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Abstract In this paper we study the existence of a unique solution to a general class
of Young delay differential equations driven by a Hölder continuous function with
parameter greater that 1/2 via the Young integration setting. Then some estimates
of the solution are obtained, which allow to show that the solution of a delay differ-
ential equation driven by a fractional Brownian motion (fBm) with Hurst parameter
H > 1/2 has a C∞-density. To this purpose, we use Malliavin calculus based on
the Fréchet differentiability in the directions of the reproducing kernel Hilbert space
associated with fBm.
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1 Introduction

We shall consider in this article an equation of the form:

dyt = f
(

Z y
t

)
dBt + b

(
Z y

t

)
dt, t ∈ [0, T ], (1)
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where B is a d-dimensional fractional Brownian motion with Hurst parameter H >

1/2, f : Cγ

1 ([−h,0];R
n) → R

n×d and b : Cγ

1 ([−h,0];R
n) → R

n satisfy some suit-
able regularity conditions, Cγ

1 designates the space of γ -Hölder continuous func-
tions of one variable (see Sect. 2.1 below) and Z y

t : [−h,0] → R
n is defined by

Z y
t (s) = yt+s . In the previous equation, we also assume that an initial condition

ξ ∈ Cγ

1 is given on the interval [−h,0]. Notice that equation (1) is a general ex-
pression for fractional delay equations, including for instance the case of functions f

of the following form:

f : Cγ

1

([−h,0];R
n
) → R

n×d , with f
(

Z y
t

) = σ

(∫ 0

−h

yt+θ ν(dθ)

)
, (2)

for a regular enough function σ , and a finite signed measure ν on [−h,0]. This special
case of interest will be treated in detail in the sequel. Our considerations also include
a function f defined by f (Z y

t ) = σ(Z y
t (−u1), . . . , Z y

t (−uk)) = σ(yt−u1, . . . , yt−uk
)

for a given k ≥ 1, 0 ≤ u1 < · · · < uk ≤ h and a smooth enough function σ :
R

n×k → R
n×d .

The kind of delay stochastic differential system described by (1) is widely stud-
ied when driven by a standard Brownian motion (see [26] for a nice survey), but the
results in the fractional Brownian case are scarce: we are only aware of [12] for the
case H > 1/2 and f (Z y) = σ(Z y(−r)), 0 ≤ r ≤ h, the further investigation [13]
which establishes a continuity result in terms of the delay r , and a reflected version
investigated in [4]. As far as the rough case is concerned (see [22] and [23]), an exis-
tence and uniqueness result is given in [27] for a Hurst parameter H > 1/3, and [36]
extends this result to H > 1/4. In spite of this lack of theoretical results, the need for
suitable oscillating dynamical models with delays is obvious in the applied literature,
and involves problems in signal or disease transmission [6, 32, 35], biochemical reac-
tions [2] or gene regulation [5, 25]. The demand for noisy versions of these systems
is therefore natural, as nicely stressed in [19].

Our paper can also be seen as part of a global project aiming at an understanding
of physically relevant systems driven by fractional noises. Just to mention a few ex-
amples concerning fractional Brownian motion with Hurst parameter H > 1/2, let us
quote ordinary differential equations [18, 30, 31, 38], some interesting cases of PDEs
[3, 7, 10, 11, 15, 16, 24, 34], as well as Volterra type systems [8, 9].

The current article can thus be seen as a step in the study of processes defined
as the solution to fractional delay differential systems, and we shall investigate the
behavior of the density of the R

n-valued random variable yt for a fixed t ∈ (0, T ],
where y is the solution to (1). More specifically, we shall prove the following theo-
rem, which can be seen as the main result of the article:

Theorem 1.1 Consider an equation of the form (1) for an initial condition ξ lying in
the space Cγ

1 ([−h,0];R
n). Assume b ≡ 0, and that f is of the form (2) for a given

finite signed measure ν on [−h,0] and σ : R
n → R

n×d an infinitely differentiable
function, bounded together with all its derivatives and satisfying the non-degeneracy
condition

σ(η)σ (η)∗ ≥ εIdRn , for all η ∈ R
n.
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Suppose moreover that H > H0, where H0 = (7 + √
17)/16 ≈ 0.6951. Let t ∈ (0, T ]

be an arbitrary time, and y be the unique solution to (1) in Cκ
1 ([0, T ];R

n), for a given
1/2 < κ < H . Then the law of yt is absolutely continuous with respect to Lebesgue
measure in R

n, and its density is a C∞-function.

Notice that this kind of result, which has its own interest as a natural step in the
study of processes defined by delay systems, is also a useful result when one wants
to study other natural properties of the equation, such as convergence to equilibrium
(see e.g. [17]). Let us also observe that the case b ≡ 0 has been considered here
for sake of simplicity, but the extension of our result to a non-trivial drift (namely
a coefficient b : Cγ

1 ([−h,0];R
n) → R

n of the form b(Z) = μ(
∫ 0
−h

Zθ ν(dθ)) for an
infinitely differentiable function μ bounded together with all its derivatives) is just
a matter of easy additional computations. Finally, the reader may wonder about our
restriction H > H0 above. To this respect, let us make the following observations:

(i) We believe that this restriction is due to the method we have used in order
to bound delayed linear equations, which is the best one we had in mind but
might not be completely optimal. In any case, we don’t see any obvious rea-
son for which our smoothness result for the density shouldn’t hold true for
1/2 < H ≤ H0.

(ii) As mentioned in Remark 3.15, the assumption H > H0 also stems the fact that
we consider a delay which depends continuously on the past. For a discrete type
delay of the form σ(yt , yt−r1, . . . , yt−rq ), with q ≥ 1 and r1 < · · · < rq ≤ h, we
shall see in Remark 4.7 that one can show the smoothness of the density up to
H > 1/2, as for ordinary differential equations.

(iii) Interestingly enough, a behavior dichotomy between the discrete and continu-
ous situation has already been observed in [26] for the flow properties of the
equation in case of a Brownian noise. However, in the latter case one improves
the continuity properties of the equation by considering continuous delays (con-
trarily to our situation).

Let us say a few words about the strategy we shall follow in order to get our
Theorem 1.1. First of all, some of the steps we are following are rather standard in
the pathwise stochastic calculus context:

• As mentioned before, there are not too many results about delay systems governed
by a fractional Brownian motion. In particular, equation (1) has never been con-
sidered (to the best of our knowledge) with such a general delay dependence. We
shall thus first show how to define and solve this differential system, by means of
a slight variation of the Young integration theory (called algebraic integration), in-
troduced in [14] and also explained in [16]. This setting allows to solve equations
like (1) in Hölder spaces thanks to contraction arguments, as will be explained in
Sect. 3.1. In fact, observe that our resolution will be entirely pathwise, and we shall
deal with a general equation of the form

dyt = f
(

Z y
t

)
dxt + b

(
Z y

t

)
dt, t ∈ [0, T ], (3)

for a given path x ∈ Cγ

1 ([0, T ];R
d) with γ > 1/2, where the integral with respect

to x has to be understood in the Young sense [37]. Furthermore, in equations like
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(3), the drift term b(Z y) is usually harmless, but induces some cumbersome nota-
tions. Thus, for sake of simplicity, we shall rather deal in the sequel with a reduced
delay equation of the type:

yt = a +
∫ t

0
f

(
Z y

s

)
dxs, t ∈ [0, T ].

• Once this last equation is properly defined and solved, the differentiability of the
solution yt in the Malliavin calculus sense will also be obtained in a pathwise
manner, similarly to the case treated in [31].

The essential part of our technical efforts for the current project are thus concen-
trated on the smoothness property for the density of yt . Indeed, as for other stochastic
systems defined in a pathwise manner, the main difficulty in order to get smooth den-
sities is to provide moment estimates for the Malliavin derivative of the solution yt . In
our situation, owing to the fact that we have chosen a delay depending continuously
on the past, this essential step is nontrivial, and is carefully detailed in Propositions
3.4 and 3.14. Notice also that the way to obtain the smoothness Theorem 1.1 from
those moments estimates, which follows roughly the methodology of [21], requires
some additional work in the context of a fractional Brownian motion. This step will
be carried out in Sect. 4.3.

Here is how our article is structured: Sect. 2 is devoted to recall some basic facts
about Young integration. We solve, estimate and differentiate a general class of delay
equations driven by a Hölder noise in Sect. 3. Then in Sect. 4 we apply those general
results to fBm and prove our main Theorem 1.1.

2 Algebraic Young Integration

The Young integration can be introduced in several ways (convergence of Riemann
sums, fractional calculus setting [38]). We have chosen here to follow the algebraic
approach introduced in [14] and developed e.g. in [16], since this formalism will help
us later in our analysis.

2.1 Increments

Let us begin with the basic algebraic structures which will allow us to define a path-
wise integral with respect to irregular functions: first of all, for an arbitrary real num-
ber T > 0, a topological vector space V and an integer k ≥ 1 we denote by Ck(V ) (or
by Ck([0, T ];V )) the set of continuous functions g : [0, T ]k → V such that gt1···tk = 0
whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-
increment. Note that C1(V ) is the family of all continuous functions from [0, T ] into
V , and we will set C∗(V ) = ⋃

k≥1 Ck(V ). An important elementary operator is δ,
which is defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1 =
k+1∑

i=1

(−1)k−igt1···t̂i ···tk+1
, (4)
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where t̂i means that this particular argument is omitted. A fundamental property of
δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator from
Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ, for any k ≥ 1, and
B Ck(V ) = Ck(V ) ∩ Im δ for k ≥ 2, that is

Z Ck(V ) = {
g ∈ Ck(V ); δg = 0

}
,

B Ck(V ) = {
g ∈ Ck(V );g = δf for f ∈ Ck−1(V )

}
.

Some simple examples of actions of δ, which will be the ones we will really use
throughout the paper, are obtained by letting g ∈ C1(V ) and h ∈ C2(V ). Then, for any
s, u, t ∈ [0, T ], we have

(δg)st = gt − gs, and (δh)sut = hst − hsu − hut . (5)

Furthermore, it is easily checked that Z Ck(V ) = B Ck(V ) for any k ≥ 2. In particular,
the following basic property holds:

Lemma 2.1 Let k ≥ 1 and h ∈ Z Ck+1(V ). Then there exists a (non-unique) f ∈
Ck(V ) such that h = δf .

Observe that Lemma 2.1 implies that all the elements h ∈ C2(V ) such that δh = 0
can be written as h = δf for some (non-unique) f ∈ C1(V ). Thus we get a heuristic
interpretation of δ|C2(V ): it measures how much a given 1-increment is far from being
an exact increment of a function, i.e., a finite difference.

Remark 2.2 Here is a first elementary but important link between these algebraic
structures and integration theory: let f and g be two smooth real valued function on
[0, T ]. Define then I ∈ C2(V ) by

Ist =
∫ t

s

dfv

∫ v

s

dgw, for s, t ∈ [0, T ].

Then, some trivial computations show that

(δI )sut = [gu − gs][ft − fu] = (δf )ut (δg)su.

This is a helpful property of the operator δ: it transforms iterated integrals into prod-
ucts of increments, and we will be able to take advantage of both regularities of f

and g in these products of the form δf δg.

