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Abstract This article is devoted to define and solve an evolution equation of the
form dyt = �yt dt + d Xt (yt ), where� stands for the Laplace operator on a space of
the form L p(Rn), and X is a finite dimensional noisy nonlinearity whose typical form
is given by Xt (ϕ) = ∑N

i=1 xi
t fi (ϕ), where each x = (x (1), . . . , x (N )) is a γ -Hölder

function generating a rough path and each fi is a smooth enough function defined on
L p(Rn). The generalization of the usual rough path theory allowing to cope with such
kind of system is carefully constructed.

Keywords Rough paths theory · Stochastic PDEs · Fractional Brownian motion

Mathematics Subject Classification (2000) 60H05 · 60H07 · 60G15

1 Introduction

The rough path theory, which was first formulated in the late 90’s by Lyons [32,33]
and then reworked by various authors [18,20], offers a both elegant and efficient way
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98 A. Deya et al.

of defining integrals driven by some irregular signals. This pathwise approach enables
to handle the standard (rough) differential system

dyt = σ(yt ) dxt , y0 = a, (1)

where x is a non-differentiable process which allows the construction of a so-called
rough path x, morally represented by the iterated integrals of the process (see Defini-
tion 6.2 for a 2-rough path). The method also applies to the treatment of less classical
(rough) finite-dimensional systems such that the delay equation [36] or the integral
Volterra systems [12,13]. In all of those situations, the pathwise interpretation of the
associated stochastic system (for a random x) reduces to the construction of a rough
path x above x , which is now well-established for a large class of stochastic pro-
cesses that for instance includes fractional Brownian motion (see [18] for many other
examples).

In the last few years, several authors provided some kind of similar pathwise treat-
ment for quasi-linear equations associated to non-bounded operators, that is to say of
the rather general form

dyt = Ayt dt + d Xt (yt ), t ∈ [0, T ] (2)

where T is a strictly positive constant, A is a non-bounded operator defined on a (dense)
subspace of some Banach space V and X ∈ C([0, T ]×V ; V ) is a noise which is irreg-
ular in time and which evolves in the space of vector fields acting on the Banach space
at stake. Their results apply in particular to some specific partial differential equations
perturbed by samples of (infinite-dimensional) stochastic processes.

To our knowledge, two different approaches have been used to tackle the issue of
giving sense to (2):

(i) The first one essentially consists in returning to the usual formulation (1) by
means of classical transformations of the initial system (2). One is then allowed
to resort to the numerous results established in the standard framework of rough
paths analysis. As far as this general method is concerned, let us quote the work
of Caruana and Friz [5], Caruana et al. [6], Friz and Oberhauser [19] as well as
the promising approach of Teichmann [45].

(ii) The second approach, contained in [25], is due to the last two authors of the pres-
ent paper, and is based on a formalism which combines (analytical) semigroup
theory and rough paths methods. This formulation can be seen as a “twisted”
version of the classical rough path theory. The key ingredients of the standard
theory of SPDEs, namely the stochastic integral and the stochastic convolution,
are here replaced with a couple of operators, the so-called standard and twisted
increment operators, together with a suitable notion of infinite-dimensional
rough path.

Of course, one should also have in mind the huge literature concerning the case of
evolution equations driven by usual Brownian motion, for which we refer to [9] for the
infinite dimensional setting and to [8] for the multiparametric framework. In the par-
ticular case of the stochastic heat equation driven by an infinite dimensional Brownian
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Non-linear rough heat equations 99

motion, some sharp existence and uniqueness results have (for instance) been obtained
in [39] in a Hilbert space context, and in [3,4,27,53] for Banach valued solutions
(closer to the situation we shall investigate). In the Young integration context, some
recent efforts have also been made in order to define solutions to parabolic [24,35]
or wave type [42] equations. We would like to mention also the application of rough
path ideas to the solution of dispersive equation (both deterministic and stochastic)
with low-regularity initial conditions [22].

The present article goes back to the setting (ii), and proposes to fill two gaps left
by [25]. More specifically, we mainly focus (for sake of clarity) on the case of the
heat equation in R

n with a non-linear fractional perturbation, and our aim is to give a
reasonable sense and solve the equation

dyt = �yt dt + d Xt (yt ), (3)

where� is the Laplacian operator considered on some L p(Rn) space (with p chosen
large enough and specified later on), namely

� : D(�) ⊂ L p(Rn) → L p(Rn).

Then the first improvement we propose here consists in considering a rather general
noisy nonlinearity X evolving in a Hölder space Cγ (L p(Rn); L p(Rn)), with γ < 1/2,
instead of the polynomial perturbations studied in [25]. A second line of generalization
is that we show how to apply our results to a general 2-rough path, which goes beyond
the standard Brownian case.

As usual in the stochastic evolution setting, we study Eq. (3) in its mild form,
namely:

yt = St y0 +
t∫

0

St−sd Xs(ys), (4)

where St : L p(Rn) → L p(Rn) designates the heat semigroup on R
n . This being said,

and before we state an example of the kind of result we have obtained, let us make
few remarks on the methodology we have used.

(a) The main price to pay in order to deal with a general nonlinearity is that we
only consider a finite dimensional noisy input. Namely, we stick here to a noise gen-
erated by a γ -Hölder path x = (x (1), . . . , x (N )) and evolving in a finite-dimensional
subspace of C(L p(Rn); L p(Rn)), which can be written as:

Xt (ϕ) =
N∑

i=1

xi
t fi (ϕ), (5)

with some fixed elements { fi }i=1,...,N of C(L p(Rn); L p(Rn)), chosen of the particular
form
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100 A. Deya et al.

fi (ϕ)(ξ) = σi (ξ, ϕ(ξ))

for sufficiently smooth functions σi : R
n × R → R.

Note that the hypothesis of a finite-dimensional noise is also assumed in [5] or [45].
Once again, our aim in [25] was to deal with irregular homogeneous noises in space,
but we were only able to tackle the case of a linear or polynomial dependence on the
unknown. As far as the form of the nonlinearity is concerned, let us mention that [5]
deals with a linear case, while the assumptions in [45] can be read in our setting as:
one is allowed to define an extended function f̃i (t, ϕ) := S−t fi (Stϕ), which is still a
smooth enough function of the couple (t, ϕ). As we shall see, the conditions we ask
in the present article for fi are much less stringent, and we shall recover partially the
results of [45] at Sect. 5.

(b) In order to interpret (4), the reasoning we will resort to is largely inspired by the
analysis of the standard rough integrals. For this reason, let us recall briefly the main
features of the theory, as it is presented in [20]: the interpretation of

∫
ys dxs (with x

a finite-dimensional irregular noise) stems from some kind of dissection process of
the usual Riemann–Lebesgue integral

∫
y dx̃ , when x̃ is a regular driving process.

This work appeals to two recurrent operators acting on spaces of k-variables functions
(k ≥ 1): the so-called increment operator δ (see (26)) and its inverse, the sewing map�,
the existence of which hinges on some specific regularity conditions. If y is a 1-variable
function, then δ is simply defined as (δy)ts := yt − ys , while if zts = ∫ t

s (yt − yu) dx̃u ,
then (δz)tus := zts − ztu − zus = (δy)tu(δ x̃)us . With such notations, one has for
instance

t∫

s

yu d x̃u =
⎛

⎝

t∫

s

d x̃u

⎞

⎠ ys +
t∫

s

(yt − yu) dx̃u =
⎛

⎝

t∫

s

d x̃u

⎞

⎠ ys +
(
δ−1 ((δy)(δ x̃))

)

ts
.

Of course, the latter equality makes only sense once the invertibility of δ has been
justified, which is the main challenge of the strategy.

During the process of dissection, it early appears, and this is the basic principles of
the rough path theory, that in order to give sense to

∫
ys dxs for a large class of Hölder-

processes y, it suffices to justify the existence of the iterated integrals associated to x :
x1

ts = ∫ t
s dxu , x2

ts = ∫ t
s dxu

∫ u
s dxv , etc., up to an order which is linked to the Hölder

regularity of x . If x is γ -Hölder for some γ > 1/2, then only x1 is necessary, whereas
if γ ∈ (1/3, 1/2), then x2 must come into the picture.

Once the integral has been defined, solving the system

(δy)ts =
t∫

s

σ(yu) dxu, y0 = a, (6)

where σ is a regular function, is a matter of standard fixed-point arguments.
(c) As far as (4) is concerned, the presence of the semigroup inside the integral

prevents us from writing this infinite-dimensional system under the general form (6).
If y is a solution of (4) (suppose such a solution exists), its variations are actually
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Non-linear rough heat equations 101

governed by the equation (let s < t)

(δy)ts = yt − ys = St y0 − Ss y0 +
s∫

0

[
St−u − Ss−u

]
d Xu(yu)+

t∫

s

St−u d Xu(yu),

which, owing to the multiplicative property of the semigroup, reduces to

(δy)ts = ats ys +
t∫

s

St−u d Xu(yu), (7)

where ats = St−s − Id. Here occurs the simple idea of replacing δ with the new oper-
ator δ̂ defined by (δ̂y)ts := (δy)ts − ats ys . Equation (7) then takes the more familiar
form

(δ̂y)ts =
t∫

s

St−ud Xu(yu), y0 = ψ. (8)

In the second section of the article, we will see that the operator δ̂, properly extended
to act on k-variables functions (k ≥ 1), satisfies properties analogous to δ. In partic-
ular, the multiplicative property of S enables to retrieve the cohomology relation
δ̂δ̂, which is at the core of the most common constructions based on δ. For sake
of consistence, we shall adapt the notion of regularity of a process to this context:
a 1-variable function will be said to be γ -Hölder in the sense of δ̂ if for any s, t ,
|(δ̂y)ts | ≤ c |t − s|γ . It turns out that the properties of δ̂ suggest the possibility of
inverting δ̂ through some operator �̂, just as � inverts δ. This is the topic of Theo-
rem 3.6, which was the starting point of [25] and also the cornerstone of all our present
constructions.

(d) Sections 3 and 4 will then be devoted to the interpretation of the integral appear-
ing in (8). To this end, we will proceed as with the standard system (6), which means
that we will suppose at first that X is regular in time and under this hypothesis, we
will look for a decomposition of the integral in terms of “iterated integrals” depending
only on X . For some obvious stability reasons, it matters that the dissection mainly
appeal to the operators δ̂ and �̂.

However, in the course of the reasoning, some intricate interplay between twisted
and non-twisted increments will force us to analyze the spatial regularity of some
terms of the form ats ys , where y is the candidate solution to (4). This can be achieved
by letting the fractional Sobolev spaces come into play. Namely, we set Bp = L p(Rn)

and for α ∈ [0, 1/2), we also write Bα,p for the fractional Sobolev space of order α
based on Bp (the definition will be elaborated on in Sect. 3). One can then resort to
the relation

ifϕ ∈ Bα,p, ‖atsϕ‖Bp ≤ c |t − s|α ‖ϕ‖Bα,p .

Of course, we will have to pay attention to the fact that this time regularity gain occurs
to the detriment of the spatial regularity. It is also easily conceived that we will require
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Bα,p to be an algebra of continuous functions, which explains why we work in some
L p spaces with p large enough.

These additional terms of the form ats ys are specific to the non-linear case, for
which Taylor type expansions are required, and explain a part of the technical diffi-
culties we have met in the current article. If the vector fields { fi }i=1,...,N are linear,
then we don’t need any recourse to the Taylor formula and the decomposition of the
candidate solution can be written thanks to δ̂ and �̂ only. This particular case has been
dealt with in [25], as well as the polynomial case, for which specific and individual
treatments based on trees-indexed integral [21,23] are suggested. In our situation, we
shall see that the landmarks of the construction, that is to say the counterparts of the
usual step-2 rough path (

∫
dx,

∫∫
dx ⊗ dx), are (morally) some operators acting on

Bp, defined as follows: for ϕ,ψ ∈ Bp, set

X x,i
ts (ϕ) =

t∫

s

Stu(ϕ) dxi
u, X xa,i

ts (ϕ, ψ) =
t∫

s

Stu [aus(ϕ) · ψ] dxi
u, (9)

X xx,i j
ts (ϕ) =

t∫

s

Stu(ϕ) δx j
us dxi

u, (10)

for i, j = 1, . . .,N , where ϕ · ψ is the pointwise multiplication operator of ϕ
by ψ . In some way, it is through those three operators that the (stochastic) convo-
lution mechanisms commonly used in the treatment of SPDEs (see [9]) will appear.

