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Abstract We study a least square-type estimator for an unknown parameter in the drift coef-
ficient of a stochastic differential equation with additive fractional noise of Hurst parameter
H > 1/2. The estimator is based on discrete time observations of the stochastic differential
equation, and using tools from ergodic theory and stochastic analysis we derive its strong
consistency.
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1 Introduction and main results

In this article, we will consider the following R
d -valued stochastic differential equation (SDE)

Yt = y0 +
t∫

0

b(Ys;ϑ0) ds +
m∑

j=1

σ j B j
t , t ∈ [0, T ]. (1)

Here y0 ∈ R
d is a given initial condition, B = (B1, . . . , Bm) is an m-dimensional fractional

Brownian motion (fBm) with Hurst parameter H ∈ (0, 1), the unknown parameter ϑ0 lies
in a certain set � which will be specified later on, {b(·;ϑ), ϑ ∈ �} is a known family of

S. Tindel is member of the BIGS (Biology, Genetics and Statistics) team at INRIA.

A. Neuenkirch (B)
Institut für Mathematik, Universität Mannheim, A5, 6, 68131 Mannheim, Germany
e-mail: neuenkirch@kiwi.math.uni-mannheim.de

S. Tindel
Institut Élie Cartan, Université de Lorraine, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
e-mail: samy.tindel@univ-lorraine.fr

123



100 Stat Inference Stoch Process (2014) 17:99–120

drift coefficients with b(·;ϑ) : R
d → R

d , and σ1, . . . , σm ∈ R
d are assumed to be known

diffusion coefficients.
Let us recall that B is a centered Gaussian process defined on a complete probability space

(�, F, P). Its law is thus characterized by its covariance function, which is defined by

E
(
Bi

t B j
s
) = 1

2

(
t2H + s2H − |t − s|2H

)
1{0}(i − j), s, t ∈ R.

The variance of the increments of B is then given by

E |Bi
t − Bi

s |2 = |t − s|2H , s, t ∈ R, i = 1, . . . , m,

and this implies that almost surely the fBm paths are γ -Hölder continuous for any γ < H .
Furthermore, for H = 1/2, fBm coincides with the usual Brownian motion, converting
the family {B H , H ∈ (0, 1)} into the most natural generalization of this classical process.
Applications for SDEs driven by fractional Brownian motion can be found in various fields,
which include electrical engineering, biophysics or financial modeling, see e.g. Bender et al.
(2008), Denk et al. (2001), Kou (2008).

In the current article we assume that the Hurst coefficient satisfies H > 1/2 and we focus
on the estimation of the unknown parameter ϑ0 ∈ �. Note that the Hurst parameter and
the diffusion coefficients can be estimated via the quadratic variation of Y , see e.g. Bégyn
(2005), Coeurjolly (2001), Istas and Lang (1994) and also Remark 4.6.

Estimators for the unknown parameter in Eq. (1) based on continuous observation of Y have
been studied e.g. in Belfadli et al. (2011), Hu and Nualart (2010), Kleptsyna and Le Breton
(2002), Le Breton (1998), Papavasiliou and Ladroue (2011), Prakasa Rao (2010), Tudor
and Viens (2007). Estimators based on discrete time data, which are important for practical
applications, are then obtained via discretization. However, to the best of our knowledge no
genuine estimators based on discrete time data have been analyzed yet.

We propose here a least square estimator for ϑ0 based on discrete observations of the
process Y at times {tk; 0 ≤ k ≤ n}. For simplicity, we shall take equally spaced observation
times with tk+1 − tk = κ n−α := αn with given α ∈ (0, 1), κ > 0. We call our method least
square-type procedure, insofar as we consider a quadratic statistics of the form

Qn(ϑ) = 1

nα2
n

n−1∑
k=0

(∣∣δYtk tk+1 − b(Ytk ;ϑ)αn
∣∣2 − ‖σ‖2α2H

n

)
, (2)

where δYu1u2 := Yu2 − Yu1 for any 0 ≤ u1 ≤ u2 ≤ T and ‖σ‖2 = ∑m
j=1 |σ j |2.

Let us now describe the assumptions under which we shall work, starting from a standard
hypothesis on the parameter set �:

Hypothesis 1.1 The set � is compactly embedded in R
q for a given q ≥ 1.

In order to describe the assumptions on our coefficients b, we will use the following
notation for partial derivatives:

Notation 1.2 Let f : R
d × � → R be a C p1,p2 function for p1, p2 ≥ 1. Then for any tuple

(i1, . . . , i p) ∈ {1, . . . , d}p , we set ∂
i1...i p
x f for ∂ p f

∂xi1 ...∂xi p
. Analogously, we use the notation

∂
i1...i p
ϑ f for ∂ p f

∂ϑi1 ...∂ϑi p
for (i1, . . . , i p) ∈ {1, . . . , q}p . Moreover, we will write ∂x f resp. ∂ϑ f

for the Jacobi-matrices (∂x1 f, . . . , ∂xd f ) and (∂ϑ1 f, . . . , ∂ϑq f ).
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With this notation in mind, our drift coefficients and their derivatives will satisfy a polyno-
mial growth condition, plus an inward condition (also called one-sided dissipative Lipschitz
condition) which is traditional for estimation procedures in the Brownian diffusion case, see
e.g. Florens-Zmirou (1989), Kasonga (1988):

Hypothesis 1.3 We have b ∈ C1,1(Rd × �; R
d) and there exist constants c1, c2 > 0 and

N ∈ N such that:

(i) For every x, y ∈ R
d and ϑ ∈ � we have

〈b(x;ϑ) − b(y;ϑ), x − y〉 ≤ −c1|x − y|2.
(ii) For every x ∈ R

d and ϑ ∈ � the following growth bounds are satisfied:

|b(x;ϑ)|≤c2

(
1+|x |N

)
, |∂x b(x;ϑ)|≤c2

(
1+|x |N

)
, |∂ϑb(x;ϑ)|≤c2

(
1+|x |N

)
.

As a consequence of the above assumptions on the drift coefficient and the initial condition,
for given ϑ0 ∈ � the solution of Eq. (1) converges for t → ∞ almost surely to a stationary
and ergodic stochastic process (Y t , t ≥ 0), see the next section.

Finally, we also assume that our drift coefficient is of gradient-type, i.e.:

Hypothesis 1.4 There exists a function U ∈ C2,1(Rd × �; R) such that

∂xU (x;ϑ) = b(x;ϑ), x ∈ R
d , ϑ ∈ �.

With those assumptions in mind, we obtain the following convergence result:

Theorem 1.5 Assume that the Hypotheses 1.1, 1.3 and 1.4 are satisfied for Eq. (1) and that
we moreover have H > 1/2. Let Qn(ϑ) be defined by (2). Then we have

sup
ϑ∈�

∣∣(Qn(ϑ) − Qn(ϑ0)) − (
E |b(Y 0;ϑ)|2 − E|b(Y 0;ϑ0)|2

)∣∣ → 0 (3)

in the P-almost sure sense.