For sake of simplicity, let us specialize now our setting to the case V = R
m for an

arbitrary m ≥ 1. Notice that our future discussions will mainly rely on k-increments
with k ≤ 2, for which we will use some analytical assumptions. Namely, we measure
the size of these increments by Hölder norms defined in the following way: for 0 ≤
a1 < a2 ≤ T and f ∈ C2([a1, a2];V ), let

‖f ‖μ,[a1,a2] = sup
r,t∈[a1,a2]

|frt |
|t − r|μ , and
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Cμ
2

([a1, a2];V
) = {

f ∈ C2(V ); ‖f ‖μ,[a1,a2] < ∞}
.

Obviously, the usual Hölder spaces Cμ
1 ([a1, a2];V ) will be determined in the follow-

ing way: for a continuous function g ∈ C1([a1, a2];V ), we simply set

‖g‖μ,[a1,a2] = ‖δg‖μ,[a1,a2], (6)

and we will say that g ∈ Cμ
1 ([a1, a2];V ) iff ‖g‖μ,[a1,a2] is finite. Notice that

‖ · ‖μ,[a1,a2] is only a semi-norm on Cμ
1 ([a1, a2];V ), but we will generally work on

spaces of the type

Cμ
v,a1,a2

(V ) = {
g : [a1, a2] → V ; ga1 = v, ‖g‖μ,[a1,a2] < ∞}

, (7)

for a given v ∈ V , or

Cμ
�,a1,a2

(
R

d
) := {

ζ ∈ Cμ
1

([a1 − h,a2];R
d
); ζ = � on [a1 − h,a1]

}
, (8)

where 0 ≤ a1 < a2 and � ∈ Cμ
1 ([a1 − h,a1];R

d). These last two spaces are complete
metric spaces with the distance dμ,a1,a2 . Here, dμ,a1,a2(f, g) = ‖f − g‖μ,[a1,a2] on
Cμ

v,a1,a2(V ); and dμ,a1,a2(f, g) = ‖f − g‖μ,[a1−h,a2] on the space Cμ
�,a1,a2(R

d).
In some cases we will only write Cμ

k (V ) instead of Cμ
k ([a1, a2];V ) when this

does not lead to an ambiguity in the domain of definition of the functions under
consideration. For h ∈ C3([a1, a2];V ) set in the same way

‖h‖γ,ρ,[a1,a2] = sup
s,u,t∈[a1,a2]

|hsut |
|u − s|γ |t − u|ρ ,

(9)

‖h‖μ,[a1,a2] = inf

{∑

i

‖hi‖ρi ,μ−ρi
; h =

∑

i

hi, 0 < ρi < μ

}
,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h = ∑
i hi

and for all choices of the numbers ρi ∈ (0,μ). Then ‖ · ‖μ,[a1,a2] is easily seen to be
a norm on C3([a1, a2];V ), and we set

Cμ
3

([a1, a2];V
) := {

h ∈ C3
([a1, a2];V

); ‖h‖μ,[a1,a2] < ∞}
.

Now, let C 1+
3 ([a1, a2];V ) = ⋃

μ>1 Cμ
3 ([a1, a2];V ) and Z C 1+

3 ([a1, a2];V ) =
C 1+

3 ([a1, a2];V ) ∩ ker δ.
With these notations in mind, the crucial point in our approach to pathwise inte-

gration of irregular processes is that, under mild smoothness conditions, the operator
δ can be inverted. This inverse is called Λ, and is defined in the following proposition,
whose proof can be found in [14].

Proposition 2.3 Let 0 ≤ a1 < a2 ≤ T . Then there exists a unique linear map Λ :
Z C 1+

3 ([a1, a2];V ) → C 1+
2 ([a1, a2];V ) such that

δΛ = IdZ C 1+
3 ([a1,a2];V )

.
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In other words, for any h ∈ C 1+
3 ([a1, a2];V ) such that δh = 0 there exists a unique

g = Λ(h) ∈ C 1+
2 ([a1, a2];V ) such that δg = h. Furthermore, for any μ > 1, the map

Λ is continuous from Z Cμ
3 ([a1, a2];V ) to Cμ

2 ([a1, a2];V ) and we have

‖Λh‖μ,[a1,a2] ≤ 1

2μ − 2
‖h‖μ,[a1,a2], h ∈ Z Cμ

3

([a1, a2];V
)
. (10)

Moreover, the operator Λ can be related to the limit of some Riemann sums, which
gives a second link (after Remark 2.2) between the previous algebraic developments
and some kind of generalized integration.

Corollary 2.4 For any 1-increment g ∈ C2(V ) such that δg ∈ C 1+
3 , set h = (Id −

Λδ)g. Note that δh = 0 due to the fact that δΛ = IdZ C 1+
3 (V )

. Thus there exists f ∈ C1

such that h = δf . Moreover, we have

(δf )st = lim|Πst |→0

n−1∑

i=0

gti ti+1,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose mesh
tends to zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

2.2 Young Integration

In this section, we will define a generalized integral
∫ t

s
fu dgu for a Cκ

1 ([0, T ];R
n×d)-

function f , and a Cγ

1 ([0, T ];R
d)-function g, with κ + γ > 1, by means of the alge-

braic tools introduced in Sect. 2.1. To this purpose, we will first assume that f and g

are smooth functions, in which case the integral of f with respect to g can be defined
in the Lebesgue–Stieltjes sense, and then we will express this integral in terms of the
operator Λ. This will lead to a natural extension of the notion of integral, which coin-
cides with the usual Young integral. In the sequel, in order to avoid some cumbersome
notations, we will sometimes write Jst (f dg) instead of

∫ t

s
fu dgu.

Let us consider then for the moment two smooth functions f and g defined on
[0, T ]. One can write, thanks to some elementary algebraic manipulations,

Jst (f dg) ≡
∫ t

s

fu dgu = fs(δg)st +
∫ t

s

(δf )su dgu = fs(δg)st + Jst (δf dg). (11)

Let us analyze now the term J (δf dg), which is an element of C2(R
n). Invoking

Remark 2.2, it is easily seen that, for s, u, t ∈ [0, T ],

hsut ≡ [
δ
(

J (δf dg)
)]

sut
= (δf )su(δg)ut .

The increment h is thus an element of C3(R
n) satisfying δh = 0 (recall that

δδ = 0). Let us estimate now the regularity of h: if f ∈ Cκ
1 ([0, T ];R

n×d) and

g ∈ Cγ

1 ([0, T ];R
d), from the definition (9), it is readily checked that h ∈ Cγ+κ

3 (Rn).
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Hence h ∈ Z Cγ+κ

3 (Rn), and if κ + γ > 1 (which is the case if f and g are regular),
Proposition 2.3 yields that J (δf dg) can also be expressed as

J (δf dg) = Λ(h) = Λ(δf δg),

and thus, plugging this identity into (11), we get

Jst (f dg) = fs(δg)st + Λst (δf δg). (12)

Now we can see that the right hand side of the last equality is rigorously defined
whenever f ∈ Cκ

1 ([0, T ];R
n×d), g ∈ Cγ

1 ([0, T ];R
d), and this is the definition we

will use in order to extend the notion of integral:

Theorem 2.5 Let f ∈ Cκ
1 ([0, T ];R

n×d) and g ∈ Cγ

1 ([0, T ];R
d), with κ + γ > 1. Set

Jst (f dg) = fs(δg)st + Λst

(
δf δg

)
. (13)

Then

(1) Whenever f and g are smooth functions, Jst (f dg) coincides with the usual
Riemann integral.

(2) The generalized integral J (f dg) satisfies

∣∣Jst (f dg)
∣∣ ≤ ‖f ‖∞‖g‖γ |t − s|γ + cγ,κ‖f ‖κ‖g‖γ |t − s|γ+κ ,

for a constant cγ,κ whose exact value is (2γ+κ − 2)−1.
(3) We have

Jst (f dg) = lim|Πst |→0

n−1∑

i=0

fti δgti ti+1 ,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose
mesh tends to zero. In particular, Jst (f dg) coincides with the Young integral as
defined in [37].

Proof The first claim is just what we proved at equation (12). The second assertion
follows directly from the definition (13) and the inequality (10) concerning the op-
erator Λ. Finally, our third property is a direct consequence of Corollary 2.4 and the
fact that δ(f δg) = −δf δg, which means that

J (f dg) = [Id − Λδ](f δg). �

A Fubini type theorem for Young’s integral will be needed in the last section of
this paper. Its proof below is a good example of the importance of Proposition 2.3
and Theorem 2.5.

Proposition 2.6 Assume that γ > λ > 1/2. Let f and g be two functions in
Cγ

1 ([0, T ] : R) and h : {(t, s) ∈ [0, T ]2;0 ≤ s ≤ t ≤ T } → R a function such that
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h(·, t) (resp. h(t, ·)) belongs to Cλ
1 ([t, T ];R) (resp. Cλ

1 ([0, t];R)) uniformly in t ∈
[0, T ], and

∥∥h(r1, ·) − h(r2, ·)
∥∥

λ,[0,r1∧r2] ≤ C|r1 − r2|λ. (14)

Then
∫ t

s

(∫ r

s

h(r, u) dgu

)
dfr =

∫ t

s

(∫ t

u

h(r, u) dfr

)
dgu, 0 ≤ s ≤ t ≤ T . (15)

Proof Fix s, t ∈ [0, T ], with s < t , and divide the proof in several steps.
Step 1. Here we see that

∫ t

s

∫ r

s
h(r, u) dgu dfr is well-defined. Note that we only

need to show that
∫ ·
s
h(·, u) dgu belongs to Cλ

1 ([s, T ];R) due to Theorem 2.5.
Let r1, r2 ∈ [s, t], r1 < r2, then Theorem 2.5.(2) gives
∣∣
∣∣

∫ r2

s

h(r2, u) dgu −
∫ r1

s

h(r1, u) dgu

∣∣
∣∣

≤
∣∣∣∣

∫ r1

s

(
h(r2, u) − h(r1, u)

)
dgu

∣∣∣∣ +
∣∣∣∣

∫ r2

r1

h(r2, u) dgu

∣∣∣∣

≤ ‖g‖γ

(∥∥h(r2, ·) − h(r1, ·)
∥∥∞,[0,r1](r1 − s)γ

+ cγ,λ

∥∥h(r2, ·) − h(r1, ·)
∥∥

λ,[0,r1](r1 − s)γ+λ
)

+ ‖g‖γ

(∥∥h(r2, ·)
∥∥∞,[0,r2](r2 − r1)

γ + cγ,λ

∥∥h(r2, ·)
∥∥

λ,[0,r2](r2 − r1)
γ+λ

)
.

Hence (14) implies our claim. The definition of
∫ t

s

∫ t

u
h(r, u) dfr dgu follows along

the same lines.
Step 2. Let Πst = {t0 = s, . . . , tn = t} be a partition of the interval [s, t]. Then,

according to Theorem 2.5, for any v ∈ [0, t) we have

∫ v

s

h(t, u) dgu = lim|Πst |→0

n−1∑

i=0

h(t, ti) (δg)ti∧v,ti+1∧v. (16)

Our assumption (14) allows us now to take limits in the equation above, so that we
obtain, for any 0 ≤ s < t ≤ T ,

q1
st :=

∫ t

s

h(t, u) dgu = lim|Πst |→0

n−1∑

i=0

h(t, ti) δgti ,ti+1 := q2
st . (17)

In order to see that the relation above holds in Cλ
2 ([0, T ];R), it is now enough to

check that both q1 and q2 in (17) are elements of Cλ
2 ([0, T ];R).