In a quite natural way, the results established in Sect. 3.2 by using expansions at first
order only, will be applied to a γ -Hölder process x with γ > 1/2. The considerations
of Sect. 4, which involve more elaborate developments, will then enable the treatment
of the case 1/3 < γ ≤ 1/2.

It is also crucial to see how our theory applies to concrete situations. To this purpose,
using an elementary integration by parts argument, we will see in Sect. 6 that in order
to define the operators given by (9) and (10) properly, the additional assumptions on
x reduce to the standard rough-paths hypotheses. In this way, the results of this article
can be applied to a N -dimensional fractional Brownian motion x with Hurst index
H > 1/3, thanks to the previous works of Coutin–Qian [7] or Unterberger [49] (see
Remark 6.4). This also means that in the end, the solution to the rough PDE (3) is a
continuous function of the initial condition and x1, x2, which suggests (as [6,45] does)
that one can also solve the noisy heat equation by means of a variant of the classical
rough path theory. However, we claim that our construction is really well suited for the
evolution equation setting, insofar as the arguments developed here can be extended
naturally to an infinite dimensional noise, at the price of some more intricate technical
considerations. We plan go back to this issue in a further publication.

With all these considerations in mind, we can now give an example of the kind of
result which shall be obtained in the sequel of the paper (given here in the first non
trivial rough case for X , that is a Hölder continuity exponent 1/3 < γ ≤ 1/2):

Theorem 1.1 Let X be a noisy nonlinearity of the form (5), where:
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Non-linear rough heat equations 103

(i) The noisy part x is a N-dimensional Hölder-continuous signal in Cγ ([0, T ];
R

N ) for a given γ > 1/3. Moreover, we assume that x allows to define a Levy
area x2 in the sense given by Definition 6.2.

(ii) Each nonlinearity fi can be written as [ fi (ϕ)](ξ) = σi (ξ, ϕ(ξ)), where the
function σi : R

n × R → R satisfies both conditions (C1) and (C2)k of Def-
inition 2.1, for k = 3. Then for any couple (κ, p) ∈ ( 1

3 , γ ) × N
∗ such that

γ − κ > n
2p , and any initial condition y0 in the fractional Sobolev space

Bκ,p (see Notation 2.3), Eq. (4) admits a unique solution y ∈ Cκ(Bκ,p) on an
interval [0, T ], for a strictly positive time T which depends on x, x2 and y0.
Furthermore, the Itô map (y0, x, x2) 
→ y is locally Lipschitz: if y (resp. ỹ)
denotes the solution of the equation on [0, T ] (resp. [0, T̃ ]) associated to a
driving path (x, x2) (resp. (x̃, x̃2)) and an initial condition y0 (resp. ỹ0), then

N [y − ỹ; Cκ([0, T ∗];Bκ,p)]
≤ cx,x̃,y0,ỹ0

{
‖y0 − ỹ0‖Bκ,p + ‖x − x̃‖γ + ‖x2 − x̃2‖2γ

}
, (11)

where T ∗ = inf(T, T̃ ) and

cx,x̃,y0,ỹ0 = C(‖y0‖Bκ,p , ‖ỹ0‖Bκ,p , ‖x‖γ , ‖x̃‖γ , ‖x2‖2γ , ‖x̃2‖2γ )

for some function C : (R+)6 → R
+ growing with its arguments.

Some additional comments spring from Theorem 1.1:

(1) As the reader may have noticed, only local solutions are obtained in the general
case, due to the fact that our nonlinearity cannot be considered as a bounded
function on the Sobolev spaces Bα,p. However:
• We do obtain a global solution in the case of a Hölder continuity exponent
γ ∈ (1/2, 1]. We shall also introduce a smoothing procedure for the nonlin-
earity which induces a global solution at Sect. 5.

• When x is a N -dimensional Brownian motion, the identification of our solution
with the one obtained by Itô integration also yields a global solution, as detailed
at Sect. 6.2. As an immediate consequence of the procedure, we retrieve an
original (to the best of our knowledge) continuity statement for the Brownian
solution with respect to the initial condition (Corollary 6.12), which gives an
idea of other possible spins-off of the rough paths approach to (3).

• The changes of variables extensively used in [19] have a nonlinear counterpart,
as recently pointed out in [14]. This additional information certainly opens the
door to a global solution to Eq. (4) in the next future.

(2) As mentioned before, we have sticked to the case of the Laplace operator� in our
presentation of Eq. (4), for sake of clarity. However, our algebraic and analytic
setting only relies on a set of abstract assumptions on the semigroup St . As we
shall see at Sect. 6.3, these conditions are still met for a fairly general second
order differential operator A given in divergence form.
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In conclusion, the current paper has to be understood as a general approach to a
rough path analysis of SPDEs, which can be generalized and improved in several
different directions.

Here is how our paper is structured: In Sect. 2, we fix the general framework of our
study and put together a few basic facts about fractional Sobolev spaces and the heat
semigroup. Section 3 is then intended to recall the main features of algebraic integra-
tion with respect to a semigroup of operators, taken from [25]. As a first illustration
of our method, we deal with the easy case of Young integration at Sect. 3.2. The first
nontrivial rough case, that is a Hölder continuity exponent γ ∈ (1/3, 1/2], is handled
at Sect. 4. Observe that the abstract results obtained there are expressed in terms of
the operators X x , X xa and X xx defined at Eqs. (9) and (10). Section 5 shows that
considering a smoothed version of the nonlinearity, a global solution to Eq. (4) can
be constructed. Section 6 is then devoted to the application of the abstract results to
concrete (stochastic) situations. The case of a standard Brownian motion is discussed
at Sect. 6.2, and a few words are finally said about possible extensions of our results
to more general elliptic operators at Sect. 6.3.

2 Assumptions and setting

For sake of clarity, we shall start with labelling the assumptions evoked in the intro-
duction as far as the linear operator and the perturbation term are concerned. We also
take profit of this section to state a few preliminary results that will be at the core of
our method.

2.1 Assumptions

Let us first rewrite the equation in the general abstract form:

y0 = ψ, dyt = �yt dt + d Xt (yt ), t ∈ [0, T ]. (12)

All through the paper, we will stick to the framework delimited by the two following
assumptions:

Assumption A We focus on the heat equation case on the whole Euclidean space R
n ,

and we try to interpret and solve the equation in L p(Rn), for some integer p that
will be precised during the study. In this context, remember that the Laplacian oper-
ator � = �p : D(�p) ⊂ L p(Rn) → L p(Rn) generates an analytic semigroup of
contraction S, explicitly given (independently of p) by the convolution formula

Stϕ = gt ∗ ϕ, with gt (ξ) = 2

(2π t)n/2
e−|ξ |2/2t . (13)
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Non-linear rough heat equations 105

Assumption B The perturbation term can be decomposed as

Xtϕ =
N∑

i=1

fi (ϕ) xi
t , (14)

with, for each i = 1, . . . , N , xi : [0, T ] → R a scalar process and fi : L p(Rn) →
L p(Rn). Moreover, we assume that each fi is given as a Nemytskii operator: there
exists a mapping σi : R

n × R → R such that, for any function ϕ,

fi (ϕ)(ξ) = σi (ξ, ϕ(ξ)). (15)

With the above assumptions in mind, the aim of our study is to find a reasonable
interpretation of the following mild formulation of (12):

yt = Stψ +
N∑

i=1

t∫

0

St−u fi (yu) dxi
u, t ∈ [0, T ], (16)

where ψ is an initial condition living in a functional space that will be specified
later on, and T is a finite horizon. The additional assumptions relative to the driving
process x will stem from our analysis of (12) (Hypotheses 1–3), and it would be
futile and non pedagogical to remove those assumptions of their context. At this
point, let us just have a mind that x should morally admit some γ -Hölder regular-
ity, γ ∈ (0, 1). Some applications to concrete (stochastic) processes will anyway be
provided at Sect. 6.

Let us now anticipate a little bit the next sections by introducing in a more precise
way the class of vector fields that will allow a reasonable interpretation of the equation:

Definition 2.1 For k ≥ 1, we define Xk as the set of vector fields f whose components
can be written as in (15), for some mappings σi : R

n × R → R (i = 1, . . . , N ) such
that:

(C1) σi is of uniformly compact support in the first variable, ie σi (·, η) = 0 outside
of a ball BRN (0,M), independently of η ∈ R.

(C2)k the following inequality holds:

sup
ξ∈Rn ,η∈R

max
n=0,...,k

|∇n
ησi (ξ, η)| + max

n=0,...,k−1
|∇ξ∇n

ησi (ξ, η)| < +∞.

Remark 2.2 In the above definition, condition (C1) is essentially designed to make up
for the noncompacity of the space setting. In particular, if σi is also uniformly bounded
in its second variable, then fi is uniformly bounded as a map from L p(Rn) to L p(Rn).
Perhaps this hypothesis could be retrieved by working with weighted L p-spaces, as
in [39]. The strategy would however require a careful adaptation of the properties
exhibited in the next subsection, and for sake of conciseness, we leave this analysis to
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future work. As far as condition (C2)k is concerned, it is a quite standard hypothesis
in the context of a rough paths type procedure (see [32]).

2.2 Preliminary results

As pointed out at point (d) of the introduction, the interplay between the linear and
the non-linear part of the equation will invite us to let the fractional Sobolev spaces
come into the picture:

Notation 2.3 For any α > 0, for any p ∈ N
∗, we will denote by Bα,p the space

(Id −�)−α(L p(Rn)), endowed with the norm

‖ϕ‖Bα,p = ‖ϕ‖L p(Rn) + ‖(−�)αϕ‖L p(Rn). (17)

Set also Bp = B0,p = L p(Rn) for any p ∈ N
∗ ∪ {∞}.

The space Bα,p is also referred to as the Bessel potential of order (2α, p). Adams
[1] or Stein [43] gave a thorough description of those fractional Sobolev spaces. Let
us indicate here the two classical properties that we will resort to in the sequel:

• Sobolev inclusions: If 0 ≤ μ ≤ 2α − n
p , then the following continuous embedding

holds

Bα,p ⊂ C0,μ(Rn), (18)

where C0,μ(Rn) stands for the space of bounded, μ-Hölder functions.
• Algebra: If 2αp > n, then Bα,p is a Banach algebra with respect to pointwise

multiplication, or in other words

‖ϕ · ψ‖Bα,p ≤ ‖ϕ‖Bα,p‖ψ‖Bα,p . (19)

The general theory of fractional powers of operators then provides us with sharp
estimates for the semigroup St (see for instance [40] or [15]):

Proposition 2.4 Fix a time T > 0. St satisfies the following properties:

• Contraction: For all t ≥ 0, α ≥ 0, St is a contraction operator on Bα,p.
• Regularization: For all t ∈ (0, T ], α ≥ 0, St sends Bp on Bα,p and

‖Stϕ‖Bα,p ≤ cα,T t−α‖ϕ‖Bp . (20)

• Hölder regularity. For all t ∈ (0, T ], ϕ ∈ Bα,p,

‖Stϕ − ϕ‖Bp ≤ cα,T tα‖ϕ‖Bα,p . (21)

‖�Stϕ‖Bp ≤ cα,T t−1+α‖ϕ‖Bα,p . (22)
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Non-linear rough heat equations 107

At some point of our study, the interpretation of the integral
∫ t

s Stu dxi
u fi (yu) will

require a Taylor expansion of the (regular) function fi . As a result, pointwise multi-
plications of elements of Bp appear, giving birth to elements of Bp/k, k ∈ {1, . . . , p}.
In order to go back to the base space Bp, we shall resort to the following additional
properties of St , which accounts for our use of the spaces Bp (p ≥ 2) instead of the
classical Hilbert space B2:

Proposition 2.5 For all t > 0, k ∈ {1, . . . , p} , ϕ ∈ Bp/k , one has

‖Stϕ‖Bp ≤ ck,nt−
n(k−1)

2p ‖ϕ‖Bp/k , (23)

‖�Stϕ‖Bp ≤ ck,nt−1− n(k−1)
2p ‖ϕ‖Bp/k . (24)

Proof Those are direct consequences of the Riesz–Thorin theorem. Indeed, for any
ϕ ∈ Bp/k ,

‖Stϕ‖Bp ≤ ‖gt ∗ ϕ‖Bp ≤ ‖gt‖Bp/(p−k+1)‖ϕ‖Bp/k ≤ ck,nt−
n(k−1)

2p ‖ϕ‖Bp/k .

