φ̃n‖2
H⊗2 .

Step 1: An expression for e. Owing to relation (5.11) for the inner product in H, we have

φ̃n ⊗1 φ̃n = ϕn
1 + ϕn

2 , (5.16)

where

ϕn
1

(
(c,2), (d,2)

) = φ̃n
(
(c,2), (a,1)

) ⊗1 φ̃n
(
(d,2), (a,1)

)
and

ϕn
2

(
(c,1), (d,1)

) = φ̃n
(
(c,1), (a,2)

) ⊗1 φ̃
(
(d,1), (a,2)

)
,

and the other terms of ϕn
1 and ϕn

2 are null. Here the letter a designates the pairing for our inner product in H. Moreover,
owing to the definition (5.12) of φn and (5.13) of φ̃n one can check that:

ϕn
1

(
(c,2), (d,2)

) = 1

4
φn

(
(c,2), (a,1)

) ⊗1 φn
(
(d,2), (a,1)

)
ϕn

2

(
(c,1), (d,1)

) = 1

4
φn

(
(a,2), (c,1)

) ⊗1 φn
(
(a,2), (d,1)

)
.

(5.17)

Taking the operation ‖ · ‖2
H⊗2 on both sides of (5.16) and taking into account the expressions of ϕ1 and ϕ2 we obtain

e = 1

16

∥∥ϕn
1

(
(c,2), (d,2)

)∥∥2
H⊗2 + 1

16

∥∥ϕn
2

(
(c,1), (d,1)

)∥∥2
H⊗2

= 1

8

∥∥ϕn
1

(
(c,2), (d,2)

)∥∥2
H⊗2 . (5.18)

Here the letters c, d designate the pairing for our inner products in H⊗2.
We now decompose the term ϕn

1 in (5.18). To this aim, denote φn
k (u, s) = n2ν1tk≤u≤s≤tk+1 . Then by the definition

(5.12) of φn we have

φn
(
(u,2), (s,1)

) =

nt�∑
k=0

φn
k (u, s).

Plugging this formula into the expression (5.17) of ϕn
1 we obtain:

ϕn
1

(
(c,2), (d,2)

) = 1

4


nt�∑
k,k′=0

φn
k (c, a) ⊗1 φn

k′(d, a), (5.19)

where we recall that a is the letter used for the pairing in H. Next we compute the H⊗2-norm of ϕn
1 thanks to relation

(5.19). Taking into account formula (5.18), this yields:

e = 1

128

∑
(k1,k2,k3,k4)∈M

c(k1, k2, k3, k4), (5.20)

where we denote

c(k1, k2, k3, k4) = 〈
φn

k1
(d, a) ⊗1 φn

k4
(c, a),φn

k3
(d, b) ⊗1 φn

k2
(c, b)

〉
H⊗2, (5.21)

and where M is the set of indices M = {0,1, . . . , 
nt�}4.
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Step 2: Decomposition of e. We will now split the summation in (5.20) according to convenient subsets of M . We thus
introduce an additional notation, valid for all subsets M ′ ⊂ M :

e
(
M ′) = 1

128

∑
(k1,k2,k3,k4)∈M ′

c(k1, k2, k3, k4). (5.22)

Next for i = 0, . . . ,4 we define the following subsets of indices:

Mi = {
(k1, k2, k3, k4) ∈ M : exactly i of the pairs

(
j, j ′) ∈P satisfy |kj − kj ′ | ≤ 2

}
,

where we denote P = {(1,3), (1,4), (2,3), (2,4)}. Then we can decompose e as:

e =
4∑

i=0

e(Mi). (5.23)

So to prove (5.15), we are now reduced to show that n−2e(Mi) tends to 0 for i = 0, . . . ,4.
Step 3: Computations for e(M1). Let us approximate the functions n2ν1tk≤u<s≤tk+1 in the definition of φn

k by sums of
indicators of rectangles. Namely, for k ≤ 
nt� we set

φ
n,�
k (u, s) = n2ν

�−1∑
i=0

1[tk,tk+ i
n�

](u) × 1[tk+ i
n�

,tk+ i+1
n�

](s) (5.24)

= n2ν

�−1∑
i=0

1[tk+ i
n�

,tk+ i+1
n�

](u) × 1[tk+ i+1
n�

,tk+1](s). (5.25)