However, the fact that q1 ∈ Cλ
2 ([0, T ];R) can be proved along the same lines as

in Step 1. The assertion q2 ∈ Cλ
2 ([0, T ];R) can be proved by observing that the limit

defining q2
st do not depend on the sequence of partitions under consideration. In par-

ticular, consider the sequence (πn)n of dyadic partitions of [0, T ], that is

πn = {
0 = tn0 ≤ tn1 ≤ · · · ≤ tn2n = T

}
, with tni = i T

2n
,



J Theor Probab (2012) 25:854–889 863

and set, for all s, t ∈ [0, T ], πn
st = πn ∩ (s, t). Then q2

st = limn→∞
∑

ti∈πn
st

h(t, tni ) ×
δgtni ,tni+1

for all 0 ≤ s < t ≤ T , and the same kind of arguments as in [9, Theorem

2.2] yield our claim q2 ∈ Cλ
2 ([0, T ];R). We have thus proved that (17) holds in

Cλ
2 ([0, T ];R).

Step 3. From Proposition 2.3, Step 2 and (13) we have

∫ t

s

∫ r

s

h(r, u) dgu dfr = lim|Πst |→0

∫ t

s

(
n−1∑

i=0

h(r, ti )(gti+1∧r − gti∧r )

)

dfr

= lim|Πst |→0

n−1∑

i=0

∫ t

ti

h(r, ti )(gti+1∧r − gti ) dfr

= lim|Πst |→0

n−1∑

i=0

[(∫ t

ti+1

h(r, ti ) dfr

)
(gti+1 − gti )

+
∫ ti+1

ti

h(r, ti )(gr − gti ) dfr

]
.

Moreover, thanks to the Hölder properties of f and g, we have

n−1∑

i=0

∣∣∣∣

∫ ti+1

ti

h(r, ti )(gr − gti ) dfr

∣∣∣∣ ≤ C

n−1∑

i=0

(ti+1 − ti )
γ+λ → 0

as |Πst | → 0, and thus

∫ t

s

∫ r

s

h(r, u) dgu dfr = lim|Πst |→0

n−1∑

i=0

(∫ t

ti

h(r, ti ) dfr

)
(gti+1 − gti ).

Consequently, Step 2 and Theorem 2.5 imply that (15) is satisfied and therefore the
proof is complete. �

Remark 2.7 Our Fubini type theorem could also have been obtained with the follow-
ing strategy: show formula (15) for smooth functions f,g and h. Then use a density
argument in order to cover all suitable Hölder cases. However, the density of smooth
functions in spaces of the form Cγ

2 has not been investigated yet (to our knowledge).
Therefore the inclusion of this density argument would lead to a longer proof than
the one we have chosen for Proposition 2.6.

The following integration by parts and Itô’s formulas will be also needed in the
last part of this paper.

Proposition 2.8 Let f and g be two functions in Cγ

1 ([0, T ];R), with γ > 1/2. Then

ftgt = f0g0 +
∫ t

0
fu dgu +

∫ t

0
gu dfu, t ∈ [0, T ].
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Proof Set qt := ftgt − ∫ t

0 fu dgu − ∫ t

0 gu dfu, t ∈ [0, T ]. It is easy to see that this

function belongs to C 2γ

1 ([0, T ];R) because of the equalities

ftgt − fsgs = fs(δg)st + gs(δf )st + (δg)st (δf )st

and
∫ t

s

fu dgu +
∫ t

s

gu dfu = fs(δg)st + gs(δf )st + Λst (δf δg) + Λst (δg δf ),

which follows from (13). Now, since q ∈ C 2γ

1 ([0, T ];R), with 2γ > 1, q is a constant
function. Otherwise stated, qt = q0 = f0g0. Therefore the announced result is true. �

Proposition 2.9 Let g and h be in Cγ

1 ([0, T ],R) and f ∈ C 2
b(R). Also let xt = x0 +∫ t

0 gs dhs , t ∈ [0, T ]. Then

f (xt ) = f (x0) +
∫ t

0
f ′(xu)gu dhu, t ∈ [0, T ].

Proof Proceeding as in the proof of Proposition 2.8 and using the mean value theo-
rem, we can show that

qt = f (xt ) −
∫ t

0
f ′(xs)gs dhs, t ∈ [0, T ],

is a 2γ -Hölder-continuous function. Therefore the result holds. �

Remark 2.10 Proposition 2.9 has been proven in [38] using Riemann sums.

3 Young Delay Equation

Recall first that we wish to consider a differential equation of the form:

yt = ξ0 +
∫ t

0
f

(
Z y

u

)
dxu, t ∈ [0, T ],

(18)
Z y

0 = ξ.

In the previous equation, the integral has to be interpreted in the Young sense of
(13), the initial condition ξ is an element of Cγ

1 ([−h,0];R
n), the driving noise x is

in Cγ

1 ([0, T ];R
d), with γ > 1/2. We seek a solution y in the space Cλ

ξ,0,T (Rn) for

1/2 < λ < γ , and f is a given function f : Cλ
1 ([−h,0];R

n) → R
n×d . In this section,

we shall solve equation (18) thanks to a contraction argument, and then study its
differentiability with respect to the driving noise x. Of course, the main application
we have in mind is the case where x is a d-dimensional fractional Brownian motion,
and this particular case will be considered in Sect. 4.
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3.1 Existence and Uniqueness of the Solution

In order to solve equation (18), some smoothness and boundedness assumptions have
to be made on our coefficient f . In fact, we shall rely on the following hypothesis:

Hypothesis 1 There exist a positive constant M and λ ∈ (1/2, γ ) such that
∣∣f (ζ )

∣∣ ≤ M, and
∣∣f (ζ2) − f (ζ1)

∣∣ ≤ M sup
θ∈[−h,0]

∣∣ζ2(θ) − ζ1(θ)
∣∣

uniformly in ζ, ζ1, ζ2 ∈ Cλ
1 ([−h,0];R

n).

Actually we will assume that f satisfies a stronger Lipschitz type hypothesis on
the space Cλ

1 (Rn). Let us state first a preliminary result before we come to this second
assumption:

Lemma 3.1 Let a = (a1, a2), with 0 ≤ a1 < a2 ≤ T , let also Z ∈ Cλ
1 ([a1 −h,a2];R

n)

and set
[

U (a)Z
]
s
= f

(
Z Z

s

)
, s ∈ [a1, a2].

Then Hypothesis 1 implies that U (a) is a map from Cλ
1 ([a1 − h,a2];R

n) into
Cλ

1 ([a1, a2]; R
n×d), satisfying:

∥
∥U (a)Z

∥
∥

λ,[a1,a2] ≤ M ‖Z‖λ,[a1−h,a2].

Proof The proof of this result is an immediate consequence of the definition (6) of
Hölder’s norms on C1 and Hypothesis 1. �

With this preliminary result in hand, we can now introduce our second hypothesis
on the coefficient f .

Hypothesis 2 Taking up the notations of Lemma 3.1, consider an initial condition
ρ ∈ Cλ

1 ([a1 − h,a1]). We assume that, for any N ≥ 1, there is a positive constant cN

such that:
∥∥U (a)(Z1) − U (a)(Z2)

∥∥
λ,[a1,a2] ≤ cN‖Z1 − Z2‖λ,[a1−h,a2],

for all 0 ≤ a1 ≤ a2 ≤ T and Z1,Z2 ∈ Cλ
ρ,a1,a2

(Rn), satisfying

max
{‖Z1‖λ,[a1−h,a2]; ‖Z2‖λ,[a1−h,a2]

} ≤ N,

where λ is given in Hypothesis 1.

Observe that Hypothesis 2 holds in particular if, for λ > 0, the map U (a) admits a
derivative which is locally bounded, uniformly in a ∈ [0, T ].

Now that we have stated our main assumptions, the following theorem is the main
result of this section.
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Theorem 3.2 Under Hypotheses 1 and 2, the delay equation (18) has a unique solu-
tion in Cλ

ξ,0,T (Rn).

Before giving the proof of this theorem, we establish an auxiliary result. This will
be helpful in order to get the existence of an invariant ball under the contracting map
which gives raise to the solution of our equation.

Lemma 3.3 Let x ∈ Cγ

1 ([a1, a2];R
d) with γ > 1/2 and 0 ≤ a1 < a2, λ ∈ (1/2, γ )

and v ∈ R
n. Set a = (a1, a2), recall notation (7) and define V (a) : Cλ

1 ([a1, a2];R
n×d)

→ Cλ
v,a1,a2

(Rn) by:

[
V (a)Z

]
s
= v + Ja1s(Z dx), s ∈ [a1, a2],

where Ja1s(Z dx) stands for the Young integral defined by (13). Then

∥∥V (a)Z
∥∥

λ,[a1,a2] ≤ ‖x‖γ

(‖Z‖∞,[a1,a2](a2 − a1)
γ−λ + cλ+γ ‖Z‖λ,[a1,a2](a2 − a1)

γ
)
,

with cλ+γ = (2λ+γ − 2)−1.

Proof Let a1 ≤ s ≤ t ≤ T . Then Theorem 2.5 point (3) implies that

[
V (a)Z

]
t
− [

V (a)Z
]
s
= Jst (Z dx).

Our claim is then a direct consequence of Theorem 2.5 point (2) and of the defini-
tion (6). �

Proof of Theorem 3.2 This proof is divided in several steps.
Step 1: Existence of invariant balls. Let us first consider an interval of the form

[0, ε], which means that, when we include the delay of the equation, we shall consider
processes defined on [−h, ε]. More specifically, let us recall that the spaces Cλ

ξ,0,ε(R
n)

have been defined by relation (8). Then we consider a map Γ : Cλ
ξ,0,ε → Cλ

ξ,0,ε , where

we have set Cλ
ξ,0,ε = Cλ

ξ,0,ε(R
n) for notational sake, defined in the following way: if

z ∈ Cλ
ξ,0,ε , then Γ (z) = ẑ, where ẑt = ξt for t ∈ [−h,0], and:

(
δẑ

)
st

= Jst (Z dx), with Zu = f
(

Z z
u

)
, for s, t ∈ [0, ε]. (19)

That is (recalling that Z z
u(s) = zu+s for s ∈ [−h,0]),

ẑt − ξ0 = (
δẑ

)
0t

=
∫ t

0
f

(
Z z

u

)
dxu, t ∈ [0, ε].

We shall now look for an invariant ball in the space Cλ
ξ,0,ε for the map Γ .