The second inequality can be proved in the same way, since �Stϕ =
(

d St
dt

)
ϕ =

∂t gt ∗ ϕ. ��
Let us finally point out the following result of Strichartz [44], which will be one of

the cornerstones of our fixed-point arguments through its immediate corollary:

Proposition 2.6 For all α ∈ (0, 1/2), for all p > 1, set

Tα f (ξ) =
⎛

⎜
⎝

1∫

0

r−1−4α

⎡

⎢
⎣

∫

|η|≤1

| f (ξ + rη)− f (ξ)| dη

⎤

⎥
⎦

2

dr

⎞

⎟
⎠

1/2

.

Then f ∈ Bα,p if and only if f ∈ Bp and Tα f ∈ Bp, and

‖ f ‖Bα,p ∼ ‖ f ‖Bp + ‖Tα f ‖Bp .

Corollary 2.7 If f ∈ X1, then for any ϕ ∈ Bα,p, f (ϕ) ∈ Bα,p and

N [ f (ϕ);Bα,p] ≤ c f
{
1 + N [ϕ;Bα,p]

}
. (25)

3 Algebraic integration associated to the heat semigroup

As in [25], our interpretation of the equation will be based on a preliminary dissection
procedure that appeals to a particular coboundary operator δ̂, as well as its inverse �̂.
This section is meant to remind the reader with the definition and main properties of
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those two tools. As an illustrative example, the treatment of the Young case is also
provided here.

3.1 The twisted coboundary δ̂

Notice that we shall work on nth dimensional simplexes of [0, T ], which will be
denoted by

Sn
T = {(s1, . . . , sn) ∈ [0, T ]n; s1 ≤ s2 ≤ · · · sn

}
.

We will also set Cn = Cn(Sn
T , V ) for the continuous n-variables functions from Sn

T
to V , for a given Banach space V . Observe that we work on those simplexes just
because the operator St−u is defined for t ≥ u (i.e. on S2

T ) only.
Let us recall now two basic notations of usual algebraic integration, as explained

in [20] and also recalled in [25]: we define first an coboundary operator, denoted
by δ, which acts on the set Cn = Cn(Sn

T , V ) of the continuous n-variables functions
according to the formula:

δ : Cn → Cn+1, (δg)t1...tn+1 =
n+1∑

i=1

(−1)i gt1...t̂i ...tn (26)

where the notation t̂i means that this particular index is omitted. In this definition,
V stands for any vector space. Next, a convention for products of elements of Cn is
needed, and it is recalled in the following notation:

Notation 3.1 If g ∈ Cn(L(V,W )) and h ∈ Cm(W ), then the product gh ∈
Cm+n−1(W ) is defined by the formula

(gh)t1...tm+n−1 = gt1...tn htn ...tn+m−1 .

In point (b) of the introduction, we (briefly) explains why the standard increment
δ was not really well-suited to the study of (4). We will rather use a twisted version
of δ, denoted by δ̂, and defined by:

Definition 3.2 For any n ∈ N
∗, y ∈ Cn(Bα,p), for all t1 ≤ · · · ≤ tn+1,

(δ̂y)tn+1...t1 = (δy)tn+1...t1 − atn+1tn ytn ...t1, with ats = St−s − Id si s ≤ t. (27)

The operator a : (t, s) 
→ ats is only defined on the simplex {t ≥ s}. As a con-
sequence, we will have to pay attention to the decreasing order of the time variables
throughout our calculations below. Note that we will often resort to the notation Sts

for St−s , so as to get a consistent notational convention for the indexes.
The rest of this subsection is devoted to the inventory of some of those results. The

associated proofs can be found in [25].
Let us start with the fundamental property:
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Proposition 3.3 The operator δ̂ satisfies the cohomological relation δ̂δ̂ = 0. Besides,
Ker δ̂|Cn+1(Bα,p) = Im δ̂|Cn(Bα,p).

Now, let us turn to a more trivial result, which will be exploited in the sequel.
Remember that we use the notational convention 3.1 for time variables.

Proposition 3.4 If L ∈ Cn−1(V ) and M ∈ C2(L(V )), then

δ̂(M L) = (δ̂M)L − M(δL). (28)

The following result is the equivalent of Chasles relation in the δ̂ setting. It is an
obvious consequence of the multiplicative property of S.

Proposition 3.5 Let x a differentiable process. If yts = ∫ t
s Stu dxu fu, then (δ̂y)tus =

0 for all s ≤ u ≤ t .

From an analytical point of view, the notion of Hölder-regularity of a process should
be adapted to this context, and thus, we define, for any α ∈ [0, 1/2), p ∈ N

∗, κ ∈
(0, 1),

Ĉκ1 (Bα,p) :=
{

y ∈ C1(Bα,p) : sup
s<t

‖(δ̂y)ts‖Bα,p
|t − s|κ < ∞

}

. (29)

Let us take profit of this subsection to introduce the Hölder spaces commonly
used in the k-increment theory. They are the subspaces of C1(V ), C2(V ) and C3(V )
respectively induced by the norms (V stands for any Banach space):

N [y; Cκ1 (V )] := sup
s<t

‖(δy)ts‖V

|t − s|κ , N [y; Cκ2 (V )] := sup
s<t

‖yts‖V

|t − s|κ ,

N [y; Cκ,ρ3 (V )] := sup
s<u<t

‖ytus‖V

|t − u|κ |u − s|ρ ,

N [y; Cμ3 (V )] := inf

{
∑

i

N [yi ; Cκ,μ−κ
3 (V )] : y =

∑

i

yi

}

.

Now let us state the main result of this subsection which allows to invert the twisted
coboundary operator δ̂ by means of a map �̂. This inversion operator is the convolu-
tional analog of the sewing map� at the core of the standard rough paths constructions
contained in [20].

Theorem 3.6 Fix a time T > 0, a parameter κ ≥ 0 and let μ > 1. For any h ∈
Cμ3 ([0, T ];Bκ,p) ∩ Ker δ̂|C3(Bκ,p), there exists a unique element

�̂h ∈ ∩α∈[0,μ)Cμ−α
2 ([0, T ];Bκ+α,p)

such that δ̂(�̂h) = h. Moreover, �̂h satisfies the following contraction property: for
all α ∈ [0, μ),

N [�̂h; Cμ−α
2 ([0, T ];Bκ+α,p)] ≤ cα,μ,T N [h; Cμ3 ([0, T ];Bκ,p)]. (30)
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The analogy between � and �̂ is made even clearer by the following result (com-
pare with [20, Proposition 1]), which will also enable to make the link with a more
classical formulation of the rough integration theory by means of Riemann sums.

Proposition 3.7 Let g ∈ C2(Bκ,p) such that δ̂g ∈ Cμ3 (Bκ,p) with μ > 1. Then the
increment δ̂ f = (Id −�̂δ̂)g ∈ C2(Bκ,p) satisfies

(δ̂ f )ts = lim|�ts |→0

∑

(tk )∈�ts

Sttk+1 gtk+1tk in Bκ,p,

for all s ≤ t .

3.2 Example: the Young case

In order to illustrate in a simple setting the adaptation of the dissection method to the
convolutional context, let us have a look in this subsection at the so-called ‘Young
case’, which refers to the fact that only expansions at first order will be involved here.
Observe that this kind of considerations has already been explored in [24] under more
general hypotheses concerning the spatial regularity of the noise. We will see in Sect. 6
that the general result of Theorem 3.10 can be applied to a noise generated by a (finite-
dimensional) γ -Hölder process x , with γ >1/2. This is an improvement with respect
to [25], where the unnatural condition γ > 5/6 had to be assumed. Throughout this
subsection, we fix a parameter γ ∈ (1/2, 1), which (morally) represents the Hölder
regularity of x .

The aim here is to give an interpretation of the twisted Young integral
∫ t

s Stu dxu zu

in terms of δ, δ̂ and �̂. To this purpose, we follow the same reasoning as in [20,25]:
we assume first that x and z are smooth processes, and obtain a decomposition of the
integral

∫ t
s Stu dxu zu := ∫ t

s Stu x ′
uzu du in terms of δ and �̂ in this particular case.

This allows then to extend the notion of twisted integral to Hölder continuous signals
with Hölder continuity coefficient greater than 1/2.

Thus, assume, at first, that x is real valued and regular (for instance Lipschitz, or
even differentiable) in time, as well as the integrand z, and look at the decomposition

t∫

s

Stu dxu zu =
⎛

⎝

t∫

s

Stu dxu

⎞

⎠ zs +
t∫

s

Stu dxu (δz)us . (31)

If we set rts = ∫ t
s Stv dxv (δz)vs , it is easily seen that

(δ̂r)tus =
t∫

s

Stv dxv (δz)vs −
t∫

u

Stv dxv (δz)vu − Stu

u∫

s

Suv dxv (δz)vs,
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which, using the fact that Stu Suv = Stv , reduces to

(δ̂r)tus =
⎛

⎝

t∫

u

Stv dxv

⎞

⎠ (δz)us . (32)

This first elementary step lets already emerge the object which plays the role of the
a priori first order increment associated to the heat equation, namely

X x,i
ts =

t∫

s

Stv dxi
v.

We are then in position to invert δ̂ in (32) thanks to Theorem 3.6. Indeed, one easily
deduces, owing to the regularity of x and z,

X x (δz) ∈ C2
3(Bα,p) for some α ∈ [0, 1/2).

Consequently, we get

t∫

s

Stu dxu zu = X x,i
ts zi

s + �̂ts

(
X x,i δzi

)
. (33)

As in the standard case algebraic integration setting in the Young setting, we now
wonder if the right-hand-side of (33) remains well-defined in a less regular context:

• From an analytical point of view. The regularity assumption of Theorem 3.6 imposes
the condition: for all i ∈ {1, . . . , N },

X x,iδzi ∈ Cμ3 (Bα,p) with α ∈ [0, 1/2) and μ > 1.

Therefore, we shall be led to suppose that zi is κ-Hölder (in the classical sense),
with values in Bα,p, or in other words zi ∈ Cκ1 (Bα,p), and we will also assume that
X x,i ∈ Cγ2 (L(Bα,p,Bα,p)), with κ + γ > 1.

• From an algebraic point of view. We know that �̂ is defined on the spaces Cμ3 (Bα,p)∩
Ker δ̂. This constrains us to assume that δ̂(X x,i δzi ) = 0, which, by (28), is satisfied
once we admit that δ̂X x,i = 0.

Let us record those two conditions under the abstract hypothesis:

Hypothesis 1 From x , one can build processes X x,i (i ∈ {1, . . . , N }) of two variables
such that, for all i :

• For any α ∈ [0, 1/2) such that 2αp > 1, X x,i ∈ Cγ2 (L(Bα,p,Bα,p))
• The algebraic relation δ̂X x,i = 0 is satisfied.