Note that we have φn
k ∈H⊗2 and the following approximation result holds true:

lim
�→∞

∥∥φn
k − φ

n,�
k

∥∥
H⊗2 = 0. (5.26)

We now compute e(M11) for a given subset M11 ⊂ M1. Namely, denote

Iij = {
(k1, k2, k3, k4) ∈ M : |ki − kj | > 2

}
(5.27)

and set M11 = I13 ∩ I14 ∩ I23 ∩ I c
24. It is clear that M11 ⊂ M1. Now consider (k1, k2, k3, k4) ∈ M11. By (5.26), the

expression (5.24) of φ
n,�
k and (5.21) we have

∣∣c(k1, k2, k3, k4)
∣∣ = lim

�→∞ lim
�′→∞

∣∣〈φn
k1

(d, a) ⊗1 φ
n,�
k4

(c, a),φn
k3

(d, b) ⊗1 φ
n,�′
k2

(c, b)
〉
H⊗2

∣∣

≤ n2ν lim
�→∞ lim

�′→∞

�−1∑
i=1

�′−1∑
i′=1

∣∣c̃(i, i′)∣∣∣∣〈1[tk4 ,tk4 + i′
n�

](c),1[tk2 ,tk2 + i
n�′ ](c)

〉
H

∣∣,
where

c̃
(
i, i′

) = n2ν
〈
φn

k1
(d, a) ⊗1 1[tk4 + i′

n�
,tk4 + i′+1

n�
](a),1[tk2 + i

n�′ ,tk2 + i+1
n�′ ](b) ⊗1 φn

k3
(d, b)

〉
H.

Notice that, thanks to Cauchy–Schwarz inequality, for all i, i′ ≤ l − 1 we have∣∣〈n2ν1[tk4 ,tk4 + i′
n�

],1[tk2 ,tk2 + i
n�′ ]

〉
H

∣∣ ≤ 1. (5.28)

We thus get

∣∣c(k1, k2, k3, k4)
∣∣ ≤ lim

�→∞ lim
�′→∞

�−1∑
i=1

�′−1∑
i′=1

∣∣c̃(i, i′)∣∣.
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In order to evaluate c̃(i, i′), observe that, thanks to Hypothesis 5.1(i) and the fact that (k1, k2, k3, k4) ∈ M11, the
quantities c̃(i, i′) have the same sign for all i, i′ = 1, . . . , � − 1. Denoting ψk = 1[k,k+1] and φk = 1k≤u≤s≤k+1, we thus
get

∣∣c(k1, k2, k3, k4)
∣∣ ≤ lim

�→∞ lim
�′→∞

∣∣∣∣∣
�−1∑
i=1

�′−1∑
i′=1

c̃
(
i, i′

)∣∣∣∣∣
= ∣∣〈φk1(d, a) ⊗1 ψk4(a),ψk2(b) ⊗1 φk3(d, b)

〉
H

∣∣
≤ ∣∣〈〈ψk1(d)ψk1(a),ψk4(a)

〉
H,

〈
ψk2(b),ψk3(d)ψk3(b)

〉
H

〉
H

∣∣
= ∣∣〈ψk4,ψk1〉H

∣∣ · ∣∣〈ψk3,ψk1〉H
∣∣ · ∣∣〈ψk2,ψk3〉H

∣∣. (5.29)

In (5.29), notice that we can replace the simplex indicator φk(u, s) by ψn
k ⊗ ψn

k (s, u) = 1[k,k+1]2(s, u) due to the fact that
each of the three pairs (k1, k4), (k2, k3), and (k1, k3) are disjoint and also Hypothesis 5.1(i). Furthermore, applying (5.3)
to relation (5.29) with u = 1 we obtain∣∣c(k1, k2, k3, k4)

∣∣ ≤ K|k1 − k4|−θ |k1 − k3|−θ |k2 − k3|−θ , (5.30)

where 1
2 < θ ≤ 2 − 2ν. Applying this estimate to (5.22) with M ′ = M11 we obtain

e(M11) ≤ K
∑

(k1,k2,k3,k4)∈M11

|k1 − k4|−θ |k1 − k3|−θ |k2 − k3|−θ .