This convergence is in contrast to the case H = 1/2, i.e. to the case of SDEs with additive
Brownian noise. There it holds

sup
ϑ∈�

∣∣(Qn(ϑ) − Qn(ϑ0)) − E
[|b(Y 0;ϑ) − b(Y 0;ϑ0)|2

]∣∣ → 0 (4)

in the P-almost sure sense, and usually the consistent least squares estimator (which coincides
also with a particular minimum contrast estimator)

argminϑ∈�

n−1∑
k=0

∣∣δYtk tk+1 − b(Ytk ;ϑ)αn
∣∣2

,

is considered, see e.g. Florens-Zmirou (1989), Kasonga (1988), Kessler (2000).

Remark 1.6 The difference in the limits (3) and (4) is due to the higher smoothness and
long-range dependence of fractional Brownian motion for H > 1/2. In order to give an
intuition of this fact, let us focus on the case m = d = 1 and σ = 1. Then first note that

n−1∑
k=0

∣∣δYtk tk+1 − b(Ytk ;ϑ)αn
∣∣2 −

n−1∑
k=0

∣∣δYtk tk+1 − b(Ytk ;ϑ0)αn
∣∣2

= −2
n−1∑
k=0

[
b(Ytk ;ϑ) − b(Ytk ;ϑ0)

]
αnδYtk tk+1 +

n−1∑
k=0

[
b(Ytk ;ϑ)2 − b(Ytk ;ϑ0)

2] α2
n .
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Furthermore, up to higher order terms, Eq. (1) yields

δYtk tk+1 ≈ b(Ytk ;ϑ0)αn + δBtk tk+1 .

Inserting the above relations into the definition (2) of Qn we end up with

Qn(ϑ) − Qn(ϑ0)

≈ 1

n

n−1∑
k=0

|b(Ytk ;ϑ0) − b(Ytk ;ϑ)|2 + 2

nαn

n−1∑
k=0

(b(Ytk ;ϑ0) − b(Ytk ;ϑ))δBtk tk+1 . (5)

Let us now separate the Brownian case from the situation where H > 1/2:

(a) When B is a Brownian motion, the independence of its increments gives

E [Qn(ϑ) − Qn(ϑ0)] ≈ 1

n

n−1∑
k=0

E
[|b(Ytk ;ϑ0) − b(Ytk ;ϑ)|2] ,

while our ergodicity result, i.e. Proposition 2.3, yields

1

n

n−1∑
k=0

E
[|b(Ytk ;ϑ0) − b(Ytk ;ϑ)|2] −→ E

[|b(Y 0;ϑ0) − b(Y 0;ϑ)|2] .

Plugging those two relations into (5), this illustrates why (4) holds true in the Brownian
motion case.

(b) In contrast, for H > 1/2 we have

E [Qn(ϑ) − Qn(ϑ0)] ≈ 1

n

n−1∑
k=0

E
[|b(Ytk ;ϑ0) − b(Ytk ;ϑ)|2]

+ 2

nαn

n−1∑
k=0

E
[
(b(Ytk ;ϑ0) − b(Ytk ;ϑ))δBtk tk+1

]
. (6)

Now the first term in the right hand side of (6) still converges to E[|b(Y 0;ϑ0)− b(Y 0;ϑ)|2],
but the dependence structure of our driving fBm B induces some non-negligible correction
terms which are reflected in our formula (3). An important part of our computations below
is devoted to quantify those correction terms.

Let us now explain how to obtain an estimation procedure from Theorem 1.5. In the
classical least square setting, one should minimize Qn(ϑ), which is equivalent to minimizing
Qn(ϑ)−Qn(ϑ0). Convergence of the minimizer to the unknown parameter is then guaranteed
by Proposition 4.1 below. However, in our case the parameter ϑ0 can only be seen as a
minimizer of |Q∞(ϑ)| for which |Q∞(ϑ0)| = 0, under an additional assumption on the
sampling step size αn . This leads to a different estimation procedure. Furthermore, in order
to ensure that the set of conditions in Proposition 4.1 is satisfied in our case, some additional
constraints on our parameters and coefficients will be given below. The first one is a natural
identifiability assumption similar to Assumption A6 in Kessler (2000):

Hypothesis 1.7 For any ϑ0 ∈ �, we have

E |b(Y 0;ϑ0)|2 = E|b(Y 0;ϑ)|2 iff ϑ = ϑ0.
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The condition on the sampling size αn we have mentioned above, which is required to
control the contribution of the quadratic variation of the fractional Brownian motions, is the
following:

Hypothesis 1.8 We have 0 < α < min
{

1
4

1
1−H , 1

}
.

Notice that Hypothesis 1.8 is only a mild restriction. Indeed, since we will work under the
assumption H > 1/2, the choices α = 1/2 or α = H are always possible. Note also that for
H > 3/4 the above condition simply reads as α ∈ (0, 1), so is in fact no restriction.

With these additional hypotheses, the main result of the current article is the consistency
of the least squares-type estimator based on the statistics |Qn |:
Theorem 1.9 Assume that the Hypotheses 1.1, 1.3, 1.4, 1.7 and 1.8 are satisfied for Eq. (1)
and let H > 1/2. Let Qn(ϑ) be defined by (2), and let ϑ̂n = argminϑ∈� |Qn(ϑ)|. Then for
any ϑ0 ∈ �, we have limn→∞ ϑ̂n = ϑ0 in the P-almost sure sense.

Let us shortly compare Theorem 1.9 with the existing literature on estimation procedures
for fBm driven equations:

(i) Most of the previous results, see e.g. Belfadli et al. (2011), Hu and Nualart (2010),
Kleptsyna and Le Breton (2002), Prakasa Rao (2010), deal with the one-dimensional
fractional Ornstein-Uhlenbeck process in a continuous observation setting. In particular,
for this process simple continuous time least-square estimators are obtained in Belfadli
et al. (2011), Hu and Nualart (2010), for which also convergence rates and asymptotic
error distributions are derived. Compared to these results our estimation procedure
covers a broad class of ergodic multi-dimensional equations and relies on discrete data
only.

(ii) A general estimation procedure based on moment matching is established in Papavasil-
iou and Ladroue (2011). However, the main assumption in Papavasiliou and Ladroue
(2011) is that many independent observations of sample paths over a short time inter-
val are available, which is not the case in many practical situations where rather one
sample path is discretely observed for a long time period. Let us also mention the
article Chronopoulou and Tindel (2011), in which a general discrete data maximum
likelihood type procedure has been designed for parameter estimation in both the drift
and diffusion coefficients, however without proof of consistency.