So let us pick an element z, such that ‖z‖λ,[−h,ε] ≤ N1 and set Γ (z) = ẑ. On
[−h,0], we have ẑ = ξ , and hence ‖δẑ‖λ,[−h,0] = ‖δξ‖λ,[−h,0] ≡ Nξ . We shall thus
choose N1 ≥ 2Nξ .
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On [0, ε], we have now, invoking Lemma 3.3:
∥∥δẑ

∥∥
λ,[0,ε] ≤ ‖Z‖∞‖x‖γ εγ−λ + cγ,λ‖Z‖λ,[0,ε]‖x‖γ εγ . (20)

Furthermore, according to Hypothesis 1, we have ‖Z‖∞ ≤ M and thanks to Lemma
3.1, we also have ‖Z‖λ,[0,ε] ≤ M ‖z‖λ,[−h,ε] ≤ M N1, by assumption. Then we can
recast the previous inequality into:

∥∥δẑ
∥∥

λ,[0,ε] ≤ M‖x‖γ εγ−λ
[
1 + cγ,λN1ε

λ
]
. (21)

Let us choose now ε and N1 in the following manner (notice that ε does not depend
on the initial condition ξ ):

ε = [
4Mcγ,λ‖x‖γ

]−1/γ ∧ 1, and N1 ≥ 4M‖x‖γ . (22)

With this choice of ε,N1, inequality (21) becomes ‖δẑ‖λ,[0,ε] ≤ N1/2. Summarizing
the considerations above, we have thus found that

ε = [
4Mcγ,λ‖x‖γ

]−1/γ ∧ 1, N1 ≥ sup
{
2Nξ ; 4M‖x‖γ

}

=⇒ sup
{∥∥δẑ

∥∥
λ,[−h,0];

∥∥δẑ
∥∥

λ,[0,ε]
} ≤ N1

2
. (23)

Consider now s < t , with s ∈ [−h,0] and t ∈ [0, ε]. Then, owing to the previous
relation, we have:

∣
∣(δẑ

)
st

∣
∣ ≤ ∣

∣(δẑ
)
s0

∣
∣ + ∣

∣(δẑ
)

0t

∣
∣ ≤ N1

2

(
sλ + tλ

) ≤ N1|t − s|λ,

which, together with the last inequality, proves that B(0,N1) in Cλ
ξ,0,ε is left invariant

by Γ , under the assumptions of (23).
Assume now that we have been able to produce a solution y(1) to equation (18) on

the interval [−h, ε]. We try now to iterate the invariant ball argument on [ε − h;2ε].
The arguments above go through with very little changes: we are now working on
delayed Hölder spaces of the form Cλ

y(1),ε,2ε
, and the map Γ is defined by Γ (z) = ẑ,

with ẑ = y(1) on [ε − h; ε], and δẑ having the same expression as in (19) on [ε,2ε].
We wish to find a ball B(0,N2) in Cλ

y(1),ε,2ε
, left invariant by the map Γ . With the

same computations as for the interval [−h, ε], the assumptions of inequality (23)
become

ε = [
4Mcγ,λ‖x‖γ

]−1/γ ∧ 1, N2 ≥ sup
{
2Ny(1); 4M‖x‖γ

}
.

Notice again that we are able to choose here the same ε as before, by changing N1 into
N2 according to the value of ‖y(1)‖λ,[ε−h,ε]. It is now readily checked that B(0,N2)

is invariant under Γ , and this calculation is also easily repeated on any interval [kε −
h, (k + 1)ε] for any k ≥ 0, until the whole interval [0, T ] is covered.

Step 2: Fixed point argument. We shall suppose here that we have been able to
construct the unique solution y to (18) on [−h; lε], and we shall build the fixed point
argument on [lε −h; (l + 1)ε]. On the latter interval, the initial condition of the paths
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we shall consider is ξ l,1 ≡ y on [lε − h; lε]. If Γ is the map defined on Cλ
ξ l,1,lε,(l+1)ε

by (19), then we know that B(0,Nl+1) is invariant by Γ .
In order to settle our fixed point argument, we shall first consider an interval of the

form [lε − h; lε + η], for a parameter 0 < η ≤ ε to be determined. On Cλ
ξ l,1,lε,lε+η

,

we define a map, called again Γ , according to (19). Pick then two functions z1, z2 ∈
Cλ

ξ l,1,lε,lε+η
, set ẑi = Γ (zi) for i = 1,2 and ζ = ẑ2 − ẑ1. Then ζ ∈ Cλ

0,lε,lε+η , and if
lε ≤ s < t ≤ lε + η, we have

(δζ )st = Jst

((
Z2 − Z1)dx

)
, where Zi = f

(
Z zi )

.

Thus, just like in (20), we have

‖δζ‖λ,[lε−h,lε+η] ≤ ∥∥Z1 − Z2
∥∥∞,[lε,lε+η]‖x‖γ ηγ−λ

+ cγ,λ

∥∥Z1 − Z2
∥∥

λ,[lε,lε+η]‖x‖γ ηγ .

Furthermore, ‖Z1 − Z2‖∞,[lε,lε+η] ≤ ‖Z1 − Z2‖λ,[lε,lε+η] ηλ. Hence,

‖δζ‖λ,[lε−h,lε+η] ≤ (1 + cγ,λ)
∥∥Z1 − Z2

∥∥
λ,[lε,lε+η] ‖x‖γ ηγ .

We also have Z1 − Z2 = f (Z z1
) − f (Z z2

), and thanks to Hypothesis 2, we obtain

‖δζ‖λ,[lε−h,lε+η] ≤ (1 + cγ,λ)‖x‖γ cNl+1 ηγ
∥∥z1 − z2

∥∥
λ,[lε−h,lε+η].

Therefore, we are able to apply the fixed point argument in the usual way as soon as

(1 + cγ,λ) cNl+1 ‖x‖γ ηγ ≤ 1

2
, or η = [

2(1 + cγ,λ) cNl+1 ‖x‖γ

]−1/γ ∧ ε.

With this value of η, we are thus able to get a unique solution to (18) on [lε − h;
lε + η].

Let us proceed now to the case of [lε+η−h, lε+2η]. The arguments are roughly
the same as in the previous case, but one has to be careful about the change in the
initial condition. In fact, the initial condition here should be ξ l,2 ≡ y on [lε + η −
h, lε + η]. However, we can also choose to extend this initial condition backward,
and set it as ξ l,2 ≡ y on [lε − h, lε + η]. We then define the usual map Γ as in
(19), and we have to prove that B(0,Nl+1) is left invariant by Γ . To this purpose,
take z ∈ Cλ

ξ l,2,lε+η,lε+2η
in B(0,Nl+1), and set ẑ = Γ (z). Observe then that, for any

t ∈ [lε + η, lε + 2η], we have

ẑt = ξ2
lε+η +

∫ t

lε+η

f
(

Z z
u

)
dxu = ξ1

lε +
∫ lε+η

lε

f
(

Z y
u

)
dxu +

∫ t

lε+η

f
(

Z z
u

)
dxu

= ξ1
lε +

∫ t

lε

f
(

Z z
u

)
dxu,

where we have used the fact that ξ l,2 ≡ y on [lε − h, lε + η] solves (18). It is now
easily seen that ẑ is in B(0,Nl+1), and this allows to settle our fixed point argument
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as in the previous case, with the same interval length η. This step can now be iterated
until the whole interval [lε; (l + 1)ε] is covered. �

3.2 Moments of the Solution

The moments of the solution to (18) can be bounded in the following way:

Proposition 3.4 Under the same assumptions as in Theorem 3.2, let y be the solution
of equation (18) on the interval [0, T ], with an initial condition ξ ∈ Cλ

1 ([−h,0];R
n).

Then there exists a strictly positive constant c = c(γ,λ,M,T ) such that

‖y‖λ,[−h,T ] ≤ c max
[‖ξ‖λ,‖x‖λ/(γ+λ−1)

γ ,‖x‖γ

]
.

Proof From the proof of Theorem 3.2, we know that ‖y‖λ,[−h,T ] is finite. Let us
assume that this quantity is equal to K , and let us find an estimate on K . One can
begin with a small interval, which will be called again [0, ε], though it will not be the
same interval as in the proof of Theorem 3.2. In any case, taking into account that y

solves equation (18), we obtain similarly to (20),

‖δy‖λ,[0,ε] ≤ M‖x‖γ εγ−λ + cγ,λM‖δy‖λ,[−h,ε]‖x‖γ εγ

≤ M‖x‖γ εγ−λ + cγ,λMK‖x‖γ εγ ≡ g(ε,K). (24)

Along the same line, for any k ≤ [T/ε], we have

‖δy‖λ,[kε,(k+1)ε] ≤ g(ε,K).

Take now s, t ∈ [0, T ] such that iε ≤ s < (i + 1)ε ≤ jε ≤ t < (j + 1)ε. Set also
ti = s, tk = kε for i + 1 ≤ k ≤ j , and tj+1 = t . Then

∣
∣(δy)st

∣
∣ =

∣∣
∣∣∣

j∑

k=i

(δy)tktk+1

∣∣
∣∣∣
≤ g(ε,K)

j∑

k=i

(tk+1 − tk)
λ

≤ g(ε,K)(j − i + 1)1−λ(t − s)λ,

where we have used the fact that r �→ rλ is a concave function. Note that the indices
i, j above satisfy (j − i +1) ≤ 2T/ε. Plugging this into the last series of inequalities,
we end up with

‖δy‖λ,[0,T ] ≤ g(ε,K)(2T )1−λ

ε1−λ
=

[
M ‖x‖γ

ε1−γ
+ cγ,λ M K ‖x‖γ εγ+λ−1

]
(2T )1−λ.

Thus the parameters K and ε satisfy the relation

K ≤
[
M ‖x‖γ

ε1−γ
+ cγ,λ M K ‖x‖γ εγ+λ−1

]
(2T )1−λ + ‖ξ‖λ, (25)
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In order to solve (25), choose ε such that

cγ,λ M ‖x‖γ εγ+λ−1 (2T )1−λ = 1

2
,

that is

ε = [
2cγ,λ M ‖x‖γ (2T )1−λ

]−1/(γ+λ−1)
.

Plugging this relation into (25), we obtain the result when ε < T .
Finally, T < ε if and only if T γ < [22−λcγ+λM‖x‖γ ]−1. Thus, by inequality (24),

the proof is complete. �

3.3 Case of a Weighted Delay

In this subsection, we prove that our Hypotheses 1 and 2 are satisfied for the weighted
delay alluded to in the introduction, that is for the function f given by equation (2).

Proposition 3.5 Let ν be a finite signed measure on [−h,0] and σ : R
n → R

n×d a
four times differentiable bounded function with bounded derivatives. Then Hypothe-
ses 1 and 2 are fulfilled for f : Cλ

1 ([−h,0];R
n) → R

n×d defined by:

f (Z) = σ

(∫ 0

−h

Z(θ)ν(dθ)

)
,

with Z ∈ Cλ
1 ([−h,0];R

n).

Proof We first show that Hypothesis 1 holds. More specifically, the condition
|f (ζ )| ≤ M being obvious in our case, we focus on the second condition of Hy-
pothesis 1. Let Z1,Z2 ∈ Cλ

1 ([−h,0];R
n). Then there is a constant C > 0 such that

∣∣f (Z1) − f (Z2)
∣∣ ≤ C

∣∣∣∣

∫ 0

−h

(
Z1(θ) − Z2(θ)

)
ν(dθ)

∣∣∣∣

≤ C|ν|([−h,0])
(

sup
θ∈[−h,0]

∣∣Z1(θ) − Z2(θ)
∣∣
)
,

where |ν| is the total variation of ν. Therefore Hypothesis 1 is satisfied in this case.
Now we prove that U (a) is Fréchet differentiable in order to analyze Hypothe-

sis 2. Since the map Z �→ ∫ 0
−h

Z(· + θ)ν(dθ) is easily shown to be a bounded linear
operator from Cλ

1 ([a1 − h,a2];R
n) into Cλ

1 ([a1, a2];R
n), we only need to show that

σ : Cλ
ρ,a1,a2

(
R

n
) → Cλ

ρ̂,a1,a2

(
R

n×d
)
, with ρ̂ � σ(ρ),

is Fréchet differentiable in the directions of Cλ
0,a1,a2

(Rn), with derivative [Dσ(Z)�](t)
= σ ′(Z(t))�(t). Toward this end, we have to show that, taking Z ∈ Cλ

ρ,a1,a2
(Rn) and

� ∈ Cλ
0,a1,a2

(Rn), and setting

qt = σ
(
Z(t) + �(t)

) − σ
(
Z(t)

) − σ ′(Z(t)
)
�(t),
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then

lim‖�‖λ,[a1−h,a2]→0

‖q‖λ,[a1−h,a2]
‖�‖λ,[a1−h,a2]

= 0. (26)

In order to prove relation (26), define a function b : [0,1]2 → R by:

b(λ,μ) = Z(s) + λ�(s) + μ
[
Z(t) − Z(s)

] + λμ
[
�(t) − �(s)

]
.