It is now easy to show from this estimate that

n−2e(M11) ≤ Kn−θ → 0 as n → ∞, (5.31)

which is our desired estimate for e(M11).
In order to conclude for the term e(M1), set

M12 = I13 ∩ I14 ∩ I c
23 ∩ I24, M13 = I13 ∩ I c

14 ∩ I23 ∩ I24, M14 = I c
13 ∩ I14 ∩ I23 ∩ I24.

Similarly to what we have done above, we can show that the convergence (5.31) still holds when M11 is replaced by M1i ,
for i = 2,3,4. Noticing that M1 = ⋃4

i=1 M1i , we conclude that

lim
n→∞n−2e(M1) = 0.

Step 4: Computations for e(M2) – Part 1. As in the case of M1, we will decompose e(M2) in several terms and analyze
them individually. To start with, set M21 = I c

13 ∩ I14 ∩ I23 ∩ I c
24, where we recall that Iij is defined by (5.27). Along the

same lines as the proof of Step 3, for (k1, k2, k3, k4) ∈ M21 we can show that∣∣c(k1, k2, k3, k4)
∣∣ ≤ K|k2 − k3|−θ |k1 − k4|−θ ≤ K|k2 − k3|−2θ , (5.32)

where the last relation stems from the fact that |k1 − k3| ≤ 2 and |k2 − k4| ≤ 2. Let us highlight the following difference
between the term e(M21) and e(M11): in order to handle e(M21), since now both |k1 −k3| and |k2 −k4| are smaller than 3,
we need to apply the approximation (5.24) for each of φn

k1
, φn

k2
, φn

k3
and φn

k4
. Then applying relation (5.32) to (5.22) with

M = M21 and invoking the fact that #M21 = O(n2) and
∑

j≥1 |j |−2θ < ∞, we obtain

n−2e(M21) ≤ Kn−1 → 0 as n → ∞.

In a similar way we can show that this convergence still holds for M22 := I13 ∩ I c
14 ∩ I c

23 ∩ I24.
Step 5: Computations for e(M2)-Part 2. We now deal with a slightly different kind of term involved in e(M2). Namely,

set M23 = I c
13 ∩ I14 ∩ I c

23 ∩ I24 and take (k1, k2, k3, k4) ∈ M23. Owing to relation (5.26) we have

∣∣c(k1, k2, k3, k4)
∣∣ = lim

�→∞ lim
�′→∞

∣∣〈φn,�
k1

(d, a) ⊗1 φn
k4

(c, a),φ
n,�′
k2

(c, b) ⊗1 φn
k3

(d, b)
〉
H⊗2

∣∣.
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We now use expression (5.24) for φ
n,�
k1

and expression (5.25) for φ
n,�′
k2

. This yields:

∣∣c(k1, k2, k3, k4)
∣∣ ≤ n2ν lim

�→∞ lim
�′→∞

�−1∑
i=0

�′−1∑
i′=0

∣∣ĉ(i, i′)∣∣ · ∣∣〈1[tk1 ,tk1 + i′
n�

](d)1[tk2+ i+1
n�′ ,tk2+1](b),φn

k3
(d, b)

〉
H⊗2

∣∣, (5.33)

where

ĉ
(
i, i′

) = n2ν
〈〈

1[tk1+ i′
n�

,tk1 + i′+1
n�

](a),φn
k4

(c, a)
〉
H,1[tk2+ i

n�′ ,tk2+ i+1
n�′ ](c)

〉
H.

We now observe two facts:

(i) Since |k1 − k4| > 2 and |k2 − k4| > 2, and resorting to Hypothesis 5.1(i), we have ĉ(i, i′) ≥ 0 for all i = 1, . . . , � − 1,
i′ = 1, . . . , �′ − 1.

(ii) Similarly to (5.28), we can apply Cauchy–Schwarz inequality in order to get∣∣〈n2ν1[tk1 ,tk1 + i′
n�

](d)1[tk2+ i+1
n�

,tk2+1](b),φn
k3

(d, b)
〉
H⊗2

∣∣ ≤ 1.