(iii) Our current work probably compares best with the maximum likelihood estimator
analyzed in Tudor and Viens (2007). The latter pioneering reference focused on one-
dimensional SDEs of the form

dYt = ϑ0h(Yt ) dt + d Bt

with h : R → R satisfying suitable regularity assumptions. Strong consistency is
obtained for the continuous time estimator and also for a discretized version of the
estimator. However, the discretized estimator involves rather complicated operators
related to the kernel functions arising in the Wiener-integral representation of fBm,
which are avoided in our approach. Moreover, in contrast to Tudor and Viens (2007)
the consistency proof for our estimator does not rely on Malliavin calculus methods.

So, in view of the existing results in the literature, Theorem 1.9 can be seen a step towards
simple and implementable parameter estimation procedures for SDEs driven by fBm. Note
that in the case of the fractional Ornstein-Uhlenbeck process a central limit theorem similar to
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Hu and Nualart (2010) could be obtained using the now classical tools for random variables
in a finite Gaussian chaos, see e.g. Nualart and Peccati (2005). However, in the general case
of a non-linear drift such a theorem remains an open question and would require first a central
limit theorem version of the ergodicity result given in Proposition 2.3.

Finally, let us comment on the assumptions we have imposed on the drift coefficient and
on the Hurst parameter:

(a) The hypotheses of Theorem 1.5 are standard for the case H = 1/2, except Hypothesis 1.4
which restricts us to gradient-type drift coefficients. We require this condition to show
an ergodic-type result for weighted sums of the increments of fBm, see Lemma 3.4.
However, this Hypothesis 1.4 is also implicitly present in the additional condition of
Theorem 1 in Kasonga (1988).

(b) It can easily be shown that whenever ϑ is a one-dimensional coefficient (namely for
q = 1), Hypothesis 1.7 is satisfied if the drift coefficient is of the form b(x;ϑ) = ϑh(x)

for some h : R
d → R

d and the stationary solution is non-degenerate, i.e. we have
E|Y 0|2 �= 0. The latter conditions hold in particular in the case of the ergodic fractional
Ornstein-Uhlenbeck process. It would be nice to obtain criteria for richer classes of
examples, but this would rely on differentiability and non-degeneracy properties of the
map ϑ �→ E|b(Y 0;ϑ)|2 (see Hairer and Majda 2010 in the Markovian case). We wish
to investigate this question in future works.

(c) Even if the noise enters additively in our equation, we still need the assumption H > 1/2
in order to prove Theorem 1.9. Indeed, this hypothesis ensures the convergence of some
deterministic and stochastic Riemann sums in the computations below (see Remark 3.5
for further details). Whether an adaptation of the proposed zero squares estimator is also
convergent in the case H < 1/2 remains an open problem.

Let us finish this introduction with the simplest example of an equation which satisfies
the above assumptions, namely the one-dimensional fractional Ornstein-Uhlenbeck process:

Proposition 1.10 Consider the solution Y to the linear equation

dYt = ϑ0Yt dt + d Bt , Y0 = y0 ∈ R, (7)

with ϑ0 < 0. Then for n ≥ n0(ω) large enough, the least square-type estimator of ϑ takes
the form

ϑ̂n = s(2)
n

s(3)
n

−
√√√√

(
s(2)

n

s(3)
n

)2

− s(1)
n

s(3)
n

,

where

s(1)
n =

n−1∑
k=0

(|δYtk tk+1 |2 − α2H
n

)
, s(2)

n =
n−1∑
k=0

Ytk δYtk tk+1αn, s(3)
n =

n−1∑
k=0

|Ytk |2α2
n . (8)

This estimator is consistent.

Clearly, this estimator is a simple function of the observations, analogously to Tudor and
Viens (2007), Hu and Nualart (2010). Moreover, in the proof of the above result we will see
that our estimator is in general only asymptotically unique.

The remainder of this article is structured as follows: In Sect. 2 we give some auxiliary
results on stochastic calculus for fractional Brownian motion. Sections 3 and 4 are then
devoted to the proof of our main theorems.

123



Stat Inference Stoch Process (2014) 17:99–120 105

2 Auxiliary results

2.1 Ergodic properties of the SDE

To deduce the ergodic properties of SDE (1) we will use the theory of random dynamical
systems, see Arnold (1997). We will work without loss of generality on the canonical prob-
ability space (�, F, P), i.e. � = C0(R, R

m) equipped with the compact open topology, F
is the corresponding Borel-σ -algebra and P is the distribution of the fractional Brownian
motion B, which is consequently given here by the canonical process Bt (ω) = ω(t), t ∈ R.
Together with the shift operators θt : � → � defined by

θtω(·) = ω(· + t) − ω(t), t ∈ R, ω ∈ �,

the canonical probability space is an ergodic metric dynamical system, see e.g. Garrido-
Atienza and Schmalfuss (2011). In particular, the measure P is invariant to the shift operators
θt , i.e. the shifted process (Bs(θt ·))s∈R is still an m-dimensional fractional Brownian motion
and for any integrable random variable F : � → R we have

lim
T →∞

1

T

T∫

0

F(θt (ω)) dt = E[F],

for P-almost all ω ∈ �.
These ergodic properties of fractional Brownian motion can be seen as a time-continuous

extension of the ergodicity of fractional Gaussian noise: For

δBnn+1(ω) = Bn+1(ω) − Bn(ω) = B1(θnω), ω ∈ �, n = 0, 1, . . .

we have

E
[
δBkk+1δB

+1

] = 1

2

(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)
,

so (δBnn+1)n∈N is stationary. Moreover, since

ρ(k) = 1

2

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)

satisfies

lim
k→∞

ρ(k)

H(2H − 1)k2H−2 = 1,

the ergodicity of the fractional Gaussian noise (δBnn+1)n∈N is a consequence of a classical
criterion for stationary Gaussian sequences, see e.g. chapter 5 in Shiryaev (1995). In this
context Birkhoff’s ergodic theorem reads as

lim
N→∞

1

N

N∑
n=0

f (δBnn+1(ω)) = E[ f (B1)]

for P-almost all ω ∈ � and any measurable f : R → R such that f (B1) is integrable.
Owing to the results in Section 4 of Garrido-Atienza et al. (2009) we have:

Theorem 2.1 Let Hypothesis 1.3 hold. Then for any ϑ0 ∈ � we have the following:

(i) Equation (1) admits a unique solution Y in Cλ(R+; R
d) for all λ < H.
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(ii) There exists a random variable Y : � → R
d such that

lim
t→∞ |Yt (ω) − Y (θtω)| = 0

for P-almost all ω ∈ �. Moreover, we have E|Y |p < ∞ for all p ≥ 1.

Note that the law of Y must coincide with the attracting invariant measure for (1) given
in Hairer (2005), see also Hairer and Ohashi (2007), Hairer and Pillai (2011).