Observe then that b(1,1) = Z(t) + �(t), b(1,0) = Z(s) + �(s), b(0,1) = Z(t) and
b(0,0) = Z(s). We will also set H(λ,μ) = σ(b(λ,μ)). Then

σ
(
Z(t) + �(t)

) − σ
(
Z(t)

) − σ ′(Z(t)
)
�(t)

= σ
(
b(1,1)

) − σ
(
b(0,1)

) − σ ′(b(0,1)
)[

b(1,1) − b(0,1)
]

= 1

2

∫ 1

0
∂2
λλH(λ,1)[1 − λ]dλ,

and similarly, we have

σ
(
Z(s) + �(s)

) − σ
(
Z(s)

) − σ ′(Z(s)
)
�(s) =

∫ 1

0
∂2
λλH(λ,0)[1 − λ]dλ.

Hence, plugging these two relations in the definition of q , we end up with

(δq)st =
∫ 1

0

(
∂2
λλH(λ,1) − ∂2

λλH(λ,0)
)[1 − λ]dλ

=
∫ 1

0
∂3
λλμH(λ,0)[1 − λ]dλ +

∫

[0,1]2
∂4
λλμμH(λ,μ)[1 − λ][1 − μ]dλdμ.

The calculation of ∂3
λλμH(λ,0) and ∂4

λλμμH(λ,μ) is a matter of long and tedious
computations, which are left to the reader. Let us just mention that both expressions
can be written as a sum of terms of which a typical example is

σ ′′′(b(λ,μ)
)[

(δZ)st + μ(δZ)st
][

�(s) + λ(δ�)st
]
(δ�)st . (27)

These terms are obviously quadratic in �, and can be bounded uniformly in λ,μ, s, t

under the hypothesis σ ∈ C4
b . Notice that, in order to bound the term |�(s)| in (27),

we use the fact that � has a null initial condition, which means in particular that
|�(s)| ≤ (a2 − a1 + h)λ‖�‖λ,[a1−h,a2]. This finishes the proof of (26). The continuity
of Dσ(Z) and the existence of the constant cN introduced in Hypothesis 2 are now a
question of trivial considerations, and this ends the proof of our proposition. �

Remark 3.6 The proof of Fréchet differentiability of f was not necessary for the
existence-uniqueness result, which relied on some Lipschitz type condition. However,
this stronger result turns out to be useful for the Malliavin calculus part, and this is
why we prove it here. Nevertheless, notice that Theorem 3.2 holds true for a C2

b

coefficient σ .
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3.4 Differentiability of the Solution

In this section we study the differentiability of the solution of (18) as a function of the
integrator x, following closely the methodology of [31]. In particular, our differentia-
bility result will be achieved with the help of the map F : Cγ

0,0,T (Rd)× Cλ
0,0,T (Rn) →

Cλ
0,0,T (Rn) given by

[
F(k,Z)

]
t
= Zt − J0t

(
f

(
Z Z+ξ̃

)
d(x + k)

)
, t ∈ [0, T ] (28)

where ξ̃t = ξ0 for t ∈ [0, T ], and ξ̃t = ξt for t ∈ [−h,0]. Here we recall that ξ stands
for an initial condition in Cλ

1 ([−h,0]). In this section the coefficient f will satisfies
the following:

Hypothesis 3 Set t = (0, t), and recall that the map U (t) has been defined
in Lemma 3.1. We assume that U (t) : Cλ

ξ,0,t (R
n) → Cλ([0, t];R

n×d) is continu-

ously Fréchet differentiable in the directions of Cλ
0,0,t (R

n), for some λ ∈ (1/2, γ ).

We call ∇U (t) : Cλ
ξ,0,t (R

n) → L(Cλ
0,0,t (R

n); Cλ
0,0,t (R

n×d)) its differential, where

L(Cλ
0,0,t (R

n); Cλ
0,0,t (R

n×d)) denotes the linear operators from Cλ
0,0,t (R

n) into

Cλ
0,0,t (R

n×d). Moreover, we also assume that, for s < t and Z ∈ Cλ
0,0,T (Rn),

[∇U (t)(y)
]
(Z) = [∇U (s)(y)

]
(Z) on [0, s],

where y is the solution of equation (18).

Remarks 3.7

(1) Notice that we have shown, during the proof of Proposition 3.5, that the weighted
delay given by (2) also satisfies this last assumption.

(2) If Z ∈ Cλ
0,0,t (R

n), then

∥∥∇U (t)(y)(Z)
∥∥

λ,[0,t] ≤ ∣∣∇U (T)(y)
∣∣‖Z‖λ,[0,t].

Indeed, set Z̃s = Zs for s ∈ [0, t], and Z̃s = Zt for s > t . Therefore Hypothesis 3
implies

∥∥∇U (t)(y)(Z)
∥∥

λ,[0,t] ≤ ∥∥∇U (T)(y)
(
Z̃

)∥∥
λ,[0,T ] ≤ ∣∣∇U (T)(y)

∣∣∥∥Z̃
∥∥

λ,[0,T ]
= ∣∣∇U (T)(y)

∣∣‖Z‖λ,[0,t],

and our claim is satisfied.

We are now ready to prove the differentiability properties for equation (18):

Lemma 3.8 Under the Hypothesis 3, the map F given by (28) is continuously Fréchet
differentiable.
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Proof Let us call respectively D1 and D2 the two directional derivatives. We first
observe that, for k, g ∈ Cγ

0,0,T (Rd) and Z ∈ Cλ
0,0,T (Rn), we have

F(k + g,Z) − F(k,Z) +
∫ ·

0

[
U (T)

(
Z + ξ̃

)]
s
dgs = 0.

In other words, the partial derivative D1F is defined by

D1F(k,Z)(g) = −
∫ ·

0

[
U (T)

(
Z + ξ̃

)]
s
dgs = −J0·

([
U (T)

(
Z + ξ̃

)]
dg

)
.

We shall prove now that D1F is continuous: consider k, k̃ ∈ Cγ

0,0,T (Rd) and Z, Z̃ ∈
Cλ

0,0,T (Rn). For notational sake, set also ‖ · ‖λ for ‖ · ‖λ,[0,T ]. Then, according to
Lemma 3.3, we obtain

∥∥D1F(k,Z)(η) − D1F
(
k̃, Z̃

)
(η)

∥∥
λ

= ∥∥J
([

U (T)
(
Z + ξ̃

) − U (T)
(
Z̃ + ξ̃

)]
dηs

)∥∥
λ

≤ ‖η‖γ

(∥∥U (T)
(
Z + ξ̃

) − U (T)
(
Z̃ + ξ̃

)∥∥∞T γ−λ

+ Cλ+γ T γ
∥∥U (T)

(
Z + ξ̃

) − U (T)
(
Z̃ + ξ̃

)∥∥
λ

)
,

which, owing to Hypothesis 3, implies that D1F is continuous.
Concerning D2F we have, for k ∈ Cγ

0,0,T (Rd), Z ∈ Cλ
0,0,T (Rn) and Z̃ ∈ Cλ

0,0,T (Rn),
and thanks to Theorem 2.5:
∥∥F

(
k,Z + Z̃

) − F(k,Z) − Z̃ + J
([∇U (T)

(
Z + ξ̃

)](
Z̃

)
d(x + k)

)∥∥
λ

≤ ‖x + k‖γ

(∥∥U (T)
(
Z + Z̃ + ξ̃

) − U (T)
(
Z + ξ̃

) − [∇U (T)
(
Z + ξ̃

)](
Z̃

)∥∥∞T γ−λ

+ Cλ+γ T γ
∥∥U (T)

(
Z + Z̃ + ξ̃

) − U (T)
(
Z + ξ̃

) − [∇U (T)
(
Z + ξ̃

)](
Z̃

)∥∥
λ

)
.

Therefore, making use of Hypothesis 3, we have

D2F(k,Z)
(
Z̃

) = Z̃ −
∫ ·

0
∇U (T)

(
Z + ξ̃

)(
Z̃

)
s
d(xs + ks).

The continuity of D2F can now be proven along the same lines as for D1F , and the
computational details are left to the reader for sake of conciseness. The proof is now
finished. �

The following will be used to show that D2F(k,Z) is a linear homeomorphism.

Lemma 3.9 Let w ∈ Cλ
0,0,T (Rn), y the solution of (18) and assume Hypotheses 1, 2

and 3 hold. Then the equation

Zt = wt +
∫ t

0

([∇U (T)(y)
]
(Z)

)
s
dxs, 0 ≤ t ≤ T , (29)

has a unique solution Z in Cλ
0,0,T (Rn).
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Proof Thanks to Lemma 3.3 and Remark 3.7.(2), one can proceed as in the proof of
Theorem 3.2 to show that the result holds. �

Proposition 3.10 Assume that Hypotheses 1 to 3 are satisfied. Let y be the solution of
equation (18). Then the map h �→ y(x + h) is Fréchet differentiable in the directions
of Cγ

0,0,T (Rd), as a Cλ
ξ,0,T (Rn)-valued function. Moreover, for h, k ∈ Cγ

0,0,T (Rd), we
have

[
Dy(x + h)(k)

]
t
=

∫ t

0
U (T)

(
y(x + h)

)
s
dks

+
∫ t

0

[∇U (T)
(
y(x + h)

)(
Dy(x + h)(k)

)]
s
d(xs + hs). (30)

In particular, [Dy(x + h)](k) is an element of Cλ
0,0,T (Rn).

Remark 3.11 Let us recall that equation (30) has a unique solution, thanks to
Lemma 3.9.

Proof of Proposition 3.10 Like in [31], the proof of this result is a consequence of
the implicit function theorem, and we only need to show that D2F(0, y(x) − ξ̃ ) is
a linear homeomorphism from Cλ

0,0,T (Rn) onto Cλ
0,0,T (Rn). Indeed, in this case we

deduce that h �→ y(x + h) is Fréchet differentiable with

Dy(x + h)(k) = −(
D2F

(
h,y(x + h) − ξ̃

))−1 ◦ D1F
(
h,y(x + h) − ξ̃

)
(k), (31)

which yields that (30) holds.
Finally, notice that D2F(0, y(x) − ξ̃ ) is bijective and continuous according to

Lemmas 3.8 and 3.9. Consequently the open mapping theorem implies that the appli-
cation D2F(0, y(x) − ξ̃ ) is also a homeomorphism. �

Interestingly enough, in the particular case of the weighted delay of Sect. 3.3,
one can also derive a linear equation for the derivative [Dy(x)]t , seen as a Hölder-
continuous function.

Proposition 3.12 Let σ and ν be as in Proposition 3.5. Let also f and y be defined by
(2) and (18), respectively. Assume that ν is absolutely continuous with respect to the
Lebesgue measure with Radon–Nykodim derivative in Lp([−h,0]) for p > 1/(1−γ ).
Then, for i ∈ {1, . . . , n} and k ∈ Cλ

0,0,T (Rn), we have

Dyi
t (x)(k) =

d∑

j=1

∫ t

0
Φ

ij
t (r) dk

j
r ,

where, for j ∈ {i, . . . , d} and i ∈ {1, . . . , n}, Φij is defined by the equation

Φ
ij
t (r) = (

U (T)(y)
)ij

t
+

n∑

m=1

d∑

l=1

∫ t

r

(([∇U (T)(y)
]m)il(

Φmj (s)
))

s
dxl

s,

0 ≤ r ≤ t ≤ T , (32)

and Φt(r) = 0 for all 0 ≤ t < r ≤ T .
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Remark 3.13 Note that, for each s ∈ [0, T ], equation (32) has a unique solution in
Cλ([s, T ];R

n) due to Lemma 3.9.