Remark 3.8 Actually, the additional condition 2αp > 1 could have been skipped in
the latter hypothesis. We have notified it so that Hypothesis 1 meets the more general
Hypothesis 2 of Sect. 4.
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We are then allowed to use expression (33) for irregular integrands:

Proposition 3.9 Under Hypothesis 1, we define, for all processes z such that zi ∈
C0

1 (Bκ,p) ∩ Cκ1 (Bp), i = 1, . . . , N, with κ < γ and κ + γ > 1, the integral

Jts(d̂x z) = X x,i
ts zi

s + �̂ts
(
X x,i δzi ). (34)

In that case:

• J (d̂x z) is well-defined and there exists an element ẑ ∈ Ĉγ1 (Bκ,p) such that δ̂ẑ is

equal to J (d̂x z).
• It holds that

N [ẑ; Ĉγ1 (Bκ,p)] ≤ cx

{
N [z; C0

1 (Bκ,p)] + N [z; Cκ1 (Bp)]
}
, (35)

with

cx ≤ c
{N [X x ; Cγ2 (L(Bp,Bp))] + N [X x ; Cγ2 (L(Bκ,p,Bκ,p)]

}
(36)

• The integral can be written as

Jts(δ̂x z) = lim|�|→0

∑

(tk)∈�
Sttk+1 X x,i

tk+1tk zi
tk , (37)

where the limit is taken over partitions �[s,t] of the interval [s, t], as their mesh
tends to 0. Hence it coincides with the Young type integral

∫ t
s Stu dxu zu.

Proof The fact that Jts(d̂x z) is well defined is a direct consequence of Hypothesis 1,
and the Chasles relation δ̂J (d̂x z), which accounts for the existence of ẑ, can be shown
by straightforward computations using (28).

For the second point, notice that, thanks to Hypothesis 1, one has

N [J (d̂x z); Cγ2 (Bκ,p)]
≤ N [X x,i ; Cγ2 (L(Bκ,p,Bκ,p))] N [zi ; C0

1 (Bκ,p)] + N [�̂(X x,i δzi ); Cγ2 (Bκ,p)],

since X x,i δzi ∈ Cγ+κ
3 (Bp). By the contraction property (30) of �̂, we then deduce

N [�̂(X x,i δzi ); Cγ2 (Bκ,p)] ≤ c N [X x,i ; Cγ2 (L(Bp,Bp))] N [zi ; Cκ1 (Bp)],

which completes the proof of (35). According to Proposition 3.7, (37) is a consequence
of the reformulation
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J (d̂x z) = (Id − �̂δ̂)(X x,i zi ). (38)

��
Using the above formalism, we can show the existence and uniqueness of a global

solution to the equation. In the following statement, remember that the spaces Xk have
been introduced in Definition 2.1.

Theorem 3.10 Assume Hypothesis 1 with γ > 1/2, and assume also that f =
( f1, . . . , fN ) with fi ∈ X2 for i = 1, . . . , N. For any κ < γ such that γ + κ > 1 and
2κp > n, consider the space Ĉ0,κ

1 ([0, T ],Bκ,p) = C0
1 ([0, T ],Bκ,p)∩Ĉκ1 ([0, T ],Bκ,p),

provided with the norm

N [.; Ĉ0,κ
1 ([0, T ],Bκ,p)] = N [.; C0

1 ([0, T ],Bκ,p)] + N [.; Ĉκ1 ([0, T ],Bκ,p)].

Then the infinite-dimensional system

(δ̂y)ts = Jts(d̂x f (y)), y0 = ψ ∈ Bκ,p, (39)

interpreted with Proposition 3.9, admits a unique global solution in Ĉ0,κ
1 ([0, T ],Bκ,p).

Besides, the Itô map (ψ, X x,i ) 
→ y, where y is the unique solution of (39), is locally
Lipschitz.

Remark 3.11 In the last statement, we consider the operators X x,i as elements of the
incremental space Cγ2 (L(Bp,Bp))∩Cγ2 (L(Bκ,p,Bκ,p)). The regularity of the Itô map
with respect to X x,i is then relative to the norm

N [.; CLκ,γ,p] = N [.; Cγ2 (L(Bp,Bp))] + N [.; Cγ2 (L(Bκ,p,Bκ,p))].

The following notation will be used in the proof, and also in the sequel of the paper.

Notation 3.12 Let A, B be two positive quantities, and a a parameter lying in a
certain vector space V . We say that A �a B if there exists a positive constant ca

depending on a such that A ≤ ca B. When we don’t want to specify the dependence
on a, we just write A � B. Notice also that the value of the constants c or ca in our
computations can change from line to line, throughout the paper.

Proof It is a classical fixed-point argument. We will only prove the existence and
uniqueness of a local solution. The reasoning which enables to extend the local solu-
tion into a solution on the whole interval [0, T ] is standard; some details about the
general procedure can be found in [20] (in a slightly different context).

We consider an interval I = [0, T∗] with T∗ a time that may change during the
proof, and the application � : Ĉ0,κ

1,ψ (I,Bκ,p) → Ĉ0,κ
1,ψ (I,Bκ,p) defined by �(y)0 = ψ

and (δ̂�(y))ts = Jts(d̂x f (y)).
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Invariance of a ball. Let y ∈ Ĉ0,κ
1,ψ (I,Bκ,p) and z = �(y). By (35), we know that

N [z; Ĉκ1 (I,Bκ,p)] ≤ cx |I |γ−κ {N [ fi (y); Cκ1 (I,Bp)] + N [ fi (y); C0
1 (Bκ,p)]

}
.

(40)

Recalling our convention in Notation 3.12, the assumption fi ∈ X1 is enough to
guarantee that the following bounds holds for fi : N [ fi (ϕ)− fi (ψ);Bp] � f N [ϕ −
ψ;Bp] and N [ fi (ϕ);Bκ,p] � f 1 + N [ϕ;Bκ,p] (see Corollary 2.7) for arbitrary test
functions ϕ,ψ . So we have

N [ fi (y); Cκ1 (I,Bp)] � f N [y; Cκ1 (I,Bp)]
� f N [y; C0

1 (I,Bκ,p)] + N [y; Ĉκ1 (I,Bκ,p)]
� f N [y; Ĉ0,κ

1 (I,Bκ,p)],

where, to get the second inequality, we have used the property (21) of the semigroup.
We get also N [ fi (y); C0

1 (Bκ,p)] � f 1 + N [y; C0
1 (Bκ,p)], which, going back to (40),

leads to

N [z; Ĉκ1 (I,Bκ,p)] �x, f |I |γ−κ {1 + N [y; Ĉ0,κ
1 (I,Bκ,p)]

}
.

Besides, zs = (δ̂z)s0 + Ssψ , hence, since Ss is a contraction operator on Bκ,p,

N [z; C0
1 (I,Bκ,p)] ≤ |I |κ N [z; Ĉκ1 (I,Bκ,p)] + ‖ψ‖Bκ,p .

Finally,

N [z; Ĉ0,κ
1 (I,Bκ,p)] ≤ ‖ψ‖Bκ,p + cx |I |γ−κ {1 + N [y; Ĉ0,κ

1 (I,Bκ,p)]
}
.

Then we choose I = [0, T1] such that cx T γ−κ
1 ≤ 1

2 to get the invariance by � of the
balls

B R
T0,ψ

= {y ∈ Ĉ0,κ
1 ([0, T0],Bκ,p) : y0 = ψ, N [y; C0,κ

1 ([0, T0],Bκ,p)] ≤ R},

for any T0 ≤ T1, with (for instance) R = 1 + 2‖ψ‖Bκ,p .

Contraction property. Let y, ỹ ∈ Ĉ0,κ
1,ψ (I,Bκ,p) and z = �(y), z̃ = �(ỹ). By (35),

N [z − z̃; Ĉκ1 (Bκ,p)]
≤ cx |I |γ−κ {N [ fi (y)− fi (ỹ); C0

1 (Bκ,p)] + N [ fi (y)− fi (ỹ); Cκ1 (Bp)]
}
. (41)
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In order to estimate the Hölder norm N [ fi (y)− fi (ỹ); Cκ1 (Bp)], we rely on the decom-
position

σi (ξ, yt (ξ))− σi (ξ, ỹt (ξ))− σi (ξ, ys(ξ))+ σi (ξ, ỹs(ξ))

= δ(y − ỹ)ts(ξ)

1∫

0

dr σ ′
i (ξ, ys(ξ)+ r(δy)ts(ξ))

+(δ ỹ)ts(ξ)

1∫

0

dr
{
σ ′

i (ξ, ys(ξ)+ r(δy)ts(ξ))− σ ′
i (ξ, ỹs(ξ)+ r(δ ỹ)ts(ξ))

}
.

Therefore,

N [ fi (y)− fi (ỹ); Cκ1 (Bp)]
≤ c f

{
N [y − ỹ; Ĉ0,κ

1 (Bκ,p)] + N [ỹ; Ĉ0,κ
1 (Bκ,p)] N [y − ỹ; C0

1 (B∞)]
}
.

Remember that we have assumed that 2κp > n, so that, by the Sobolev continuous
inclusion Bκ,p ⊂ B∞, N [y − ỹ; C0

1 (B∞)] ≤ N [y − ỹ; C0
1 (Bκ,p)] and as a result

N [ fi (y)− fi (ỹ); Cκ1 (Bp)] ≤ c N [y − ỹ; Ĉ0,κ
1 (Bκ,p)]

{
1 + N [ỹ; Ĉ0,κ

1 (Bκ,p)]
}
.

The same kind of argument easily leads to

N [ fi (y)− fi (ỹ); C0
1 (Bκ,p)]

≤ c N [y − ỹ; Ĉ0,κ
1 (Bκ,p)]

{
1 + N [y; Ĉ0,κ

1 (Bκ,p)] + N [ỹ; Ĉ0,κ
1 (Bκ,p)]

}
,

The last two estimations, together with (41), provide a control of N [z − z̃; Ĉκ1 (Bκ,p)]
in terms of y, ỹ. Moreover, as z0 = z̃0 = ψ ,

N [z − z̃; C0
1 (Bκ,p)] ≤ |I |κ N [z − z̃; Ĉκ1 (Bκ,p)].

Now, if y, ỹ both belong to one of the invariant balls B R
T0,ψ

, with T0 ≤ T1, the above
results give

N [z − z̃; Ĉ0,κ
1 ([0, T0],Bκ,p)] ≤ cx T γ−κ

0 {1 + 2R} N [y − ỹ; Ĉ0,κ
1 ([0, T0],Bκ,p)].

It only remains to pick T0 ≤ T1 such that cx T γ−κ
0 {1 + 2R} ≤ 1

2 , and we get the
contraction property of the application � : B R

T0,ψ
→ B R

T0,ψ
. This statement obviously

completes the proof of the existence and uniqueness of a solution to (39) defined on
[0, T0]. ��
Remark 3.13 When the driving process x is smooth, X x is implicitly defined by the
(Lebesgue) integral

∫ t
s Stu dxu = ∫ t

s Stu x ′
u du and the above construction has been
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done in such a way that the solution y given by Theorem 3.10 coincides with the
(usual) solution of the mild form of (12):

y0 = ψ ∈ Bκ,p, yt = Stψ +
t∫

0

Stu f (yu) x ′
u du.

In this case, it may be worth noticing that if in addition the initial condition ψ belongs
to the domain B1,p of �p, then y is also the strong solution of (12). This is a conse-
quence of [40, Theorem 6.1.6], owing to the Lipschitz continuity (in both variables)
of the mapping (u, ϕ) 
→ f (ϕ) x ′

u from [0, T ] × Bp to Bp.

4 Rough case

The aim now is to go one step further than the Young case. We would like to conceive
more sophisticated developments of the integral so as to cope with a γ -Hölder driving
process, with γ ∈ (1/3, 1/2).

4.1 Heuristic considerations

The strategy to give a (reasonable) sense to the integral
∫ t

s Stu dxi
u fi (yu)will be largely

inspired by the reasoning followed for the standard integral
∫ t

s yu dxu , explained in
[20,25]. Thus, let us suppose at first that the process x is differentiable, and divide the
procedure to reach a suitable decomposition of the integral into two steps:

• Identify the space Q of controlled processes which will accommodate the solution
of the system.

• Decompose
∫ t

s Stu dxi
u fi (yu) as an element of Q when y belongs itself to Q, until

we get an expression likely to remain meaningful if x is less regular.