To illustrate the above result consider the one-dimensional SDE

Yt = y0 +
t∫

0

f (Ys)ds + Bt , t ≥ 0,

where f : R → R is of polynomial growth and one-sided dissipative Lipschitz with constant
c1 > 0, i.e.

(x − y)( f (x) − f (y)) ≤ −c1|x − y|2, x, y ∈ R.

Now let Y (1) and Y (2) be the solutions of the above SDE corresponding to the initial values
y(1)

0 and y(2)
0 . Their difference satisfies

Y (1)
t − Y (2)

t = y(1)
0 − y(2)

0 +
t∫

0

( f (Y (1)
s ) − f (Y (2)

s )) ds, t ≥ 0,

and differentiation yields

d

dt
(Y (1)

t − Y (2)
t ) = f (Y (1)

t ) − f (Y (2)
t ), t ≥ 0.

The inward condition now gives

d

dt

∣∣Y (1)
t − Y (2)

t

∣∣2 = 2
〈
Y (1)

t − Y (2)
t , f (Y (1)

t ) − f (Y (2)
t )

〉 ≤ −2c1
∣∣Y (1)

t − Y (2)
t

∣∣2

and so ∣∣Y (1)
t − Y (2)

t

∣∣ ≤ ∣∣y(1)
0 − y(2)

0

∣∣ e−c1t .

Thus solutions with different initial conditions converge exponentially pathwise to each other
as t → ∞.

The convergence of (Yt )t≥0 to a stationary solution (Y t )t≥0, i.e. Y t (ω) := Y (θtω), t ≥ 0,
ω ∈ �, relies on the concept of pullback absorption. Once pullback absorption is established
one obtains the existence of a pullback attractor, see e.g. Arnold (1997), Crauel et al. (1997).
Due to the pathwise forward convergence this attractor is the desired stationary solution. For
pullback absorption we have to analyse the behavior of

lim
t→∞ Yt (θ−tω),

where Y is the solution of our SDE, and we have to find—roughly spoken—an appropriate
random set D(ω) such that

Yt (θ−tω) ⊂ D(ω)

for t sufficiently large and arbitrary initial values of the SDE. For more details see Arnold
(1997), Crauel et al. (1997).
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Using again the inward condition on the drift one obtains that

∣∣Yt − Ot
∣∣ ≤ ∣∣Y0 − O0

∣∣ e−c1t + e−c1t

t∫

0

ec1s (∣∣ f (Os)
∣∣ + ∣∣Os

∣∣) ds,

where

Ot = e−t

t∫

−∞
esd Bs, t ∈ R,

is a stationary fractional Ornstein-Uhlenbeck process, i.e. the stationary solution of

d Ot = −Ot dt + d Bt , t ≥ 0.

So setting

R(ω) := 1 +
0∫

−∞
ec1s (∣∣ f (Os(ω))

∣∣ + ∣∣Os(ω)
∣∣) ds

one has the desired pullback attraction

|Xt (θ−tω)| ≤ ∣∣O0(ω)
∣∣ + R(ω)

for t ≥ t0(ω). For more details we refer to Garrido-Atienza et al. (2009).
Exploiting the integrability properties of the stationary fractional Ornstein-Uhlenbeck

process we have:

Proposition 2.2 Assume Hypothesis 1.3 holds true. Then for any ϑ0 ∈ � and p ≥ 1 there
exist constants cp, kp > 0 such that

E |Yt |p ≤ cp, E |Yt − Ys |p ≤ kp|t − s|pH , for all s, t ≥ 0.

The integrability of Y now implies the ergodicity of Eq. (1):

Proposition 2.3 Assume Hypothesis 1.3 holds true. Then for any ϑ0 ∈ � and any f ∈
C1(Rd ; R) such that

| f (x)| + |∂x f (x)| ≤ c
(

1 + |x |N
)

, x ∈ R
d ,

for some c > 0, N ∈ N, we have

lim
T →∞

1

T

T∫

0

f (Yt ) dt = E f (Y ) P-a.s. (9)

Proof Since the shift operator is ergodic and f has polynomial growth, we have

lim
T →∞

1

T

T∫

0

f (Y (θt )) dt = E f (Y ) P-a.s.

Moreover, Theorem 2.1 yields

lim
t→∞ |Yt (ω) − Y (θtω)| = 0,

and since f is polynomially Lipschitz, our assertion (9) easily follows. ��
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2.2 Generalized Riemann-Stieltjes integrals

We set

‖ f ‖∞;[a,b] = sup
t∈[a,b]

| f (t)|, | f |λ;[a,b] = sup
s,t∈[a,b]

| f (t) − f (s)|
|t − s|λ

where f : R → R
n and λ ∈ (0, 1).

Now, let f ∈ Cλ([a, b]; R) and g ∈ Cμ([a, b]; R) with λ + μ > 1. Then it is well
known that the Riemann-Stieltjes integral

∫ b
a f (x) dg(x) exists, see e.g. Young (1936). Also,

the classical chain rule for the change of variables remains valid, see e.g. Zähle (2005): Let
f ∈ Cλ([a, b]; R) with λ > 1/2 and F ∈ C1(R; R). Then we have

F( f (y)) − F( f (a)) =
y∫

a

F ′( f (x)) d f (x), y ∈ [a, b]. (10)

Moreover, one has a density type formula: let f, h ∈ Cλ([a, b]; R) and g ∈ Cμ([a, b]; R)

with λ + μ > 1. Then for

ϕ : [a, b] → R, ϕ(y) =
y∫

a

f (x) dg(x), y ∈ [a, b],

we have
b∫

a

h(x) dϕ(x) =
b∫

a

h(x) f (x) dg(x). (11)

For later use, we also note the following estimate, which can be found e.g. in Young
(1936).

Proposition 2.4 Let f, g be as above. Then, there exists a constant cλ,μ (independent of
a, b) such that∣∣∣∣∣∣

b∫

a

( f (s) − f (a))dg(s)

∣∣∣∣∣∣ ≤ cλ,μ| f |λ;[a,b]|g|μ;[a,b]|b − a|λ+μ

holds for all a, b ∈ [0,∞).

2.3 Some limit theorems

We include here some general analytic and probabilistic tools which will be crucial for the
proof of Theorem 1.5. Let us start by the following variant of the Garcia-Rodemich-Rumsey
Lemma (Garcia et al. 1978):

Lemma 2.5 Let q > 1, α ∈ (1/q, 1) and f : [0,∞) → R be a continuous function. Then
there exists a constant cα,q > 0, depending only on α, q, such that

| f |q
α−1/q;[s,t] ≤ cα,q

t∫

s

t∫

s

| f (u) − f (v)|q
|u − v|1+qα

du dv.
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The following Lemma (see e.g. Kloeden and Neuenkirch 2007), which is a direct conse-
quence of the Borel-Cantelli Lemma, allows us to turn convergence rates in the pth mean
into pathwise convergence rates.