Proof of Proposition 3.12 In order to avoid cumbersome matrix notations, we shall
prove this result for n = d = 1: notice that an easy consequence of the proof of Propo-
sition 3.5 is that in our particular case,

[∇U (T)(Z)(k)
]
t
= σ ′

(∫ 0

−h

Zt+θ ν(dθ)

)(∫ 0

−h

kt+θ ν(dθ)

)
. (33)

Set now qt = σ(
∫ 0
−h

yt+θ ν(dθ)) and q ′
t = σ ′(

∫ 0
−h

yt+θ ν(dθ)), and write y = y(x).
Then equation (30) can be read as:

[
Dy(k)

]
t
=

∫ t

0
qs dks +Ut, with Ut =

∫ t

0
q ′
s

(∫ 0

−h

[
Dy(k)

]
s+θ

ν(dθ)

)
dxs. (34)

The Fubini type relation given in Lemma 2.6 allows then to show, as in [31, Proposi-
tion 4], that

[
Dy(k)

]
t
=

∫ t

0
Φt(r) dkr , (35)

for a certain function Φ , λ-Hölder continuous in all its variables. In order to iden-
tify the process Φ , plug relation (35) into equation (34) and apply Fubini’s theorem,
which yields

Ut =
∫ 0

−h

ν(dθ)

∫ t

0
q ′
s

(∫ (s+θ)+

0
Φs+θ (r) dkr

)
dxs.

It should be noticed that this point is where we use the fact that ν(dθ) = μ(θ)dθ

with μ ∈ Lp([−h,0]). Indeed, in order to apply Lemma 2.6 to x, k and η �→ F(η) =∫ η

−h
μ(θ) dθ , we will assume (though this is not completely optimal) that F is γ -

Hölder continuous. However, a simple application of Hölder’s inequality yields
∣∣F(η2) − F(η1)

∣∣ ≤ |η2 − η1|(p−1)/p ‖μ‖Lp([−h,0]).

It is now easily seen that the condition (p − 1)/p > γ imposes p > 1/(1 − γ ).
Owing now to (a slight extension of) Lemma 2.6, we can write

Ut =
∫ 0

−h

ν(dθ)

∫ (t+θ)+

0
mt(r, θ) dkr , with mt(r, θ) =

∫ t

r−θ

q ′
s Φs+θ (r) dxs.

Apply Fubini’s theorem again in order to integrate with respect to k in the last place:
we obtain

Ut =
∫ t

0

(∫ 0

−[(t−r)∧h]
mt(r, θ) ν(dθ)

)
dkr

=
∫ t

0

(∫ 0

−[(t−r)∧h]
ν(dθ)

∫ t

r−θ

q ′
s Φs+θ (r) dxs

)
dkr ,
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and going back to (34), which is valid for any λ-Hölder-continuous function k, we
see that Φt is defined on [0, t] by the equation

Φt(r) = qt +
∫ 0

−[(t−r)∧h]

(∫ t

r−θ

q ′
sΦs+θ (r) dxs

)
ν(dθ),

and Φt(r) = 0 if r > t . A last application of Fubini’s theorem allows us then to recast
the above equation as

Φt(r) = qt +
∫ t

r

q ′
s

(∫ 0

−[h∧(s−r)]
Φs+θ (r) ν(dθ)

)
dxs.

Notice now that, if θ ≤ −(s − r) in the above equation, then s + θ ≤ r , which means
that Φs+θ (r) = 0. Hence, we end up with an equation of the form

Φt(r) = qt +
∫ t

r

q ′
s

(∫ 0

−h

Φs+θ (r)ν(dθ)

)
dxs,

which is easily seen to be of the form (32). �

3.5 Moments of Linear Equations

In order to obtain the regularity of the density for equation (18), we should bound the
moments of the solution to equation (29). This is obtained in the following proposi-
tion:

Proposition 3.14 Let f̃ be a mapping from Cλ
ξ,0,T (Rn) into the linear operators from

Cλ
0,0,T (Rn) into Cλ([0, T ];R

n×d) such that, for 0 ≤ a < b ≤ T , ỹ ∈ Cλ
ξ,0,T (Rn) and

z̃ ∈ Cλ
0,0,T (Rn),

(1) ‖f̃ (ỹ)z̃‖∞,[a,b] ≤ M‖z̃‖∞,[a−h,b].
(2) ‖f̃ (ỹ)z̃‖λ,[a,b] ≤ M‖z̃‖λ,[a−h,b] + M‖ỹ‖λ,[a−h,b]‖z̃‖∞,[a−h,b].

Also let y be the solution of the equation (18), w ∈ Cλ
0,0,T (Rn) and z ∈ Cλ

0,0,T (Rn)

the solution of the equation

zt = wt +
∫ t

0

(
f̃ (y)z

)
(s) dxs, t ∈ [0, T ].

Then

‖z‖λ,[0,T ] ≤ c1‖w‖λ,[0,T ]D2
γ,λe

c2Dγ,λ,

for two strictly positive constants ci = ci(T , γ,λ,M), i = 1,2 and

Dγ,λ = (‖ξ‖λ‖x‖γ

)1/(γ+λ) + ‖x‖1/γ
γ + ‖x‖(2λ+γ−1)/((γ+λ)(γ+λ−1))

γ .
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Remarks 3.15

(1) Observe that if f is as in Proposition 3.5 and f̃ = ∇U (T), then straightforward
calculations show that Conditions (1) and (2) in the proposition are satisfied.

(2) The fact that z0 = 0 implies that

‖z‖∞,[0,T ] ≤ c1T
λ‖w‖λ,[0,T ]D2

γ,λe
c2Dγ,λ .

(3) Let λ = γ . Then (γ +2λ−1)/((γ +λ)(γ +λ−1)) in Proposition 3.14 is smaller
than 2 for γ > H0, where H0 = (7 + √

17)/16 ≈ 0.6951. This is the threshold
above which our general delay equation will admit a smooth density.

(4) The unusual threshold H0 above stems from the continuous dependence of the
solution on its past, represented by the signed measure ν. In case of a discrete
delay of the form σ(yt , yt−r1, . . . , yt−rq ), we shall see that all our considerations
are valid for any H > 1/2.

Proof of Proposition 3.14 We first consider two generic positive numbers k ∈ N and
ε, such that (k + 1)ε ≤ T . Then Theorem 2.5, point (2), and Conditions (1) and (2)
imply

‖z − w‖λ,[kε,(k+1)ε]

≤ ∥∥f̃ (y)z
∥∥∞,[kε,(k+1)ε]‖x‖γ εγ−λ + cγ,λ

∥∥f̃ (y)z
∥∥

λ,[kε,(k+1)ε]‖x‖γ εγ

≤ M‖z‖∞,[0,(k+1)ε]‖x‖γ εγ−λ

+ cγ,λM‖x‖γ

(‖z‖λ,[0,(k+1)ε] + ‖z‖∞,[0,(k+1)ε]‖y‖λ,[0,T ]
)
εγ .

The following (arguably non-optimal) bound on ‖z‖∞,[0,(k+1)ε] can now be easily
verified by induction:

‖z‖∞,[0,(k+1)ε] ≤
k+1∑

i=1

2k+1−i‖z − z(i−1)ε‖∞,[(i−1)ε,iε] ≤
k+1∑

i=1

2k+1−i‖z‖λ,[(i−1)ε,iε].

This yields

‖z − w‖λ,[kε,(k+1)ε]

≤ M‖x‖γ εγ

(
k+1∑

i=1

2k+1−i‖z − z(i−1)ε‖λ,[(i−1)ε,iε]

)

+ cγ,λM‖x‖γ εγ
(‖z‖λ,[0,kε] + ‖z‖λ,[kε,(k+1)ε]

)

+ cγ,λM‖x‖γ ‖y‖λ,[0,T ]εγ+λ

(
k+1∑

i=1

2k+1−i‖z − z(i−1)ε‖λ,[(i−1)ε,iε]

)

. (36)

Now the proof can be split in three steps.
Step 1. Bounds depending on ε. Let

ε =(
T + [

6M‖x‖γ (1 + cγ,λ)
]1/γ + [

6M‖x‖γ cγ,λ‖y‖λ,[0,T ]
]1/(γ+λ))−1 ∧ T . (37)
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Note that in this case, inequality (36) yields

‖z‖λ,[kε,(k+1)ε]

≤ 2‖w‖λ,[kε,(k+1)ε] + M‖x‖γ εγ

(
k∑

i=1

2k+2−i‖z‖λ,[(i−1)ε,iε]

)

+ cγ,λM‖x‖γ εγ

(

2‖z‖λ,[0,kε] + ελ‖y‖λ,[0,T ]
k∑

i=1

2k+2−i‖z‖λ,[(i−1)ε,iε]

)

≤ 2‖w‖λ,[kε,(k+1)ε]

+
k∑

i=1

2k+2−i‖z‖λ,[(i−1)ε,iε]
(
M‖x‖γ εγ + cγ,λM‖x‖γ εγ

+ cγ,λM‖x‖γ εγ+λ‖y‖λ,[0,T ]
)

≤ 2‖w‖λ,[kε,(k+1)ε] +
k∑

i=1

2k+1−i‖z‖λ,[(i−1)ε,iε], (38)

where we have used (37) in the last step.
Step 2. Bounds for ‖z‖λ,[kε,(k+1)ε]. Here we will use induction on k to show that

‖z‖λ,[(i−1)ε,iε] ≤
i∑

j=1

22i+1−2j‖w‖λ,[(j−1)ε,jε]. (39)

By (38) we see that this inequality holds for i = 1. Therefore we can assume that
(39) holds for any positive integer i ≤ k to show that it is also true for i = k + 1.

The inequalities (38) and (39) lead us to write

‖z‖λ,[kε,(k+1)ε]

≤ 2‖w‖λ,[kε,(k+1)ε] +
k∑

i=1

2k+1−i

i∑

j=1

22i+1−2j‖w‖λ,[(j−1)ε,jε]

≤ 2‖w‖λ,[kε,(k+1)ε] +
k∑

j=1

‖w‖λ,[(j−1)ε,jε]2k+2−2j
k∑

i=1

2i

≤ 2‖w‖λ,[kε,(k+1)ε] +
k∑

j=1

‖w‖λ,[(j−1)ε,jε]22k+3−2j .

Now it is easy to see that (39) also holds for i = k + 1.
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Step 3. Final bound. Let k0 such that k0ε < T < (k0 + 1)ε. Then, by Step 2 we
have

‖z‖λ,[0,T ]

≤ ‖w‖λ,[0,T ]
k0∑

k=1

k∑

j=1

22k+1−2j

≤ ‖w‖λ,[0,T ](k0)
222k0+1 ≤ ‖w‖λ,[0,T ](2T/ε)222T ε−1+3.

Thus the proof is finished by plugging relation (37) into the last expression, and
invoking Proposition 3.4. �

The following result is a slight extension of Proposition 3.14, allowing to take into
account the case of constant but non-vanishing functions.