This heuristic reasoning essentially aims at identifying the algebraic structures
which will come into play. The details concerning the analytical conditions will be
checked a posteriori. Remember that Assumption B still prevails, which means that
the noisy nonlinearity is given by

Xt (ϕ) =
N∑

i=1

xi
t fi (ϕ), with fi (ϕ)(ξ) = σi (ξ, ϕ(ξ)),

and we shall see that σi has to be considered as an element of X2 (according to Defi-
nition 2.1).
Step 1: Identification of the controlled processes. The first elementary decomposition
still consists in:

t∫

s

Stu dxi
u fi (yu) =

⎛

⎝

t∫

s

Stu dxi
u

⎞

⎠ fi (ys)+
t∫

s

Stu dxi
u δ( fi (y))us . (42)
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It is then natural to think that the potential solution of the system is to belong to a
space structured by the relation

(δ̂y)ts =
⎛

⎝

t∫

s

Stu dxi
u

⎞

⎠ yx,i
s + y�ts,

with y� admitting a Hölder regularity twice higher than y. For the solution itself, we
would have yx,i

s = fi (ys), y�ts = ∫ t
s Stu dxi

u δ( fi (y))us . Hence the potential algebraic
structure of the controlled processes

Q = {y : δ̂y = X x,i
ts yx,i

s + y�ts}, with X x,i
ts =

t∫

s

Stu dxi
u .

Remember that the latter operator satisfies the algebraic relation

δ̂X x,i = 0. (43)

Besides, it will turn out useful in the sequel to write X x,i as

X x,i = Xax,i + δxi , with Xax,i
ts =

t∫

s

atv dxi
v. (44)

Morally, Xax,i admits a higher Hölder regularity than x owing to the property (21)
of the semigroup. We will go back over the usefulness of this trivial decomposition
in Remark 4.3. In the following we will sometimes omit the vector indexes i, j, . . .
whenever the contractions are obvious.
Step 2: Decomposition of

∫ t
s Stu dxu fi (yu)when y ∈Q. Going back to expression (42),

we see that it is more exactly the integral
∫ t

s Stu dxu δ( fi (y))us that remains to be dis-

sected when y ∈ Q, that is to say when the δ̂-increment of y can be written as
(δ̂y)ts = X x,i

ts yx,i
s + y�ts . To this purpose, let us introduce a new notation which will

appear in many of our future computations:

Notation 4.1 For any f ∈ X2 (see Definition 2.1), we set

[ f ′(ϕ)](ξ) = ∇2σ(ξ, ϕ(ξ)),

where ∇2 stands for the derivative with respect to the second variable. The function
f ′ is understood as a mapping from Bp to Bp for any p ≥ 1.
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Using this notational convention, notice that

δ( fi (y))ts = (δy)ts · f ′
i (ys)+

1∫

0

dr
[

f ′
i (ys + r(δy)ts)− f ′

i (ys)
] · (δy)ts

= (ats ys) · f ′
i (ys)+ (δ̂y)ts · f ′

i (ys)+ fi (y)
�,1
ts

= (ats ys) · f ′
i (ys)+ (X x, j

ts yx, j
s ) · f ′

i (ys)+ fi (y)
�,1
ts + fi (y)

�,2
ts

= (ats ys) · f ′
i (ys)+ (δx j )ts · yx, j

s · f ′
i (ys)+ fi (y)

�,1
ts + fi (y)

�,2
ts + fi (y)

�,3
ts ,

(45)

where we have successively introduced the notations

fi (y)
�,1
ts =

1∫

0

dr
[

f ′
i (ys + r(δy)ts)− f ′

i (ys)
] · (δy)ts, fi (y)

�,2
ts = y�ts · f ′

i (ys),

(46)

fi (y)
�,3
ts = (Xax, j

ts yx, j
s ) · f ′

i (ys). (47)

Observe that, in the course of those computations, we have used some additional
conventions that we make explicit for further use:

Notation 4.2 Let ϕ,ψ be two elements of Bp. Then ϕ ·ψ is the element of Bp/2 defined
by the pointwise multiplication [ϕ ·ψ](ξ) = ϕ(ξ)ψ(ξ). If we assume furthermore that
M, N are two elements of L(Bp;Bp), then the bilinear form B(M, N ) is defined as:

B(M, N ) : Bp × Bp → Bp/2, (ϕ, ψ) 
→ [B(M, N )](ϕ, ψ) = M(ϕ) · N (ψ).

We will also make use of the standard product notation

M × N : Bp × Bp → Bp × Bp, (ϕ, ψ) 
→ [M × N ](ϕ, ψ) = (M(ϕ), N (ψ)).

With this convention in mind, the algebraic decomposition (45) of fi (y) can now
be read as:

δ( fi (y))ts = B(ats, Id)(y, f ′
i (y))s + (δx j )ts · yx, j

s · f ′
i (ys)+ fi (y)

�
ts . (48)

If we analyze the regularity of the terms of this expression, it seems reasonable to
consider the first two terms as elements of order one and fi (y)� as an element of order
two. Let us make two comments about this intuition:

(a) To assert that B(ats, Id)(y, f ′
i (y))s admits a strictly positive Hölder regularity,

otherwise stated to retrieve increments |t − s|α from the operator ats , we must
use the property (21) of the semigroup. It means in particular that a change of
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space will occur: if ys ∈ Bα,p, then B(ats, Id)(y, f ′
i (y))s will be estimated as an

element of Bp. This remark also holds for fi (y)
�,3
ts = (Xax, j

ts yx, j
s ) · f ′

i (ys).
(b) The term fi (y)�,1 is considered as a second order element insofar as it is eas-

ily (pointwise) estimated by (a constant times) |(δy)ts |2. However, as far as the
spatial regularity is concerned, this supposes that fi (y)�,1 has to be seen as an
element of Bp/2, if y ∈ Bp. To go back to the base space Bp, we shall use the
regularization property (23) of the semigroup, through the operator X x (see (60)
in Hypothesis 2).

Now, inject decomposition (48) into (42) to obtain

t∫

s

Stu dxi
u fi (yu) = X x,i

ts fi (y)s + X xa,i
ts (y, f ′

i (y))s + X xx,i j
ts (yx, j · f ′

i (y))s

+
t∫

s

Stu dxi
u fi (y)

�
us, (49)

where we have introduced the following operators of order two (which act on some
spaces that will be detailed later on):

X xa,i
ts =

t∫

s

Stu dxi
u B(aus, Id) and X xx,i j

ts =
t∫

s

Stu dxi
u (δx j )us . (50)

A little more specifically, those operators act on couples (ϕ, ψ) in some Sobolev type
spaces, and

X xa,i
ts (ϕ, ψ) =

t∫

s

Stu dxi
u [aus(ϕ) · ψ] and X xx,i j

ts (ϕ) =
t∫

s

Stu dxi
u (δx j )us [ϕ].

Then, since we have assumed that fi (y)� admitted a “double” regularity, we can see
the residual term rts = ∫ t

s Stu dxi
u fi (yu)

� as a third order element, whose regular-
ity is expected to be greater than 1 as soon as the Hölder regularity of x is greater
than 1/3. Thus, we are in the same position as in (31), and just as in the latter situation,
r will be interpreted thanks to �̂.

In order to compute δ̂r , rewrite r using (49):

rts =
t∫

s

Stu dxi
u fi (yu)− X x,i

ts fi (ys)− X xa,i
ts (y, f ′

i (y))s − X xx,i j
ts (yx, j · f ′

i (y))s .
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Therefore, with the help of the algebraic formula (28), we get

(δ̂r)tus = X x,i
tu δ( fi (y))us − (δ̂X xa,i )tus(y, f ′

i (y))s + X xa,i
tu δ(y, f ′

i (y))us

−(δ̂X xx,i j )tus(y
x, j · f ′

i (y))s + X xx,i j
tu δ(yx, j · f ′

i (y))us .

Going back to the very definition of X xa,i and X xx,i j , it is quite easy to show that the
following relations are satisfied whenever x is a smooth function:

(δ̂X xa,i )tus = X xa,i
tu (aus × Id)+ X x,i

tu B(aus, Id), (51)

(δ̂X xx,i j )tus = X x,i
tu (δx j )us . (52)

By combining these two relations together with (48), we deduce

(δ̂r)tus = X x,i
tu ( fi (y)

�
us)+ X xa,i

tu ((δ̂y)us, f ′
i (ys))+ X xa,i

tu (yu, δ( f ′
i (y))us)

+X xx,i j
ts δ(yx, j · f ′

i (y))us := Jtus . (53)

All the terms of this decomposition are (morally) of order three. Now, remember
that we wish to tackle the case 3γ > 1, so that it seems actually wise to invert δ̂ at this
point, and we get

t∫

s

Stu dxi
u fi (yu) = X x,i

ts fi (ys)

+X xa,i
ts (y, f ′

i (y))s + X xx,i j
ts (yx, j · f ′

i (y))s + �̂ts(J ), (54)

where Jtus is given by (53). Notice once again that we have obtained a decomposition
valid for some smooth functions x and y, but this decomposition can now be extended
to an irregular situation up to γ > 1/3.

In a natural way, we will use (54) as the definition of the integral in the prescribed
context of a γ -Hölder process with γ > 1/3. To conclude this heuristic reasoning, let
us summarize the different hypotheses we have (roughly) raised during the procedure:

• The process x generates four operators X x , Xax , X xa and X xx , which satisfy the
algebraic relations (43), (51) and (52). As for the Hölder regularity of those opera-
tors, X x admits the same regularity as x , X xx twice the regularity of x , just as Xax

and X xa (even if one must change the space one works with, according to the above
point (a)).

• The increments (δ̂y)ts can be decomposed as (δ̂y)ts = X x
ts yx

s + y�ts , where y� is
twice more regular than y. Besides, according to (a) again, the process y must evolve
in a space Bα,p, with α > 0. These remarks will give birth to the spaces Qκ

α,p.
• The functions fi belong to X2.
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Remark 4.3 If one has a look at the constructions established in [25], it seems more
natural, at first sight, to search for a decomposition of the integral based on the (twisted)
iterated integral

X̃ xx,i j
ts =

t∫

s

Stu dxi
u B(X x, j

us , Id) =
t∫

s

Stu dxi
u B

⎛

⎝

u∫

s

Suv dx j
v , Id

⎞

⎠ , (55)

rather than on the area X xx
ts we have introduced in (50). In a way, the definition of

X̃ xx
ts is actually more consistent with the general iteration scheme of the rough path

procedure. Nevertheless, when it comes to applying the results to a fBm x (with Hurst
index H ∈ (1/3, 1/2)) for instance, it seems difficult to justify the existence of the
iterated integral (55). According to our computations, this difficulty is due to a lack
of regularity for the term Suv in (55). Indeed, if one refers to [2], the definition of the
integral would require a condition like

N [Suv − Suu;L(Bα,p,Bα,p)] � |u − v|ν ,

for some ν > 0, but this kind of inequality cannot be satisfied in this general form,
since the Hölder property (21) of the semigroup requires a change of space. This is
why we have turned to a formulation with X xx

ts , which is made possible by the intro-
duction of the operator Xax

ts (defined by (44)) in decomposition (45). As we shall see
in Sect. 6, the definition and the estimation of the regularity of X xx are much simpler,
since this can be done by means of an integration by parts argument.