Lemma 2.6 Let α > 0, p0 ∈ N and cp ∈ [0,∞) for p ≥ p0. In addition, let Zn, n ∈ N, be
a sequence of random variables such that

(E|Zn |p)1/p ≤ cp · n−α

for all p ≥ p0 and all n ∈ N. Then for all ε > 0 there exists a random variable ηε such that

|Zn | ≤ ηε · n−α+ε a.s.

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p ≥ 1.

Finally, we shall need the following well known result (see e.g. Tudor and Viens 2009) for
the behavior of the quadratic variations of a one-dimensional fractional Brownian motion.

Proposition 2.7 Let β be a fractional Brownian motion with Hurst parameter H, and set
δkk+1β = βk+1 − βk . Then for H < 3/4 we have

lim
n→∞ E

∣∣∣∣∣
1√
n

n−1∑
k=0

[|δkk+1β|2 − 1
]∣∣∣∣∣

2

= cH , (12)

while for H = 3
4 it holds

lim
n→∞ E

∣∣∣∣∣
1√

n log(n)

n−1∑
k=0

[|δkk+1β|2 − 1
]∣∣∣∣∣

2

= c3/4. (13)

Finally, if H ∈ ( 3
4 , 1) then we have

lim
n→∞ E

∣∣∣∣∣
1

n2H−1

n−1∑
k=0

[|δkk+1β|2 − 1
]∣∣∣∣∣

2

= cH . (14)

In the above relations cH > 0 denotes a constant depending only on H.

3 Proof of Theorem 1.5

This section is devoted to the proof of our main result Theorem 1.5. In the sequel, we denote
constants, whose particular value is not important (and which do not depend on ϑ or n) by
c, regardless of their value. Before we start with our computations, we will define a useful
notation:

Notation 3.1 With the conventions of Sect. 1, we set Ft = ∑m
j=1 σ j B j

t and

δFtk tk+1 = Ftk+1 − Ftk . (15)

Moreover, we set

δϑ0ϑb(x) = b(x;ϑ) − b(x;ϑ0). (16)
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We now start by reducing the limiting behavior of Qn(ϑ) to the study of two easier terms:

Lemma 3.2 Let Qn(ϑ) be the quantity defined by (2). Then we have

Qn(ϑ) − Qn(ϑ0) = Q(1)
n (ϑ) − 2Q(2)

n (ϑ) + Rn(ϑ), (17)

where

lim
n→∞ sup

ϑ∈�

|Rn(ϑ)| = 0 P-a.s.

and Q(1)
n (ϑ), Q(2)

n (ϑ) are given by

Q(1)
n (ϑ) = 1

n

n−1∑
k=0

|δϑ0ϑb(Ytk )|2, Q(2)
n (ϑ) = 1

nαn

n−1∑
k=0

〈δϑ0ϑb(Ytk ), δFtk tk+1〉. (18)

Proof Analogously to the one-dimensional case highlighted in the introduction, we can write

nα2
n [Qn(ϑ) − Qn(ϑ0)] =

n−1∑
k=0

∣∣δYtk tk+1 − b(Ytk ;ϑ)αn
∣∣2 −

n−1∑
k=0

∣∣δYtk tk+1 − b(Ytk ;ϑ0)αn
∣∣2

= −2
n−1∑
k=0

〈b(Ytk ;ϑ) − b(Ytk ;ϑ0), δYtk tk+1〉αn +
n−1∑
k=0

(
|b(Ytk ;ϑ)|2 − |b(Ytk ;ϑ0)|2

)
α2

n .

(19)

Recalling our notation (15) and setting rk = ∫ tk+1
tk

(
b(Yu;ϑ0) − b(Ytk ;ϑ0)

)
du, Eq. (1) easily

yields

δYtk tk+1 = δFtk tk+1 + b(Ytk ;ϑ0)αn + rk .

Hence, using notation (16) for δϑ0ϑb(x), it is readily checked from (19) that relation (17)
holds true, with

Rn(ϑ) = − 2

nαn

n−1∑
k=0

〈δϑ0ϑb(Ytk ), rk〉.

It now remains to prove that Rn is a negligible term. To this aim, note that our assumptions
on the drift coefficient imply that

sup
ϑ∈�

|b(x;ϑ) − b(y;ϑ)| ≤ c
(
1 + |x |N + |y|N ) · |x − y|

for all x, y ∈ R
d and

|b(x;ϑ1) − b(x;ϑ2)| ≤ c
(
1 + |x |N ) · |ϑ1 − ϑ2|

for all x ∈ R
d and ϑ1, ϑ2 ∈ �. So, straightforward estimations using Proposition 2.2 give

E|rk |p ≤ c · α
p(1+H)
n .

Hence for all p ≥ 1 it holds

E

∣∣∣∣∣sup
ϑ∈�

1

nα2
n

n−1∑
k=0

〈δϑ0ϑb(Ytk ), rk〉αn

∣∣∣∣∣
p

≤ c · α
pH
n ,
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so Lemma 2.6 implies

lim
n→∞ sup

ϑ∈�

2

nα2
n

∣∣∣∣∣
n−1∑
k=0

〈δϑ0ϑb(Ytk ), rk〉αn

∣∣∣∣∣ = 0 P-a.s. (20)

which finishes our proof. ��
According to Lemma 3.2, our limit theorem can be reduced to determine the behavior of

the terms Q(1)
n (ϑ) and Q(2)

n (ϑ). This task will be carried out in the following two Lemmata.
We first show a discrete version of Proposition 2.3:

Lemma 3.3 Let f ∈ C1,1(Rd × �; R
d) be a function such that

| f (x;ϑ)| ≤ c
(

1 + |x |N
)

, |∂x f (x;ϑ)| ≤ c
(

1 + |x |N
)

, |∂ϑ f (x;ϑ)| ≤ c
(

1 + |x |N
)

for some c > 0, N ∈ N, independent of ϑ ∈ �. Then we have

sup
ϑ∈�

∣∣∣∣∣
1

n

n−1∑
k=0

| f (Ytk ;ϑ)|2 − E| f (Y ;ϑ)|2
∣∣∣∣∣ → 0 P-a.s.

In particular, we have

sup
ϑ∈�

∣∣∣Q(1)
n (ϑ) − E|δϑ0ϑb(Y )|2

∣∣∣ → 0 P-a.s.,

where Q(1)
n (ϑ) is defined by (18).

Proof Let Tn = nαn and set

Vn(ϑ) = 1

Tn

Tn∫

0

| f (Ys;ϑ)|2 ds.