Plugging this information into (5.33) we obtain

∣∣c(k1, k2, k3, k4)
∣∣ ≤ lim

�→∞ lim
�′→∞

∣∣∣∣∣
�−1∑
i=0

�′−1∑
i′=0

ĉ
(
i, i′

)∣∣∣∣∣ = ∣∣〈〈φk1(a),φk4(c, a)
〉
H, φk2(c)

〉
H

∣∣.
We can now proceed by enlarging the simplex {tk ≤ u ≤ s ≤ tk+1} to a rectangle [tk, tk+1]2 as in (5.29), and using the
bound (5.3) as in (5.30). We end up with:∣∣c(k1, k2, k3, k4)

∣∣ ≤ K|k2 − k4|−θ |k1 − k4|−θ .

It is now easy to show by this estimate, expression (5.22), and the fact that |ki − kj | ≤ 4 for i, j ∈ {1,2,3} that

n−2e(M23) ≤ Kn−1 → 0 as n → ∞.

We can easily extend the considerations above in order to get a similar convergence for e(M2i ), i = 4,5,6, where

M24 = I c
13 ∩ I c

14 ∩ I23 ∩ I24, M25 = I13 ∩ I c
14 ∩ I23 ∩ I c

24, M26 = I13 ∩ I14 ∩ I c
23 ∩ I c

24.

In summary of Step 4 and 5 and noticing that M2 = ⋃6
i=1 M2i , we obtain the convergence:

lim
n→∞n−2e(M2) =

6∑
i=1

lim
n→∞n−2e(M2i ) = 0.

Step 6: Computations for e(M0). Take now (k1, k2, k3, k4) ∈ M0. Then as before, by assumption (5.3) we obtain∣∣c(k1, k2, k3, k4)
∣∣ ≤ K|k1 − k4|−θ |k1 − k3|−θ |k2 − k3|−θ |k2 − k4|−θ .

It is easy to show from this estimate and expression (5.22) that

n−2e(M0) ≤ Kn1−2θ → 0 as n → ∞.

Step 7: Computations for e(M3 ∪ M4). Finally, we consider the case when (k1, k2, k3, k4) ∈ M3 ∪ M4. In order to get
an estimate for e(M3 ∪ M4), we first note that #(M3 ∪ M4) ≤ 19n. On the other hand, a simple application of Cauchy–
Schwarz inequality yields the relation |c(k1, k2, k3, k4)| ≤ 1 for all (k1, k2, k3, k4) ∈ M3 ∪ M4. Therefore, we obtain

n−2e(M3 ∪ M4) ≤ Kn−1 → 0 as n → ∞.

Gathering the estimates we have obtained in Steps 3 to 7 and recalling the decomposition (5.23), the proof of our claim
(5.15) is now complete. �

Proof of Proposition 5.5. According to the fourth moment method applied to the second chaos H⊗2 introduced in
Notation 5.7, we are reduced to show the following facts:
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(i) For any L ≥ 1, the covariance matrix of

(
n− 1

2
(
hn

0r1
, . . . , hn

0rL

)
,X1

r1
, . . . ,X1

rL

)
converges to that of(

(Wr1, . . . ,WrL),X1
r1

, . . . ,X1
rL

)
.

(ii) The following weak convergence holds true for all i, j = 1, . . . ,m, l = 1, . . . ,L:

n− 1
2 h

n,ij

0rl
⇒ W

ij
rl .

Note that we have recalled the fourth moment method for 1-d sequences of random variables in Proposition 5.9. We refer
to [37] for more details about the fourth moment method for random vectors in a fixed chaos, and we now focus on the
proof of item (i) and (ii).

The weak convergence (ii) of h
n,ij

0rl
for i �= j follows immediately from Lemma 5.10 and Proposition 5.9. In the case

when i = j , (ii) follows from the classical results in [5], see also Section 7.4 in [37]. In the following, we show the

convergence of the covariance E(h
n,ij

0rl
h

n,i′j ′
0rl′ ).

We start by studying E(h
n,ij

0rl
h

n,i′j ′
0rl′ ) when rl = rl′ . In this case, whenever (i, j) = (i′, j ′) or (i, j) = (j ′, i′), the con-

vergence of E(h
n,ij

0rl
h

n,i′j ′
0rl

) follows from Lemma 5.6. In the case (i, j) �= (i′, j ′) and (i, j) �= (j ′, i′), the covariance

E(h
n,ij

0rl
h

n,i′j ′
0rl

) is simply equal to 0.