4.2 Definition of the integral

In this subsection, we will only make the previous assumptions and constructions
more formal. From now on, we fix a coefficient γ > 1/3, which (morally) represents
the Hölder regularity of the driving process x . The definition of the rough path above
x associated to the heat equation is then the following:

Hypothesis 2 We assume that the process x allows to define operators X x,i , Xax,i ,
X xa,i , X xx,i j (i, j ∈ {1, . . . ,N }), such that, recalling our Notation 4.2:

(H1) From an algebraic point of view:

δ̂X x,i = 0 (56)

X x,i = Xax,i + δxi (57)

δ̂X xa,i = X xa,i (a × Id)+ X x,i B(a, Id) (58)

δ̂X xx,i j = X x,i (δx j ). (59)

(H2) From an analytical point of view: if 2αp > n, then

X x,i ∈ Cγ2 (L(Bp,Bp)) ∩ Cγ2 (L(Bα,p,Bα,p)) ∩ Cγ−n/(2p)
2 (L(Bp/2,Bp)) (60)
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Xax,i ∈ Cγ+α
2 (L(Bα,p,Bp)) (61)

X xa,i ∈ Cγ+α−n/(2p)
2 (L(Bα,p × Bp,Bp)) ∩ Cγ2 (L(Bα,p × Bα,p,Bα,p)) (62)

X xx,i j ∈ C2γ
2 (L(Bp,Bp)) ∩ C2γ

2 (L(Bα,p,Bα,p)) ∩ C2γ
2 (L(Bα,p,Bp)). (63)

We will denote by X = (X x , Xax , X xa, X xx ) the path so defined. X belongs to a
product of operators spaces, denoted by CLγ,κ,p, and furnished with a natural norm
build with the norms of each space.

The formal definition of controlled process takes the following form:

Definition 4.4 For all α ∈ (0, 1/2), κ ∈ (0, 1), we define

Q̂κ
α,p = Q̂κ

α,p([0, T ]) =
{

y ∈ Ĉκ1 ([0, T ],Bα,p) : (δ̂y)ts = X x,i
ts yx,i

s + y�ts ,

yx,i ∈ C0
1 ([0, T ],Bα,p) ∩ Cκ1 ([0, T ],Bp), y� ∈ Cγ2 ([0, T ],Bα,p) ∩ C2κ

2 ([0, T ],Bp)
}
.

We will call Q̂κ
α,p the space of κ-controlled processes of Bα,p, together with the

norm

N [y; Q̂κ
α,p] = N [y; Ĉκ1 (Bα,p)] +

N∑

i=1

{
N [yx,i ; C0

1 (Bα,p)] + N [yx,i ; Cκ1 (Bp)]
}

+N [y�; Cγ2 (Bα,p)] + N [y�; C2κ
2 (Bp)],

where the time interval [0, T ] is omitted for sake of clarity.

Observe that, in what follows, we will only consider the spaces Q̂κ
κ,p, with 2κp > 1.

We can now show how nonlinearities of the form given in Assumption B act on a
controlled process.

Lemma 4.5 Assume that fi ∈ X2 for i = 1, . . . , N and let κ ∈ (1/3, γ ). If y ∈ Q̂κ
κ,p

admits the decomposition δ̂y = X x,i yx,i +y�, then the increment δ fi (y) can be written
as

δ( fi (y))ts = B(ats, Id)(y, f ′
i (y))s + (δx j )ts · (yx, j · f ′

i (y))s + fi (y)
�
ts, (64)

with fi (y)� = fi (y)�,1 + fi (y)�,2 + fi (y)�,3, where the elements fi (y)�,k are given
by (46) and (47). Moreover, one has

N [ fi (y)
�,1; C2κ

2 (Bp/2)] ≤ c f,X

{
N [y; C0

1 (Bα,p)]2 + N [y; Q̂κ
κ,p]2

}
(65)

N [ fi (y)
�,2; C2κ

2 (Bp)] ≤ c f,X N [y; Q̂κ
κ,p], N [ fi (y)

�,3; C2κ
2 (Bp)] ≤ c f,X N [y; Q̂κ

κ,p].
(66)

Proof This refers to decomposition (45). The estimate of fi (y)�,2 is obvious, while
the estimate of fi (y)�,3 stems from the Hypothesis (61). As for fi (y)�,1, notice that
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‖ fi (y)
�,1
ts ‖Bp/2 � c f ‖(δy)2ts‖Bp/2 � ‖(δy)ts‖2

Bp
� ‖(δ̂y)ts‖2

Bp
+ ‖ats ys‖2

Bp
,

and the result then comes from property (21). ��
We are now in position to justify the use of (54) as a definition for the integral:

Proposition 4.6 Let y ∈ Q̂κ
κ,p([0, T ]) admitting the decomposition δ̂y = X x,i yx,i +

y�, with κ ∈ (1/3, γ ) and p ∈ N
∗ such that γ − κ > n/(2p). Assume that f =

( f1, . . . , fN ) with fi ∈ X2 for i = 1, . . . , N. We set, for all s < t ,

Jts(d̂x f (y)) = X x,i
ts fi (ys)+ X xa,i

ts (y, f ′
i (y))s + X xx,i j

ts (yx, j · f ′
i (y))s + �̂ts(J ),

(67)

where we recall our Notation 4.1 for f ′
i , and with

Jtus = X x,i
tu ( fi (y)

�
us)+ X xa,i

tu ((δ̂y)us, f ′
i (ys))+ X xa,i

tu (yu, δ( f ′
i (y))us)

+X xx,i j
ts δ(yx, j · f ′

i (y))us, (68)

the term f (y)� being defined by decomposition (64). Then one has:

(1) J (d̂x f (y)) is well-defined and there exists z ∈ Qκ
κ,p([0, T ]) such that δ̂z is

equal to the increment J (d̂x f (y)). Furthermore, for any 0 ≤ s < t ≤ T , the
integral Jts(d̂x f (y)) coincides with a Riemann type integral for two regular
functions x and y.

(2) The following estimation holds true

N [z;Qκ
κ,p([0, T ])] ≤ c f,X

{
1 + N [y; C0

1 (Bκ,p)]2 + T αN [y;Qκ
κ,p]2

}
, (69)

for some α > 0.
(3) For all s < t ,

Jts(d̂x f (y)) = lim|�[s,t]|→0

∑

(tk )∈�[s,t]
Sttk+1

{
X x,i

tk+1tk fi (ytk )+ X xa,i
tk+1tk (y, f ′

i (y))tk

+X xx,i j
tk+1tk (y

x, j , f ′
i (y))tk

}
, (70)

where the limit is taken over partitions �[s,t] of the interval [s, t], as their mesh
tends to 0.

Proof The fact that Jts(d̂x f (y)) coincides with a Riemann type integral for two reg-
ular functions x and y is just what has been derived at Eq. (54). As far as the second
claim of our proposition is concerned, it is a direct consequence of Hypothesis 2,
together with the estimations of Lemma 4.5. Let us check for instance the regularity
of J :
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• for X x,i ( fi (y)�), we get, by (60) and (66),

N [X x,i ( fi (y)
�,2 + fi (y)

�,3); Cγ+2κ
3 (Bp)] ≤ c f,X N [y; Q̂κ

κ,p],

while, owing to (60) and (65),

N [X x,i fi (y)
�,1; Cγ+2κ−n/(2p)

3 (Bp)] ≤ c f,X

{
N [y; C0

1 (Bκ,p)]2 + N [y; Q̂κ
κ,p]
}
.

• for X xa,i ((δ̂y), f ′
i (y)), we use (62) to obtain

N [X xa,i ((δ̂y), f ′
i (y)); Cγ+2κ−n/(2p)

3 (Bp)] ≤ c f,X N [y; Ĉκ1 (Bκ,p)] ≤ c f,X N [y; Q̂κ
κ,p].

• for X xa,i (y, δ( f ′
i (y))), one has, by (62) again,

N [X xa,i (y, δ( f ′
i (y))); Cγ+2κ−n/(2p)

3 (Bp)]
≤ c f,X N [y; C0

1 (Bκ,p)]N [y; Cκ1 (Bp)]
≤ c f,X N [y; C0

1 (Bκ,p)]
{
N [y; C0

1 (Bκ,p)] + N [y; Q̂κ
κ,p]
}
.

• for X xx,i jδ(yx, j · f ′
i (y)), we deduce from (63) that

N [X xx,i jδ(yx, j · f ′
i (y)); C2γ+κ

3 (Bp)]
≤ c f,X

{
N [yx, j ; Cκ1 (Bp)] + N [yx, j ; C0

1 (Bκ,p)]N [y; Cκ1 (Bp)]
}

≤ c f,X

{
1 + N [y; C0

1 (Bκ,p)]2 + N [y; Q̂κ
κ,p]2

}
.

Moreover, thanks to the algebraic relations stated in Hypothesis 2 and decomposi-
tion (64), it is easy to show that

J = −δ̂
(

X x,i ( fi (y))+ X xa,i (y, f ′
i (y))+ X xx,i j (yx, j · f ′

i (y))
)
.

Therefore, J ∈ Ker δ̂ ∩ Cμ3 (Bp), with μ = γ + 2κ − n/(2p) > 1, and we are allowed
to apply �̂. Besides, using the contraction property (30), we get

N [�̂(J ); Cγ+2κ−n/(2p)
2 (Bp)] ≤ c f,X

{
1 + N [y; C0

1 (Bκ,p)]2 + N [y; Q̂κ
κ,p]2

}
,

and also

N [�̂(J ); Cγ+κ−n/(2p)
2 (Bκ,p)] ≤ c f,X

{
1 + N [y; C0

1 (Bκ,p)]2 + N [y; Q̂κ
κ,p]2

}
.

123



Non-linear rough heat equations 125

The regularity of the other terms of (67) can be proved with similar arguments. As for
the expression (70), it is a consequence of Proposition 3.7, since one can write

J (d̂x f (y)) =
(

Id −�̂δ̂
) (

X x,i ( fi (y))+ X xa,i (y, f ′
i (y))+ X xx,i j (yx, j · f ′

i (y))
)
.

��
Once our integral for controlled processes is defined, the existence and uniqueness

of a local solution for our equation is easily proved:

Theorem 4.7 Assume that f = ( f1, . . . , fN ) with fi ∈ X3 for i = 1, . . . , N. For
any pair (κ, p) ∈ (1/3, γ )× N such that γ − κ > n/(2p), there exists a time T > 0
for which the system

(δ̂y)ts = Jts(d̂x f (y)), y0 = ψ ∈ Bκ,p, (71)

interpreted with Proposition 4.6, admits a unique solution y in Qκ
κ,p([0, T ]).

Proof As in the proof of Theorem 3.10, this local solution is obtained via a fixed-point
argument. The invariance of a well-chosen ball of Qκ

κ,p([0, T ]) is easy to establish
from (69), once one has noticed that the latter estimate entails (with the notations of
Proposition 4.6)

N [z;Qκ
κ,p([0, T ])] ≤ c f,X

{
1 + ‖ψ‖2

Bκ,p + T αN [y;Qκ
κ,p(I )]

}
, (72)

for some parameter α > 0.
As for the contraction property, it stems from long but elementary computations,
essentially similar to the estimates of the proof of Theorem 3.10. Write for instance,
if y, ỹ ∈ Q̂κ

κ,p(I ) (I = [0, T ]) are such that y0 = ỹ0 = ψ ,

X xa,i
ts (y, f ′

i (y))s − X xa,i
ts (ỹ, f ′

i (ỹ))s = X xa,i
ts (y − ỹ, f ′

i (y))s + X xa,i
ts (ỹ, f ′

i (y)− f ′
i (ỹ))s .

Then by (62),

N [X xa,i (y − ỹ, f ′
i (y)); Cγ+κ−n/(2p)

2 (I ;Bp)]
≤ cXN [y − ỹ; C0

1 (I ;Bκ,p)]N [ f ′
i (y); C0

1 (Bp)] ≤ cX, f T κN [y − ỹ; Qκ
κ,p(I )],

while

N [X xa,i (ỹ, f ′
i (y)− f ′

i (ỹ)); Cγ+κ−n/(2p)
2 (I ;Bp)]

≤ cX, f N [ỹ; C0
1 (I ;Bκ,p)]N [y − ỹ; C0

1 (I ;Bκ,p)]
≤ cX, f,ψT κ

{
1 + N [ỹ;Qκ

κ,p(I )]
}

N [y − ỹ;Qκ
κ,p(I )].