The ergodicity of Y yields that there exists a set A1 ∈ F with full measure such that

lim
n→∞ Vn(ϑ)(ω) = E| f (Y ;ϑ)|2

for all ϑ ∈ � ∩ Q
q and all ω ∈ A1. The assumptions on f give

|Vn(ϑ1) − Vn(ϑ2)| ≤ c ·
⎛
⎝1 + 1

Tn

Tn∫

0

|Ys |2N ds

⎞
⎠ · |ϑ1 − ϑ2|, (21)

so Vn is Lipschitz continuous in ϑ and thus

sup
ϑ∈�

∣∣Vn(ϑ) − E| f (Y ;ϑ)|2∣∣ = sup
ϑ∈�∩Qq

∣∣Vn(ϑ) − E| f (Y ;ϑ)|2∣∣ .
However, from (21) and the ergodicity of Y , it also follows that there exists a set A2 ∈ F with
P(A2) = 1 in which the family of random functions Vn : � → R, n ∈ N, is equicontinuous,
and hence the Arzela–Ascoli Theorem yields the desired uniform convergence, i.e.

lim
n→∞ sup

ϑ∈�

∣∣Vn(ϑ) − E| f (Y ;ϑ)|2∣∣ = 0 P-a.s. (22)
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Setting

Gn(t;ϑ) = | f (Yt ;ϑ)|2 − | f (Ytk ;ϑ)|2, t ∈ [tk, tk+1), k = 0, 1, . . . ,

it remains to show that

1

Tn

Tn∫

0

sup
ϑ∈�

|Gn(t;ϑ)| dt → 0 P-a.s.

To this aim, the assumptions on f imply that

sup
ϑ∈�

|Gn(t;ϑ)| ≤ c · (1 + Y 2N
t + Y 2N

tk ) · |Yt − Ytk |.

Using Proposition 2.2 and Hölder’s inequality we obtain

sup
t≥0

E sup
ϑ∈�

|Gn(t;ϑ)|p ≤ c · α
pH
n (23)

for all p ≥ 1. Now, Jensen’s inequality gives

E

∣∣∣∣∣∣
1

Tn

Tn∫

0

sup
ϑ∈�

|Gn(t;ϑ)| dt

∣∣∣∣∣∣

p

≤ 1

Tn

Tn∫

0

E sup
ϑ∈�

|Gn(t;ϑ)|p dt,

and so (23) yields

E

∣∣∣∣∣∣
1

Tn

Tn∫

0

sup
ϑ∈�

|Gn(t;ϑ)| dt

∣∣∣∣∣∣

p

≤ c · α
pH
n

for all p ≥ 1. Lemma 2.6 implies

1

Tn

Tn∫

0

sup
ϑ∈�

|Gn(t;ϑ)| dt → 0 P-a.s.

for n → ∞. ��
We now state a similar ergodic result for weighted sums of the increments of the process

F defined at Notation 3.1, which yields the convergence of our term Q(2)
n (ϑ).

Lemma 3.4 Let f ∈ C1,1(Rd × �; R
d) be a function such that

| f (x;ϑ)| ≤ c
(

1 + |x |N
)

, |∂x f (x;ϑ)| ≤ c
(

1 + |x |N
)

, |∂ϑ f (x;ϑ)| ≤ c
(

1 + |x |N
)

for some c > 0, N ∈ N, independent of ϑ ∈ �. Assume moreover that there exists a function
U ∈ C2,1(Rd × �; R) such that

∂xU (x;ϑ) = f (x;ϑ), x ∈ R
d , ϑ ∈ �,

i.e. f is of gradient type. Then, for H > 1/2, we have

sup
ϑ∈�

∣∣∣∣∣
1

nαn

n−1∑
k=0

〈 f (Ytk ;ϑ), δFtk tk+1〉 + E〈b(Y ;ϑ0), f (Y ;ϑ)〉
∣∣∣∣∣ → 0 P-a.s.
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In particular,

sup
ϑ∈�

∣∣∣Q(2)
n (ϑ) + E〈b(Y ;ϑ0), δϑ0ϑb(Y )〉

∣∣∣ → 0 P-a.s.

Proof Let Tn = nαn . First note that the change of variable and density formulae for Riemann-
Stieltjes integrals, see (10) and (11) in Sect. 2.2, give that

1

Tn

(
U (YTn ;ϑ) − U (y0;ϑ)

) = 1

Tn

Tn∫

0

〈 f (Yu;ϑ), b(Yu;ϑ0)〉 du + 1

Tn

Tn∫

0

〈 f (Yu;ϑ), d Fu〉.

Now the properties of f , Proposition 2.2 and Lemma 2.6 imply that

sup
ϑ∈�

1

Tn

∣∣U (YTn ;ϑ) − U (y0;ϑ)
∣∣ → 0 P-a.s.

Moreover, we have

sup
ϑ∈�

∣∣∣∣∣∣
1

Tn

Tn∫

0

〈 f (Yu;ϑ), b(Yu;ϑ0)〉 du − E〈 f (Y ;ϑ), b(Y ;ϑ0)〉
∣∣∣∣∣∣ → 0 P-a.s.,

which can be derived completely analogously to (22). It follows

sup
ϑ∈�

∣∣∣∣∣∣
1

Tn

Tn∫

0

〈 f (Yu;ϑ), d Fu〉 + E〈 f (Y ;ϑ), b(Y ;ϑ0)〉
∣∣∣∣∣∣ → 0 P-a.s.

So, it remains to show that

sup
ϑ∈�

1

Tn

∣∣∣∣∣∣
Tn∫

0

〈Gn(t;ϑ), d Ft 〉
∣∣∣∣∣∣ → 0 P-a.s. (24)

where

Gn(t;ϑ) = f (Yt ;ϑ) − f (Ytk ;ϑ), t ∈ [tk, tk+1), k = 0, 1, . . . .

Applying Proposition 2.4 and using the polynomial Lipschitz continuity of f yields, for all
λ ∈ (1/2, H),

∣∣∣∣∣∣
Tn∫

0

〈Gn(t;ϑ), d Ft 〉
∣∣∣∣∣∣ ≤ c · α2λ

n ·
m∑

j=1

n−1∑
k=0

sup
t∈[tk ,tk+1]

(1 + |Yt |N )|Y |λ;[tk ;tk+1]|B j |λ;[tk ;tk+1].