Corollary 3.16 Let f̃ , Dγ,λ, w and y be as in Proposition 3.14. Furthermore, as-
sume that f̃ is a mapping from Cλ

ξ,0,T (Rn) into the linear operators from the constant

functions on [−h,T ] into Cλ([0, T ];R
n×d) satisfying the Conditions (1) and (2) of

Proposition 3.14 when z̃ is a constant function. Then the solution of the equation

zt = c + wt +
∫ t

0

(
f̃ (y)z

)
(t) dxt , t ∈ [0, T ],

satisfies the inequality

‖z‖λ,[0,T ] ≤ c1

∥
∥∥∥w +

∫ ·

0

(
f̃ (y)c̃

)
(t) dxt

∥
∥∥∥

λ,[0,T ]
D2

γ,λ ec2Dγ,λ,

where c̃ stands for the constant function c̃t ≡ c.

Proof The proof is an immediate consequence of Proposition 3.14. Indeed, we only
need to observe that

zt − c̃t = wt +
∫ t

0

(
f̃ (y)c̃

)
(t) dxt +

∫ t

0

(
f̃ (y)(z − c̃)

)
(t) dxt , t ∈ [0, T ],

where c̃(t) = c, t ∈ [0, T ]. �

4 Delay Equations Driven by a Fractional Brownian Motion

Here we consider the Young stochastic delay equation

yt = ξ0 +
∫ t

0
f

(
Z y

t

)
dBt , 0 ≤ t ≤ T ,

Z y

0 = ξ, (40)
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where B = {Bt ;0 ≤ t ≤ T } is a d-dimensional fractional Brownian motion (fBm)
with parameter H ∈ (1/2,1). The coefficient f satisfies Hypotheses 1–3 and ξ is a
given deterministic function in Cγ

1 ([−h,0];R
n), for some λ < γ < H . Remember

that λ ∈ (1/2,H) is introduced at the beginning of Sect. 3.
The fBm B is a centered Gaussian process with the covariance

RH (t, s)δi,j = E
(
Bi

sB
j
t

) = 1

2
δi,j

(
s2H + t2H − |t − s|2H

)
,

where δi,j represents the Dirac symbol. In particular, B has ν-Hölder-continuous
paths for any exponent ν < H . Consequently, from Theorem 3.2 and Hypotheses
1–3, equation (40) has a unique Cλ

ξ,0,T (Rn)-pathwise solution.
Here, our main goal is to analyze the existence of a smooth density of the solution

of equation (40). This will be done via the Malliavin calculus or stochastic calculus
of variations.

4.1 Preliminaries on Malliavin Calculus

In this subsection we introduce the framework and the results that we use in the
remaining of this paper. Namely, we give some tools of the Malliavin calculus for
fractional Brownian motion. Toward this end, we suppose that the reader is familiar
with the basic facts of stochastic analysis for Gaussian processes as presented, for
example, in Nualart [28].

Henceforth, we will consider the abstract Wiener space introduced in Nualart and
Saussereau [31], in order to take advantage of the relation between the Fréchet deriva-
tives of the solution to equation (40) (see Proposition 3.10) and its derivatives in the
Malliavin calculus sense (see [28], Proposition 4.1.3). This abstract Wiener space
is constructed as follows (for a more detailed exposition of it, the reader can con-
sult [31]).

We assume that the underlying probability space (Ω, F ,P ) is such that Ω is the
Banach space of all the continuous functions C0([0, T ];R

d), which are zero at time
0, endowed with the supremum norm. P is the only probability measure such that
the canonical process {Bt ;0 ≤ t ≤ T } is a d-dimensional fBm with parameter H ∈
(1/2,1) and the σ -algebra F is the completion of the Borel σ -algebra of Ω with
respect to P .

Two important tools related to the fBm B are the completion H of the R
d -valued

step functions E with respect to the inner product 〈(1[0,t1], . . . ,1[0,td ]), (1[0,s1], . . . ,
1[0,sd ])〉 = ∑d

i=1 RH (si, ti) (see [33]) and the isometry K∗
H : H → L2([0, T ]d),

which satisfies

K∗
H (1[0,t1], . . . ,1[0,td ]) = (

1[0,t1](·)KH (t1, ·), . . . ,1[0,td ]KH (td, ·)),

where KH (t, s) = cH s1/2−H
∫ t

s
(u − s)H−3/2uH−1/2 du is a kernel verifying

RH (t, s) =
∫ t∧s

0
KH (t, r)KH (s, r) dr.



J Theor Probab (2012) 25:854–889 881

It should be noticed at this point that K∗
H can be represented in the two following

ways:

[
K∗

H ϕ
]
t
=

∫ T

t

ϕr ∂rK(r, t) dr = cH t1/2−H
[
I

H−1/2
T −

(
uH−1/2ϕu

)]
t
, (41)

where Iα
T − stands for the fractional integration of order α on [0, T ] (see [29] for

further details). Furthermore, by [1], the inner product in H can be written as

〈ϕ,ψ〉H = cH

∫ T

0

∫ T

0
ϕu|u − v|2H−2ψv dudv.

The isometry K∗
H allows us to introduce the version of the Reproducing Kernel

Hilbert space HH associated with the process B . Namely, Let KH be given by

KH : L2([0, T ];R
d
) → HH := KH

(
L2([0, T ];R

d
))

,

(KH h)(t) =
∫ t

0
KH (t, s)h(s) ds.

The space H is continuously and densely embedded in Ω . Indeed, it is not difficult
to see that the operator RH : H → HH defined by

RH φ =
∫ ·

0
KH (·, s)(K∗

H φ
)
(s) ds

embeds H continuously and densely into Ω , because, as was pointed out in [31],
RH (φ) is H -Hölder continuous. Thus, we see that (Ω, H,P ) is an abstract Wiener
space.

Now we introduce the derivative in the Malliavin calculus sense of a random vari-
able. We say that a random variable F is a smooth functional if it has the form

F = f
(
B(h1), . . . ,B(hn)

)
,

where h1, . . . , hn ∈ H and f and all its partial derivatives have polynomial growth. In
the remainder of this paper, S denotes the family of smooth functionals. The deriva-
tive of this smooth functional is the H-valued random variable given by

DF =
n∑

i=1

∂f

∂xi

(
B(h1), . . . ,B(hn)

)
hi.

For p > 1, the operator D is closable from Lp(Ω) into Lp(Ω; H) (see [28]). The
closure of this operator is also denoted by D and its domain by D

1,p , which is the
completion of S with respect to the norm

‖F‖p

1,p = E
(|F |p) + E

(‖DF‖p

H
)
.

The operator D has the local property (i.e., DF = 0 on A ⊂ Ω if 1AF = 0). This
allows us to extend the domain of the operator D as follows. We say that F ∈ D

1,p

loc
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if there is a sequence {(Ωn,Fn), n ≥ 1} ⊂ F × D
1,p such that Ωn ↑ Ω w.p.1 and

F = Fn on Ωn. In this case, we define DF = DFn on Ωn.
It is known that, in the abstract Wiener space (Ω, H,P ), we can consider the

differentiability of random variable F in the directions of H. That is, we say that F

is H-differentiable if for almost all ω ∈ Ω and h ∈ H, the map ε �→ F(ω + εRH h) is
differentiable. The following result due to Kusuoka [20] (see also [28], Proposition
4.1.3) will be fundamental in the study of the existence of smooth densities of the
solution of equation (40).

Proposition 4.1 Let F be an H-differentiable random variable. Then F belongs to
the space D

1,p

loc , for any p > 1.

We will apply this result to the solution of equation (40) as follows. Note that for
ϕ ∈ H, we have the inequality

∣∣(RH ϕ)i(t) − (RH ϕ)i(s)
∣∣ = (

E
[∣∣Bi

t − Bi
s

∣∣2])1/2‖ϕ‖H ≤ ‖ϕ‖H|t − s|H .

Consequently, Proposition 3.10 (see also Lemma 4.2 below) implies that the random
variable yt defined in equation (40) is also H-differentiable, which, together with
Proposition 4.1, yields that yi

t belongs to D
1,p

loc for every t ∈ [0, T ], p > 1 and i ∈
{1, . . . , n}. Moreover, the relation between the H-derivative and D is given by (see
also Lemma 4.3),

〈
Dyi

t , h
〉

H = d

dε
yi
t (ω + εRH h)|ε=0, h ∈ H. (42)

More generally, if ω �→ X(ω) is infinitely Fréchet differentiable in the directions
of Cλ

0,0,T (R), then

〈
DnX,h1 ⊗ · · · ⊗ hn

〉
Hn

= DRH h1,...,RH hn
X = ∂

∂ε1
· · · ∂

∂εn

X(ω + ε1 Rh1 + · · · + εnRhn)|ε1=···=εn=0.

4.2 Existence of the Density of the Solution

In this section we establish that, for each t ∈ [0, T ], the random variable yt introduced
in equation (40) has a density.

Let us start with two important technical tools. The first one relates the derivative
of the vector-valued quantity yt with the derivative of y as a function.

Lemma 4.2 Let y be the solution of (40) and t ∈ [0, T ]. Then almost surely, h �→
yt (B + h) is Fréchet differentiable from Cλ

0,0,T (Rd) into R
n. Furthermore

Dyt(B)(h) = [
Dy(B)(h)

]
t
.

Proof The proof is an immediate consequence of
∣
∣yt (x + h) − yt (x) − (

Dy(x)(h)
)
(t)

∣
∣

= ∣∣yt (x + h) − yt (x) − (
Dy(x)(h)

)
(t)
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− y0(x + h) − y0(x) − (
Dy(x)(h)

)
(0)

∣∣

≤ ∥
∥y(x + h) − y(x) − Dy(x)(h)

∥
∥

λ
tλ,

with x,h ∈ Cλ
0,0,T (Rd). �

Lemma 4.3 Let y be the solution of (40). Then yi
t belongs to D

1,2
loc for every t ∈ [0, T ]

and i ∈ {1, . . . , n}. Moreover, for h ∈ H, we have
〈

Dyi
t , h

〉
H = [

Dyi(B)(RH h)
]
t
. (43)

Proof By Proposition 4.1 and Lemma 4.2, we have already shown that yi
t is in D

1,2
loc

for every t ∈ [0, T ] and i ∈ {1, . . . , n}.
Furthermore, from (42) and Lemma 4.2, we have

〈
Dyi

t , h
〉

H = DRH hy
i
t = Dyi

t (B)(RH h) = (
Dyi(B)(RH h)

)
(t).

Thus, the proof is complete. �

We now use the ideas of Nualart and Saussereau [31] to state one of the main
results of this section:

Theorem 4.4 Let us assume that Hypotheses 1–3 hold, recall that ξ is the (func-
tional) initial condition of equation (40), and assume that the space spanned by
{(f (ξ)1j , . . . , f (ξ)nj ); 1 ≤ j ≤ d} is R

n. Then for t ∈ (0, T ], the random variable yt

given by (40) is absolutely continuous with respect to the Lebesgue measure on R
n.