By following the same lines with the other terms of the decomposition of

δ̂(z − z̃) = J
(

d̂x
[

f (y)− f (ỹ)
])
,
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we deduce

N [z − z̃;Qκ
κ,p(I )] ≤ cX, f,ψT λN [y − ỹ;Qκ

κ,p(I )]
×
{

1 + N [y;Qκ
κ,p(I )]2 + N [ỹ;Qκ

κ,p(I )]2
}

for some λ > 0, which allows to settle the expected fixed-point argument on a small
enough interval [0, T ]. ��

As an almost immediate consequence of this rough paths approach, we get the
following continuity statement for the solution:

Proposition 4.8 Assume that the three parameters (γ, κ, p) are chosen as in Theo-
rem 4.7. Then the Itô map associated to Eq. (71) is locally Lipschitz in the following
sense: if y (resp. ỹ) denotes the solution on [0, T ] (resp. [0, T̃ ]) of (71) given by
Theorem 4.7, for a driving process x (resp. x̃) satisfying Hypothesis 2, and with initial
condition ψ (resp. ψ̃), then

N [y − ỹ; Cκ1 ([0, T ∗];Bκ,p)] ≤ cX,X̃,ψ,ψ̃

{
‖ψ − ψ̃‖Bκ,p + N [X − X̃; CLγ,κ,p]

}
,

(73)

where T ∗ = inf(T, T̃ ) and X (resp. X̃) stands for the path above x (resp. x̃) described
by Hypothesis 2. As for the constant in (73), it can be written as

cX,X̃,ψ,ψ̃ = C(N [X; CLγ,κ,p],N [X̃; CLγ,κ,p], ‖ψ‖Bκ,p , ‖ψ̃‖Bκ,p ),

for some function C : (R+)4 → R growing with its four arguments.

Proof The strategy is exactly the same as in the standard diffusion case: for any interval
I contained in [0, T ∗], we introduce the quantity

N [y − ỹ;Qx,x̃
κ (I )] = N [y − ỹ; Ĉγ1 (I ;Bκ,p)]

+N [yx,i − ỹx,i ; Cκ1 (I ;Bp) ∩ C0
1 (I ;Bκ,p)]

+N [y� − ỹ�; C2κ
2 (I ;Bp) ∩ Cγ2 (I ;Bκ,p)],

and then we show from the decomposition of δ̂(y− ỹ) = J (d̂xi fi (y))−J (d̂ x̃ i fi (ỹ))
that if I = I εk = [kε, (k + 1)ε],

N [y − ỹ;Qx,x̃
κ (I εk )]

≤ cX,X̃,ψ,ψ̃

{
εκN [y − ỹ;Qx,x̃

κ (I εk )] + N [X − X̃; CLγ,κ,p] + ‖ykε − ỹkε‖Bκ,p
}
.
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By taking ε small enough, we deduce, for any k,

N [y − ỹ;Qx,x̃
κ (I εk )]

≤ cX,X̃,ψ,ψ̃

{
N [X − X̃; CLγ,κ,p] + ‖ykε − ỹkε‖Bκ,p

}

≤ cX,X̃,ψ,ψ̃

⎧
⎨

⎩
N [X − X̃; CLγ,κ,p] + ‖ψ − ψ̃‖Bκ,p + εγ

k−1∑

l=0

N [y − ỹ; Qx,x̃
κ (I εl )]

⎫
⎬

⎭
.

Inequality (73) is then a consequence of Gronwall Lemma, together with the obvious
control N [y − ỹ; Ĉγ1 ([0, T ∗];Bκ,p] ≤ ∑Nε

k=0 N [y − ỹ;Qx,x̃
κ (I εk )], where Nε is the

smallest integer such that Nε · ε ≥ T ∗. ��

5 Global solution under stronger regularity assumptions

The aim of this section is to show that a regularization in the nonlinearity involved in
our heat equation can yield a global solution. Specifically, this section is devoted to
the proof of the existence and uniqueness of a global solution to the (slightly) modified
system

(δ̂y)ts =
t∫

s

Stu dx (i)u Sε fi (yu), y0 = ψ, (74)

where fi ∈ X3, ψ ∈ Bα,p for some α ≥ 0 to be precised, and ε is a strictly positive
fixed parameter. Owing to the regularizing effect of Sε, we will see that such a system
is much easier to handle than the original formulation (71).

Note that we have chosen a regularization by Sε in (74) in order to be close to
Teichmann’s framework [45]. However, it will be clear from the considerations below
that an extension to a convolutional nonlinearity of the form

[ f̃i (y)](ξ) =
∫

Rn

K (ξ, η) fi (y)(η) dη, ξ ∈ R
n,

with a smooth enough kernel K and fi ∈ X3, is possible. The technical argument
which enables to extend the local solution into a global one are taken from a previous
work of two of the authors [13].

5.1 Heuristic considerations

The regularizing property (20) of the semigroup Sε allows us to turn to a decom-
position of

∫ t
s Stu dx (i)u Sε fi (yu) similar to the finite-dimensional case, or otherwise

stated written without the help of the mixed operator X xa . Indeed, let us go back to
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decomposition (45):

δ( fi (y))ts = (δx)ts yx
s · f ′

i (ys)+
[

ats ys · f ′
i (ys)+ y�ts · f ′

i (ys)+ (Xax,i
ts yx,i

s ) · f ′
i (ys)

+
1∫

0

dr
[

f ′
i (ys + r(δy)ts)− f ′

i (ys)
] · (δy)ts

]

, (75)

but this time, let us consider the whole term into brackets as a remainder term evolv-
ing in Bp (or maybe Bp/2), and denote it by fi (y)�. This point of view is for instance
justified if we let the process y evolve in B1,p, insofar as, for any s, t ∈ I ,

‖ats ys · f ′
i (ys)‖Bp � |t − s| ‖ f ′

i ‖∞‖ys‖B1,p � |t − s|2κ |I |1−2κ ‖ f ′
i ‖∞‖ys‖B1,p .

For obvious stability reasons, the strong assumption ys ∈ B1,p then implies that the

residual term stemming from the decomposition of
∫ t

s Stu dx (i)u Sε fi (yu) should also
be seen as an element of B1,p. This is made possible through the action of Sε. Indeed,
owing to (20), one has

‖Sε( f (y)�)‖B1,p ≤ c ε−1 ‖ f (y)�‖Bp , for some constant c > 0.

5.2 Definition of the integral

According to the above considerations, only the processes X x,i , Xax,i and X xx,i will
come into play. Therefore, let us focus on the following simplified version of Hypoth-
esis 2:

Hypothesis 3 We assume that the process x allows to define operators X x,i , Xax,i ,
X xx,i j (i, j ∈ {1, . . . , N }), such that, recalling our Notation 4.2:

(H1) From an algebraic point of view:

δ̂X x,i = 0 (76)

X x,i = Xax,i + δxi (77)

δ̂X xx,i j = X x,i (δx j ). (78)

The operators X x,i and X xx,i j commute with Sε. (79)

(H2) From an analytical point of view:

X x,i ∈ Cγ2 (L(Bp,Bp)) ∩ Cγ2 (L(B1,p,B1,p)) ∩ Cγ−n/(2p)
2 (L(Bp/2,Bp)) (80)

Xax,i ∈ C1+γ
2 (L(B1,p,Bp)) (81)

X xx,i j ∈ C2γ
2 (L(Bp,Bp)) ∩ C2γ

2 (L(B1,p,B1,p)). (82)
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Remark 5.1 The assumption (79) is trivially met when x is a differentiable process
and X x,i is defined by X x,i

ts = ∫ t
s Stu dx (i)u . It will remain true in rough cases, follow-

ing the constructions of Sect. 6. This commutativity property will be resorted to in the
proofs of Propositions 5.3 and 5.4.

The notion of controlled processes which has been introduced in Definition 4.4 can
also be simplified in this context:

Definition 5.2 For any κ < γ , let us define the space

Q̃κ,p =
{

y ∈ Cγ1 (B1,p) : (δ̂y)ts

= X x,i
ts yx,i

s + y�ts, yx,i ∈ Cκ1 (B1,p) ∩ C0
1 (B1,p), y� ∈ C2κ

2 (B1,p)
}
,

together with the seminorm

N [y; Q̃κ,p] = N [yx,i ; C0
1 (B1,p)] + N [yx,i ; Cκ1 (B1,p)] + N [y�; C2κ

2 (B1,p)].

With this notation, one has N [y; Cγ1 (B1,p)] ≤ cx N [y; Q̃κ,p].
In the following two propositions, let us fix an interval I = [a, b] and denote

|I | = b − a.

Proposition 5.3 Let y ∈ Q̃κ,p(I ) with decomposition δ̂y = X x,i yx,i + y�, for some
(κ, p) ∈ (1/3, γ )×N

∗ such that γ −κ > n/(2p) and initial value h = ya ∈ B1,p. For
any ψ ∈ B1,p, define a process z by the two relations: za = ψ and for any s < t ∈ I ,

(δ̂z)ts = Jts(d̂x (i) Sε fi (ys)) = X x,i
ts Sε fi (ys)+ X xx,i j

ts Sε(y
x, j
s · f ′

i (ys))

+�̂ts

(
X x,i Sε fi (y)

� + X xx,i j Sεδ(y
x, j · f ′

i (y))
)
,

where fi (y)� stands for the term into brackets in (75). Then:

• z is well-defined as an element of Q̃κ,p(I ).
• The following estimation holds:

N [z; Q̃κ,p(I )] ≤ c ε−1
{

1 + |I |2(γ−κ)N [y; Q̃κ,p(I )]2 + |I |2(1−κ) ‖h‖2
B1,p

}
,

(83)

for some constant c > 0.
• For any s < t ∈ I , (δ̂z)ts can also be written as

(δ̂z)ts = lim|P[s,t]|→0

∑

tk∈P[s,t]

{
X x,i

tk+1tk Sε fi (ytk )+ X xx,i j
tk+1tk Sε

(
yx, j

tk · f ′
i (ytk )

)}
in B1,p.

(84)
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Proof Let us focus on the estimation of the residual term

z�ts = X xx,i j
ts Sε(y

x, j
s · f ′

i (ys))+ �̂ts

(
X x,i Sε fi (y)

� + X xx,i j Sεδ(y
x, j · f ′

i (y))
)
.

First, using (82) and (20), we get

‖X xx,i j
ts Sε(y

x, j
s · f ′

i (ys))‖B1,p ≤ cx |t − s|2γ ε−1‖yx, j
s · f ′

i (ys)‖Bp

≤ cx |t − s|2γ ε−1‖yx, j
s ‖B1,p

≤ cx |t − s|2γ ε−1 N [y; Q̃κ,p(I )].

Secondly, write fi (y)� = fi (y)�,1 + fi (y)�,2, with fi (y)
�,1
ts = ats ys · f ′

i (ys)+ y�ts ·
f ′
i (ys)+ (Xax,i

ts yx,i
s ) · f ′

i (ys), fi (y)
�,2
ts = ∫ 1

0 dr [ f ′
i (ys + r(δy)ts)− f ′

i (ys)] · (δy)ts ,
and notice that

‖X x,i
tu Sε fi (y)

�,1
us ‖B1,p

� |t − u|γ ε−1‖ fi (y)
�,1
us ‖Bp

� |t − u|γ ε−1
{
‖(aus ys) · f ′

i (ys)‖Bp + ‖(Xax,i
us yx,i

s ) · f ′
i (ys)‖Bp + ‖y�us · f ′

i (ys)‖Bp

}

� |t − u|γ ε−1
{
|u − s| ‖ys‖B1,p + |u − s|1+γ ‖yx,i

s ‖B1,p + ‖y�us‖B1,p

}

� |t − u|γ ε−1
{
|u − s|2κ N [y; Q̃κ,p(I )] + |u − s|

{
N [y; Q̃κ,p(I )] + ‖h‖B1,p

}}

� |t − s|γ+2κ ε−1
{
N [y; Q̃κ,p(I )] + |I |1−2κ ‖h‖B1,p

}
,

while, owing to (79),

‖X x,i
tu Sε fi (y)

�,2
us ‖B1,p = ‖SεX x,i

tu fi (y)
�,2
us ‖B1,p

� ε−1 |t − u|γ−n/(2p) ‖ fi (y)
�,2
us ‖Bp/2

� ε−1 |t − u|γ−n/(2p) ‖(δy)us‖2
Bp

� ε−1 |t − u|γ−n/(2p)
{
‖(δ̂y)us‖2

Bp
+ ‖aus ys‖2

Bp

}

� ε−1 |t − u|γ−n/(2p)
{
|u − s|2γ N [y; Q̃κ,p(I )]2 + |u − s|2

{
N [y; Q̃κ,p(I )]2 + ‖h‖2

B1,p

}}

� ε−1 |t − s|3γ−n/(2p)
{
N [y; Q̃κ,p(I )]2 + |I |2(1−γ ) ‖h‖2

B1,p

}
.