From the Garcia-Rodemich-Rumsey inequality, see Lemma 2.5, and Proposition 2.2 we have
that

(
E|Y |p

λ;[tk ;tk+1]
)1/p ≤ c · αH−λ

n

and also
(

E|B j |p
λ;[tk ;tk+1]

)1/p ≤ c · αH−λ
n .
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Since moreover

sup
t∈[tk ,tk+1]

(1 + |Yt |N ) ≤ c ·
(

Y N
tk + αλN

n · |Y |N
λ;[tk ,tk+1]

)

and supt≥0 E|Yt |p < ∞ for all p ≥ 1, it follows that

⎛
⎜⎝E sup

ϑ∈�

∣∣∣∣∣∣
1

Tn

Tn∫

0

〈Gn(t;ϑ), d Ft 〉
∣∣∣∣∣∣

p⎞
⎟⎠

1/p

≤ c · α2H−1
n . (25)

Now Lemma 2.6 implies (24), since H > 1/2. ��

We can now turn to the main aim of this section, namely:

Proof of Theorem 1.5 As asserted by Lemma 3.2, we have

lim
n→∞(Qn(ϑ) − Qn(ϑ0)) = lim

n→∞(Q(1)
n (ϑ) − 2Q(2)

n (ϑ)),

in the P-almost sure sense, and uniformly in ϑ . Furthermore, combining Lemmata 3.3 and
3.4, we obtain

lim
n→∞(Q(1)

n (ϑ) − 2Q(2)
n (ϑ)) = E

[∣∣δϑ0ϑb(Y )|2∣∣] + 2 E
[〈b(Y ;ϑ0), δϑ0ϑb(Y )〉]

= E
[∣∣b(Y ; ϑ)|2∣∣] − E

[∣∣b(Y ; ϑ0)|2
∣∣] ,

uniformly in ϑ , which is our claim in Theorem 1.5. ��

Remark 3.5 As mentioned in the introduction, the condition H > 1/2 is used in our proofs.
Specifically, it is used to derive (25).

4 Proof of Theorem 1.9 and Proposition 1.10

We now turn to the proof of our estimation results, namely Theorem 1.9 and its application
to Ornstein-Uhlenbeck processes given at Proposition 1.10. These results will be based on
the following general proposition borrowed from Frydman (1980), Kasonga (1988):

Proposition 4.1 Assume that the family of random variables Ln(ϑ), n ∈ N, ϑ ∈ �, satisfies:

(1) With probability one, Ln(ϑ) → L(ϑ) uniformly in ϑ ∈ � as n → ∞.

(2) The limit L is non-random and L(ϑ0) ≤ L(ϑ) for all ϑ ∈ �.

(3) It holds L(ϑ) = L(ϑ0) if and only if ϑ = ϑ0.

Then, we have

P-a.s.- lim
n→∞ ϑ̂n = ϑ0 where Ln(ϑ̂n) = min

ϑ∈�
Ln(ϑ).

In order to apply Proposition 4.1, we now show that Qn(ϑ0) → 0 for n → ∞.

Lemma 4.2 Let Qn be the quantity defined by (2). Then under the assumptions of Theorem
1.9 we have limn→∞ Qn(ϑ0) = 0 P-almost surely.
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Proof Recall that

Qn(ϑ0) = 1

nα2
n

n−1∑
k=0

(∣∣δYtk tk+1 − b(Ytk ;ϑ0)αn
∣∣2 − ‖σ‖2α2H

n

)
.

Using our Notation 3.1 for δFtk tk+1 and recalling that

rk =
tk+1∫

tk

(b(Yu;ϑ0) − b(Ytk ;ϑ0)) du,

we have

Qn(ϑ0) = 1

nα2
n

n−1∑
k=0

(
|δFtk tk+1 |2 − ‖σ‖2α2H

n

)
+ 1

nα2
n

n−1∑
k=0

|rk |2 + 2

nα2
n

n−1∑
k=0

〈δFtk tk+1 , rk〉.

(26)

Since

E|rk |p ≤ c · α
p(1+H)
n

for all p ≥ 1, it holds

E

∣∣∣∣∣
n−1∑
k=0

|rk |2
∣∣∣∣∣

p

≤ c · n pα
2p(1+H)
n ,

and Lemma 2.6 implies

lim
n→∞

1

nα2
n

n−1∑
k=0

|rk |2 = 0 P-a.s. (27)

Using Proposition 2.2, Lemma 2.6 and the fact that H > 1/2, it follows similarly

lim
n→∞

2

nα2
n

∣∣∣∣∣
n−1∑
k=0

〈δFtk tk+1 , rk〉
∣∣∣∣∣ = 0 P-a.s. (28)

Plugging (27) and (28) into (26), we thus get limn→∞ Qn(ϑ0) = limn→∞ Q(3)
n , where Q(3)

n

is defined by

Q(3)
n = 1

nα2
n

n−1∑
k=0

(
|δFtk tk+1 |2 − ‖σ‖2α2H

n

)
.

We will show in Lemma 4.3 that limn→∞ Q(3)
n = 0, which finishes our proof. ��

Lemma 4.3 Let α < min
{

1
4(1−H)

, 1
}

. We have

lim
n→∞ Q(3)

n = lim
n→∞

1

nα2
n

n−1∑
k=0

(
|δFtk tk+1 |2 − ‖σ‖2α2H

n

)
= 0 P-a.s.

with ‖σ‖2 = ∑m
j=1 |σ j |2.
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Proof We can decompose |δFtk tk+1 |2 − ‖σ‖2α2H
n as I (1)

k + I (2)
k , where

I (1)
k =

m∑
j=1

|σ j |2
(
|δB j

tk tk+1
|2 − α2H

n

)
, I (2)

k =
m∑

i, j=1, i �= j

〈σi , σ j 〉δBi
tk tk+1

δB j
tk tk+1

.

We will now treat
∑n−1

k=0 I (1)
k and

∑n−1
k=0 I (2)

k separately.

In order to bound
∑n−1

k=0 I (1)
k , notice that owing to the scaling property of fBm we have

E

∣∣∣∣∣
n−1∑
k=0

I (1)
k

∣∣∣∣∣
p

= α
2H p
n E

∣∣∣∣∣∣
n−1∑
k=0

m∑
j=1

|σ j |2
[|δB j

kk+1|2 − 1
]
∣∣∣∣∣∣

p

≤ α
2H p
n ‖σ‖2p E

∣∣∣∣∣
n−1∑
k=0

[|δB1
kk+1|2 − 1

]∣∣∣∣∣
p

.

Since all moments of random variables in a finite Gaussian chaos are equivalent, it follows
from (12)–(14) that

⎛
⎝E

∣∣∣∣∣
n−1∑
k=0

[|δB j
kk+1|2 − 1

]∣∣∣∣∣
p
⎞
⎠

1/p

≤ c ·
(
| log(n)|n1/2 + n2H−1

)

and consequently

⎛
⎝E

∣∣∣∣∣
1

nα2
n

n−1∑
k=0

I (1)
k

∣∣∣∣∣
p
⎞
⎠

1/p

≤ c · α2H−2
n ·

(
| log(n)|n−1/2 + n2H−2

)
.