Proof By Lemma 4.3, we see that yi
t belongs to D

1,2
loc . Therefore we only need to see

that the Malliavin covariance matrix

Q
ij
t := 〈

Dyi
t , Dy

j
t

〉
H (44)

is invertible almost surely.
For v ∈ R

n, following [31] (proof of Theorem 8), we have

vT Qtv =
∞∑

m=1

∣∣〈Dy(B)(RH hm)(t), v
〉
Rn

∣∣2
,

where {hm,m ≥ 1} is a complete orthonormal system of H.
Now assume that the Malliavin matrix Qt is not almost surely invertible. Then, on

the set of strictly positive probability where Qt is not invertible, there exists v0 ∈ R
n,

v0 �= 0 such that vT
0 Qtv0 = 0. Moreover, recalling our notation (28), it is clear from

equation (31) that D2F(k,Z) is a linear homomorphism. Hence, we obtain that

0 = 〈
D1F

(
0, y

(
B − ξ̃

))
(RH hm)(t), v0

〉
Rn

= −
〈∫ t

0
U (T)

(
y(B)

)
s
dRH hm(s), v0

〉

Rn
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= −
n∑

i=1

d∑

j=1

vi
0

∫ t

0

(
U (T)

(
y(B)

))ij

s
dRH h

j
m(s)

= −
n∑

i=1

〈
vi

0

(
U (T)

(
y(B)

))i1[0,t], hm

〉
H, for all m ≥ 0,

where the last equality follows from [31]. For t > 0, taking into account the definition
of U (T) given in Lemma 3.1, we obtain that

∑n
i=1 vi

0f
ij (ξ) = 0, which contradicts

the fact that R
n coincides with the space spanned by

{(
f (ξ)1j , . . . , f (ξ)nj

); 1 ≤ j ≤ d
}
.

So we see that the Malliavin matrix Qt is invertible for any t ∈ (0, T ], as we wished
to prove. �

4.3 Smoothness of the Density of the Solution

In order to avoid lengthy lists of hypotheses on our coefficients, we focus in this
section on the example of the weighted delay treated in Sect. 3.3. As usual in the
stochastic analysis context, we study the smoothness of the density of the random
variable under consideration by bounding the L−p moments of its Malliavin ma-
trix. Toward this aim, it will be useful to produce an equation solved by the Malli-
avin derivative of the solution yt of equation (40). This is contained in the following
lemma:

Lemma 4.5 Under the conditions of Proposition 3.12, let y be the solution to equa-
tion (40). Assume furthermore that B is a fBm with Hurst parameter H > H0, where
H0 is defined in Remark 3.15. Then yt ∈ D

1,p for any p ≥ 1, and Φt(r) := Dryt is
the unique solution to the following equation:

Φt(r) = [
U (T)(y)

]
t
+ Vt (r),

where V
ij
t (r) =

n∑

m=1

d∑

l=1

∫ t

r

(([∇U (T)(y)
]m)il(

Φmj (s)
))

s
dBl

s, (45)

with the additional constraint Φt(r) = 0 for all 0 ≤ t < r ≤ T .

Proof The fact that Dy follows equation (45) is a direct consequence of relation
(43) and Proposition 3.12. The fact that yt ∈ D

1,p when H > H0 stems now from
Proposition 3.14. �

Now we are able to state the second main result of this section, for which we need
an additional notation: for two symmetric non-negative matrices M,N ∈ R

n×n, we
write M ≥ N when the matrix M − N is symmetric non-negative.
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Theorem 4.6 Let f, σ , ν and B as in Lemma 4.5. Assume that σ has bounded
derivatives of any order and that

σ(η)σ (η)∗ ≥ εIdRn , for all η ∈ R
n. (46)

Then, for t ∈ (0, T ], yt has a C∞-density.

Proof The proof follows closely the lines of [21, Theorem 3.5], which is classical
in the Malliavin calculus setting, and we shall thus proceed without giving too many
details. Nevertheless, we shall divide our proof in two steps.

Step 1: Reduction of the problem. Let Qt be the Malliavin matrix of yt , defined by
(44). The standard conditions to verify in order to get a C∞ density are: (i) yt ∈ D

∞,
and (ii) [det(Qt )]−1 ∈ Lp for all p ≥ 1. Condition (i) is obtained by iterating the
derivatives of y, similarly to what is done in [31], so that we will focus on point (ii).

In order to check that [det(Qt )]−1 ∈ Lp for all p ≥ 1, let us recall from [28,
Lemma 2.3.1] that it is enough to show that for all p ≥ 1 there exists ε0 := ε0(p)

such that for all ε ≤ ε0 we have

sup
|α|=1

P
(
α∗Qtα ≤ ε

) ≤ εp,

where α stands for a generic vector of R
n.

To this end, recalling our notation (32), notice that

α∗Qtα =
d∑

j=1

n∑

p,q=1

αp

(∫ t

0

∫ t

0
Φ

pj
t (u)|u − v|2H−2Φ

qj
t (v) dudv

)
αq.

Moreover, invoking the positivity of the kernel |u− v|2H−2, it is readily checked that

n∑

p,q=1

αp

(∫ t

t−ρ

∫ t

t−ρ

Φ
pj
t (u)|u − v|2H−2Φ

qj
t (v) dudv

)
αq ≥ 0,

for any 0 < ρ < t and j ≤ d . Set then Aρ = [t − ρ, t] × [0, t] ∪ [0, t] × [t − ρ, t] and

〈ϕ, ψ〉Hρ
= cH

∫

Aρ

ϕu|u − v|2H−2ϕv dudv.

It should be noticed at this point that 〈ϕ, ψ〉Hρ
cannot be considered as an inner

product for its lack of positivity. However, the previous considerations show that

α∗Qtα ≥ α∗Qt,ρα, where Q
pq
t,ρ =

d∑

j=1

〈
Φ

pj
t ,Φ

qj
t

〉
Hρ

.

The remainder of the proof will now consist in bounding from below the quantity
α∗Qt,ρα. Specifically, our problem will be reduced to show that

sup
|α|=1

P
(
α∗Qt,ρα ≤ η

) ≤ ηp, (47)

for any p ≥ 1 and η ≤ η0(p).
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Step 2: Bounds for Qt,ρ . Going back to our notation (45), let us decompose Q
pq
t,ρ

as Q
pq
t,ρ = J

pq

ρ,1 + 2J
pq

ρ,2 + J
pq

ρ,3, with

J
pq

ρ,1 = 〈[
U (T)(y)

]pj

t
,
[

U (T)(y)
]qj
t

〉
Hρ

, J
pq

ρ,2 = 〈[
U (T)(y)

]pj

t
, V

qj
t

〉
Hρ

,

J
pq

ρ,3 = 〈
V

qj
t , V

qj
t

〉
Hρ

,

where we have used the summation convention over the repeated index j . In order
to bound Qt,ρ from below, the basic idea is now to rely on the fact that the term
[U (T)(y)]t is bounded deterministically from below under the non-degeneracy con-
dition (46), while V is a highly fluctuating quantity, since it is given by a stochastic
integral with respect to B .

Let us thus bound Jρ,1 from below: observe that

Jρ,1 = σσ ∗
(∫ 0

−h

yt+θ ν(dθ)

)∫

Aρ

|u − v|2H−2 dudv.

Besides, we have assumed the elliptic condition (46), and it is easily shown that∫
Aρ

|u − v|2H−2 dudv ≥ cρH for a certain positive constant c. Hence, in the matrix
sense, the following deterministic bound holds true:

Jρ,1 ≥ cερH IdRn .

As far as Jρ,3 is concerned, recall that V
pj
t (r) is given by

V
pj
t (r) =

n∑

m=1

d∑

l=1

∫ t

r

[([∇U (T)(y)
]m)pl(

Φmj (s)
)]

s
dBl

s .

In particular, Theorem 2.5 yields, for 1/2 < λ < γ < H ,

∣∣V pj
t (r)

∣∣ ≤ c

n∑

m=1

d∑

l=1

∣∣([∇U (T)(y)
]m)pl(

Φmj (s)
)∣∣

λ,[r,t]
∣∣Bl

∣∣
γ,[0,t]|t − r|γ

≤ cX(t)ργ , (48)

where we have set X(t) = |([∇U (T)(y)]m)pl(Φmj (s))|λ,[r,t] |Bl |γ,[0,t]. Owing to
Lemma 4.5, and since we have assumed H > H0, X(t) is a Lp random variable for
any p ≥ 1. Therefore, plugging the estimate (48) into the definition of Jρ,3, we obtain
for any α ∈ R

n satisfying |α| = 1 and any η > 0:

E

[∣∣
∣∣∣

n∑

p,q=1

αpJ
pq

ρ,3αq

∣∣
∣∣∣

p]

≤ cpρ(2γ+H)p

=⇒ P

(∣∣∣∣∣

n∑

p,q=1

αpJ
pq

ρ,3αq

∣∣∣∣∣
≥ η

)

≤ cpρ(2γ+H)p

ηp
. (49)
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Notice that the same kind of bound is available for Jρ,2, except that cpρ(γ+H)p

ηp is
obtained in the right hand side of equation (49).

Step 3: Conclusion. We are now ready to prove our claim (49). Indeed, for η > 0
take ερH = 2η, i.e. ρ = (2η/ε)1/H . Appealing to the decomposition of Qt,ρ = Jρ,1 +
2Jρ,2 + Jρ,3 we obtain, for |α| = 1 and p̂ ≥ 1,

P
(
α∗Qt,ρα ≤ η

) ≤ P
(
α∗(2Jρ,2 + Jρ,3

)
α ≥ η

) ≤ cp̂ρ(γ+H)p̂

ηp̂
= cp̂,εη

(γ+H−1)p̂.

Since we have chosen γ such that γ +H > 1, it is now sufficient to pick p̂ satisfying
(γ + H − 1)p̂ > p in order to prove (47). �

Remark 4.7 As mentioned before, the restriction H > H0 for the smoothness of the
density of the random variable yt is due to the continuous dependence of our coeffi-
cient f on the past of the solution. Indeed, in case of a discrete delayed coefficient of
the form σ(yt , yt−r1, . . . , yt−rq ), with q ≥ 1 and r1 < · · · < rq ≤ h, it can be seen that
equation (40) can be reduced to an ordinary differential equation driven by B . This
allows us to apply the criteria given in [18], which are valid up to H = 1/2.

In order to get convinced of this fact, consider the simplest discrete delay case,
which is an equation of the form

yt = ξ0 +
∫ t

0
σ(yu, yu−r ) dBu, 0 ≤ t ≤ T , (50)

with r > 0. The initial condition of this process is given by ξ ∈ Cγ

1 on [−r,0], and we
also assume that σ and B are real valued. Without loss of generality, one can assume
that T = mr for m ∈ N

∗. In this case, set y(k) = {ys+kr ; s ∈ [0, r)}, and adopt the
same notation for B . Then one can recast (50) as

yt (k) = yr(k − 1) +
∫ t

0
σ
(
yu(k), yu(k − 1)

)
dBu(k), t ∈ [0, r], k ≤ m − 1. (51)

Setting now y = (y(1), . . . , y(m))t , B = (B(1), . . . ,B(k))t and defining σ̂ : R
m →

R
m,m by

σ̂
(
η(1), . . . , η(m)

) = Diag
(
σ
(
η(1)

)
, . . . , σ

(
η(m)

))
,

we can express (51) in a matrix form as

yt = y0 +
∫ t

0
σ̂
(
yu(1), . . . ,yu(m)

)
dBu, , t ∈ [0, r]. (52)

This is now an ordinary equation driven by a m-dimensional fBm B. Whenever
|σ(η)| ≥ ε > 0 and H > 1/2, one can apply the non-degeneracy criterion of [18]
in order to see that yt possesses a smooth density for any t ∈ (0, T ]. The case of a
vector-valued original equation (50) can also be handled through cumbersome matrix
notations. As far as the case of a coefficient σ(yt , yt−r1, . . . , yt−rq ) is concerned, it
can also be reduced to an equation of the form (52) by introducing all the quantities

yt (k1, k2, . . . , kr ) = yt+∑r
j=1 kj (rj −rj−1)

,

where we have used the convention r0 = 0.
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