Let us now assume that rl > rl′ . Since E(h
n,ij

0rl
h

n,i′j ′
0rl′ ) = 1

2 (E(h
n,ij

0rl
h

n,i′j ′
0rl′ ) +E(h

n,ij

0rl′ h
n,i′j ′
0rl

)), we can reduce this case to
the previous study by invoking the following identity:

E
(
h

n,ij

0rl
h

n,i′j ′
0rl′

) = 1

2

(
E

[
h

n,ij

0rl
h

n,i′j ′
0rl

] +E
[
h

n,ij

0rl′ h
n,i′j ′
0rl′

] −E
[
δh

n,ij
rl′ rl δh

n,i′j ′
rl′ rl

])
. (5.34)

Then thanks to Lemma 5.6, the first two terms on the right-hand side of (5.34) converge to (λδii′δjj ′ + ρδij ′δji′)rl and

(λδii′δjj ′ + ρδij ′δji′)rl′ . In order to treat the term E[δhn,ij
rl′ rl δh

n,i′j ′
rl′ rl ], note that δh

n,ij
rl′ rl δh

n,i′j ′
rl′ rl is equal to h

n,ij

rl�−
rl′ �h

n,i′j ′

rl�−
rl′ �

in distribution, where recall that 
rl� and 
rl′ � denote respectively the integer part of rl and rl′ . So by Lemma 5.6 the third
term converges to (λδii′δjj ′ + ρδij ′δji′)(rl − rl′). Summarizing our last considerations, we easily get:

lim
n→∞

1

n
E

(
h

ij
rl h

i′j ′
rl′

) = (λδii′δjj ′ + ρδij ′δji′)rl′ .

The proof is complete. �

5.3. Weighted limit theorem

Let X be the enhanced Gaussian process defined as in Section 5.1. With the preparation in the previous subsection, we

now consider the convergence of the discrete integral n− 1
2 J 1

0 (y;hn) with hn defined in (5.6), where (y, y′, . . . , y(�−1)) is
a discrete process controlled by (X,α).

Let us recall some basic facts about the range of our parameters. First, the covariance R satisfies (5.1), and we consider
a parameter ν = 1

2ρ
. Since we assume that ρ = [1,2), we also have ν ∈ ( 1

4 , 1
2 ]. Then the coefficient α is dictated by the

regularity type estimate (5.9), namely α = 1
2 . Eventually the order � of the controlled process y is such that ν� + 1

2 > 1,
which yields � = 2 in our setting.

We start by giving some uniform bounds on J (X1;hn).

Lemma 5.11. The following relations holds true:

n− 1
2
∣∣J t

s

(
X1;hn

)∣∣
L2

≤ K(t − s)ν+ 1
2 , n− 1

2

∣∣∣∣∣
m−1∑
j=0

J sj+1
sj

(
X1;hn

)∣∣∣∣∣
L2

≤ Km−ν . (5.35)

Proof. The estimate (5.35) is obtained in a similar way as in those in Lemma 4.5. We just observe that the non diagonal
terms of the matrix hn will be handled by approximating the indicator function of the simplex by indicator functions of
rectangles, similarly to what we did in the proof of Lemma 5.10. The details are omitted. �
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Theorem 5.12. Let X and hn be as in Proposition 5.5, with ν ∈ ( 1
4 , 1

2 ]. Let y be a controlled process of order � = 2. Then
the following stable f.d.d. convergence holds true:

n− 1
2 J

(
y;hn

) →
∫

yr ⊗ dWr, (5.36)

where W is the Wiener process introduced in Proposition 5.5, and where the integral
∫ t

s
yr ⊗ dWr has to be understood

in the Wiener sense.

Proof. In order to show the convergence (5.36) we invoke Theorem 3.8. We first note that inequality (2.13) holds true

thanks to the first relation in (5.35). Furthermore, the convergence of (X,n− 1
2 hn) follows from Proposition 5.5. Finally,

relation (3.13) is a consequence of the second relation in (5.35). Therefore, applying Theorem 3.8 we obtain the desired
convergence (5.36). �
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