Since αn = κ · n−α we have

⎛
⎝E

∣∣∣∣∣
1

nα2
n

n−1∑
k=0

I (1)
k

∣∣∣∣∣
p
⎞
⎠

1/p

≤ c ·
(
| log(n)|n−α(2H−2)−1/2 + n(1−α)(2H−2)

)

and Lemma 2.6 plus the condition α < min
{

1
4(1−H)

, 1
}

implies that

lim
n→∞

1

nα2
n

∣∣∣∣∣
n−1∑
k=0

I (1)
k

∣∣∣∣∣ = 0 P-a.s.

So it remains to consider the off-diagonal terms, i.e. I (2)
k . Here we can exploit the following

trick: Let β and β̃ be two independent fractional Brownian motions with the same Hurst index.
From (12)–(14) we have again that

Vn =
n−1∑
k=0

(
|δtk tk+1β|2 − |δtk tk+1 β̃|2

)

satisfies
(
E|Vn |p)1/p ≤ c · α2H

n ·
(
| log(n)|n1/2 + n2H−1

)
.

123



Stat Inference Stoch Process (2014) 17:99–120 117

However, setting Bi = (β + β̃)/
√

2 and B j = (β − β̃)/
√

2, then Bi and B j are two
independent fractional Brownian motions and

Vn
L= 2

n−1∑
k=0

δtk tk+1 Biδtk tk+1 B j .

Now we can easily conclude that

lim
n→∞

1

nα2
n

∣∣∣∣∣
n−1∑
k=0

I (2)
k

∣∣∣∣∣ = 0 P-a.s.

Gathering our bounds on
∑n−1

k=0 I (1)
k and

∑n−1
k=0 I (2)

k , the proof of our lemma is now completed.
��

Remark 4.4 Note that for α ≥ 1
4(1−H)

the expression Q(3)
n gives a non-zero contribution or

diverges. This follows again from (12)–(14).

We can now turn to the main aim of this section:

Proof of Theorem 1.5 Recall that Lemma 4.2 asserts that under our standing assumptions
we have limn→∞ Qn(ϑ0) = 0 almost surely. Using Theorem 1.5 we conclude that

lim
n→∞ sup

ϑ∈�

∣∣∣Qn(ϑ) − (
E|b(Y ;ϑ)|2 − E|b(Y ;ϑ0)|2

) ∣∣∣ = 0

Now our theorem follows by a direct application of Proposition 4.1 to Ln(ϑ) = |Qn(ϑ)| and
L(ϑ) = ∣∣E[|b(Y ;ϑ)|2] − E[|b(Y ;ϑ0)|2]

∣∣. ��
Remark 4.5 The following corrected quadratic variation of our process Y will be needed in
the analysis of the fractional Ornstein-Uhlenbeck process:

Vn = 1

nα2
n

n−1∑
k=0

(
|δYtk tk+1 |2 − ‖σ‖2α2H

n

)
. (29)

Using the techniques, which we have introduced so far, we obtain

Vn = Q(3)
n + 1

n

n−1∑
k=0

|b(Ytk ;ϑ0)|2 + 2

nαn

n−1∑
k=0

〈δFtk tk+1 , b(Ytk ;ϑ0)〉

+ 2

nαn

n−1∑
k=0

〈b(Ytk ;ϑ0), rk〉 + 2

nα2
n

n−1∑
k=0

〈δFtk tk+1 , rk〉 + 1

nα2
n

n−1∑
k=0

|rk |2.

So the Lemmata 3.3, 3.4 and 4.3 and (27), (28) and an analogous estimate to (20) give

lim
n→∞ Vn = −E|b(Y 0;ϑ0)|2.

Remark 4.6 Estimations of the coefficients H and σ are available for some special cases
of Eq. (1), some nice examples are e.g. provided in Berzin and León (2008). If we use a

plug-in-estimator ‖̂σ‖2
n for ‖σ‖2, i.e. if we replace ‖σ‖2 by this estimate in our estimator,

convergence to ϑ0 is still guaranteed, if

lim
n→∞

(̂
‖σ‖2

n − ‖σ‖2
)

α2H−2
n = 0
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almost surely. Similarly, a plug-in-estimator for Ĥn for H has to satisfy

lim
n→∞

(
α2Ĥn−2

n − α2H−2
n

)
= 0

almost surely. Whenever these conditions are satisfied, our procedure leads to a consistent
estimator of the triple (H, σ, ϑ).

We close this section by analyzing the application of our method to a fractional Ornstein-
Uhlenbeck process:

Proof of Proposition 1.10 Let Y be the solution to Eq. (7) with ϑ0 < 0. It is well known that
an explicit expression for Y is given by

Yt = y0 exp(ϑ0t) + exp(ϑ0t)

t∫

0

exp(−ϑ0s) d Bs .

For t → ∞, this process converges to the stationary fractional Ornstein-Uhlenbeck process

exp(ϑ0t)

t∫

−∞
exp(−ϑ0s) d Bs, t ≥ 0,

see e.g. Garrido-Atienza et al. (2009). Furthermore, straightforward computations yield that
our expression Qn(ϑ) defined by (2) can be written as

n−1∑
k=0

(|δYtk tk+1 − ϑYtk αn |2 − α2H
n

) =
⎛
⎝ϑ

√
s(3)

n − s(2)
n√
s(3)

n

⎞
⎠

2

+ s(1)
n − |s(2)

n |2
s(3)

n

where s(1)
n , s(2)

n , s(3)
n are defined by relation (8). Now we have to distinguish two cases.

Case I: If s(1)
n s(3)

n ≥ |s(2)
n |2, then the minimum of |Qn(ϑ)| is obtained for ϑ̂n = s(2)

n /s(3)
n

as in the classical case H = 1/2.
Case II: For s(1)

n s(3)
n ≤ |s(2)

n |2 the minimum of |Qn(ϑ)| is obtained for

ϑ̂n = s(2)
n

s(3)
n

±
√√√√

(
s(2)

n

s(3)
n

)2

− s(1)
n

s(3)
n

.

Note that for the Ornstein-Uhlenbeck process the quantity s(1)
n /nα2

n coincides with Vn defined
at Remark 4.5, so that

lim
n→∞

1

nα2
n

s(1)
n = −ϑ2

0 E|Y 0|2 < 0 P-a.s.

holds true. Moreover, Lemma 3.3 also yields

lim
n→∞

1

nα2
n

s(3)
n = E|Y 0|2 P-a.s.

and thus

lim
n→∞

s(1)
n

s(3)
n

= −ϑ2
0 < 0 P-a.s.
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So for n large enough, case II will always be the correct option. Moreover, since ϑ0 < 0, this
limit behavior leads to the asymptotically unique estimator

ϑ̂n = s(2)
n

s(3)
n

−
√√√√

(
s(2)

n

s(3)
n

)2

− s(1)
n

s(3)
n

.

��
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