Even more simple estimations based on (82) give

‖X xx,i j
tu Sεδ(y

x, j · f ′
i (y))us‖B1,p

� ε−1 |t − s|2γ+κ {1 + N [y; Q̃κ,p(I )]2 + |I |1−κ N [y; Q̃κ,p(I )] · ‖h‖B1,p

}
.
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Thanks to the contraction property (30), we now easily deduce

N [z�; C2κ
2 (I )] ≤ c ε−1

{
1 + |I |2(γ−κ) N [y; Q̃κ,p(I )]2 + |I |2(1−κ) ‖h‖2

B1,p

}
.

The estimation of N [zx,i ; C0,κ
1 (I ;B1,p)] can be established along the same lines.

As for (84), it is a consequence of (3.7), together with the reformulation

δ̂z = (Id −�̂δ̂)(X x,i Sε fi (y)+ X xx,i j Sε(y
x, j · f ′

i (y))).

��

In order to settle an efficient fixed-point argument in this context, the following
Lipschitz relation is required:

Proposition 5.4 If y, ỹ ∈ Q̃κ,p(I ) with ya = ỹa , and if we denote by z, z̃ the two
processes in Q̃κ,p(I ) such that

z0 = z̃0 = y0 and δ̂z = J (d̂x (i) Sε fi (y)) , δ̂ z̃ = J (d̂x (i) Sε fi (ỹ)),

then

N [z − z̃; Q̃κ,p(I )] ≤ cx ε
−1 |I |γ−κ N [y − ỹ; Q̃κ,p(I )]

{
1 + |I |2(γ−κ) {N [y; Q̃κ,p(I )]2

+N [y; Q̃κ,p(I )]2} + |I |2(1−κ) ‖h‖2
B1,p

}
. (85)

Proof One has, for any s, t ∈ I ,

δ̂(z − z̃)ts = X x,i
ts Sε( fi (ys)− fi (ỹs))+ X xx,i j

ts Sε(y
x, j
s · f ′

i (ys)− ỹx, j
s · f ′

i (ỹs))

+�̂ts

(
X x,i Sε( fi (y)

� − fi (ỹ)
�)+ X xx,i j δ(yx, j · f ′

i (y)− ỹx, j · f ′
i (ỹ))

)
.

Let us only focus on the more intricate term, that is to say X x,i Sε( fi (y)�,2 −
fi (ỹ)�,2), where, according to the notations of the proof of Proposition 5.3,

fi (y)
�,2
ts =

1∫

0

dr
[

f ′
i (ys + r(δy)ts)− f ′

i (ys)
] · (δy)ts .
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Write

fi (y)
�,2
ts − fi (ỹ)

�,2
ts =

1∫

0

dr
[

f ′
i (ys + r(δy)ts)− f ′

i (ys)
] · δ(y − ỹ)ts

+(δ ỹ)ts · δ(y − ỹ)ts ·
1∫

0

dr r

1∫

0

dr ′ f ′′
i (ys + rr ′(δy)ts)

+(δ ỹ)2ts ·
1∫

0

dr r

1∫

0

dr ′ [ f ′′
i (ys + rr ′(δy)ts)− f ′′

i (ỹs + rr ′(δ ỹ)ts)
]
.

In this way,

‖ fi (y)
�,2
ts − fi (ỹ)

�,2
ts ‖Bp/2 � ‖δ(y − ỹ)ts‖Bp

{‖(δy)ts‖Bp + ‖(δ ỹ)ts‖Bp

}

+‖(δ ỹ)ts‖2
Bp

{‖ys − ỹs‖B∞ + ‖yt − ỹt‖B∞
}
.

Now

‖δ(y − ỹ)ts‖Bp � ‖δ̂(y − ỹ)ts‖B1,p + |t − s| ‖(ys − ỹs)− Ssa(ya − ỹa)‖B1,p

� |t − s|γ N [y − ỹ; Q̃κ,p(I )],

while

‖(δy)ts‖Bp ≤ ‖(δ̂y)ts‖B1,p + ‖ats(δ̂y)sa‖Bp + ‖ats Ssah‖Bp

� |t − s|κ
{
|I |γ−κ N [y; Q̃κ,p(I )] + |I |1−κ ‖h‖B1,p

}

and finally

‖ys − ỹs‖B∞ � ‖ys − ỹs‖B1,p � ‖ys − ỹs − Ssa(ya − ỹa)‖B1,p

� |I |γ−κ N [y − ỹ; Q̃κ,p(I )].

This easily leads to

N [ fi (y)
�,2 − fi (ỹ)

�,2; C2κ
2 (Bp/2)] � |I |γ−κ N [y − ỹ; Q̃κ,p(I )]

{
1 + |I |2(γ−κ) {N [y; Q̃κ,p(I )]2 + N [ỹ; Q̃κ,p(I )]2

}
+ |I |2(1−κ) ‖h‖2

B1,p

}
.

Inequality (85) now follows from standard computations based on Hypothesis 3. ��

We are now in position to prove the expected global result:

123



Non-linear rough heat equations 133

Theorem 5.5 Let fi ∈ X3, for i ∈ {1, . . . , N }. Under Hypothesis 3, let (κ, p) ∈
(1/3, γ ) × N

∗ such that γ − κ > n/(2p). For any T > 0, for any ψ ∈ B1,p, the
differential system

(δ̂y)ts = Jts(d̂x (i) Sε fi (y)), y0 = ψ,

interpreted with Proposition 5.3, admits a unique global solution in Q̃κ,p([0, T ]).
Proof The strategy of the proof has been extensively developed in [13] in a similar
background suitable to Volterra systems. The key point is to control both the norm of
the local solution y(k) and the norm of the initial condition y(k)lk

on each successive

intervals I M
k = [l M

k , l
M
k+1], where the sequence l M

k is such that l M
k+1 − l M

k = 1
M+k , and

M ≥ 1 is a well-chosen fixed parameter. More precisely, we consider the sets

Bψk
k =

{

y ∈ Qκ
κ,p(I

M
k ) : yl M

k
= ψk , yx,i

l M
k

= Sε fi (ψk), N [y;Qκ
κ,p(I

M
k )] ≤ (M + k)α2

}

,

whereψk is such that ‖ψk‖B1,p ≤ (M + k)α1 , and prove the statement: there exist two
parameters α1, α2 > 0 and an integer M such that for any k ≥ 0, the (usual) map � is
a strict contraction on the invariant set Bψk

k and the following property holds

If y ∈ Bψk
k , then N [yl M

k+1
;B1,p] ≤ (M + k + 1)α1 . (H)

As in the proof of Theorem 3.10, if y ∈ Bψk
k , z = �(y) is defined as the unique element

in Qκ
κ,p(I

M
k ) such that zl M

k
= ψk and for any s, t ∈ I M

k , (δ̂z)ts = Jts(d̂x (i) Sε fi (y)).
The patching argument that leads to a global solution is then easily settled thanks to
Property (H).
With the view of proving the above assertion, observe that if y1, y2 ∈ Bψk

k , then by
(83) (with obvious notations)

N [z1;Qκ
κ,p(I

M
k )]

≤ cx, f,ε

{
1 + (M + k)−2(γ−κ)N [y;Qκ

κ,p(I
M
k )]2 + (M + k)−2(1−κ)‖ψk‖2

B1,p

}
,

≤ cx, f,ε

{
1 + (M + k)−2(γ−κ)+2α2 + (M + k)−2(1−κ)+2α1

}
, (86)

while, owing to (85),

N [z1 − z2;Qκ
κ,p(I

M
k )] ≤ cx, f,ε JM+kN [y1 − y2;Qκ

κ,p(I
M
k )], (87)

where Jk = k−(γ−κ) + k−3(γ−κ)+2α2 + k−(γ−κ+2(1−κ))+2α1 . As far as Property (H)
is concerned, write, if y ∈ Bψk

k ,

yl M
k+1

= Sl M
k+1l M

k
ψk + (δ̂y)l M

k+1l M
k

= Sl M
k+1l M

k
ψk + X x,i

l M
k+1l M

k
Sε fi (ψk)+ y�

l M
k+1l M

k
,
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which entails

‖yl M
k+1

‖B1,p ≤ (M + k)α1 + cx, f,ε(M + k)−γ + (M + k)α2−2κ . (88)

From (86)–(88), the three expected properties (stability of Bψk
k , contraction, (H)) are

then readily translated as a system for α1, α2. One can finally check that if those two
parameters are picked such that

3κ − 2γ < α2 < γ, 1 − γ < α1 < 1 + α2 + γ − 3κ,

then there exists a sufficiently large M for which the assertion is verified. ��

6 Applications

We now intend to apply the previous abstract results to concrete N -dimensional pro-
cesses x . To this end, we know that it suffices to be able to construct, from x , a path
X = (X x , Xax , X xa, X xx )which satisfies Hypothesis 2. Indeed, the latter assumption
clearly covers Hypothesis 1. We first study the general case of a 2-rough path, and
then focus on the Brownian case, for which a comparison with the existing result of
Itô theory is established.

6.1 The case of a 2-rough path

As usual in this paper, we shall proceed in two steps: we first work at a heuristic level,
that is with smooth processes, and try to obtain an expression which can be extended
to irregular situations. We then check directly Hypothesis 2 on the expression obtained
in the heuristic step.
Assume for the moment that x is a smooth R

N -valued function. Then the operators
X x , Xax , X xa and X xx are defined by the formulae

X x,i
ts (ϕ)(ξ) =

t∫

s

Stu(ϕ)(ξ) dxi
u, Xax,i

ts (ϕ)(ξ) =
t∫

s

atu(ϕ)(ξ) dxi
u, (89)

X xa,i
ts (ϕ, ψ)(ξ) =

t∫

s

Stu((ausϕ) · ψ)(ξ) dxi
u (90)

X xx,i j
ts (ϕ)(ξ) =

t∫

s

Stu(ϕ)(ξ) dxi
u (δx j )us . (91)
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Set now x2
ts = ∫ t

s dxu ⊗ (δx)us . Then a straightforward integration by parts argument
yields the following expression for the increments introduced above:

X x,i
ts = (δxi )ts +

t∫

s

�Stu(δxi )us du (92)

Xax,i
ts =

t∫

s

�Stu(δxi )us du (93)

X xa,i
ts =

t∫

s

X x,i
tu B(�Sus, Id) du (94)

X xx,i j
ts = x2,i j

ts +
t∫

s

�Stux2,i j
us du. (95)

These are the expressions that we are ready to extend to irregular processes. Let us
only elaborate on how to get (94). Actually, it suffices to notice that

t∫

s

Stu((ausϕ) · ψ) dxi
u = −

t∫

s

∂u(X
x,i
tu )((ausϕ) · ψ),

where, in the last integral, the partial derivative ∂u only applies to the operator X x,i
tu .

Then

−
t∫

s

∂u(X
x,i
tu )((ausϕ) · ψ) =

[
−X x,i

tu ((ausϕ) · ψ)
]t

s
+

t∫

s

du X x,i
tu (∂u(ausϕ) · ψ)

=
t∫

s

du X x,i
tu ((�Susϕ) · ψ).

Remark 6.1 At this point, it is not clear that the integral expressions
∫ t

s AStu(δxi )us

du,... give rise to operators defined on Bα,p. For the moment, we only consider those
expressions as operators acting on C∞

c . The extension to any space Bα,p will stem
from a continuity argument (see the proof of Proposition 6.3).

According to the above considerations, in order to extend expressions (92)–(95) to
a Hölder path x , one is led to suppose that this process generates a standard 2-rough
path, in the following sense (see [32] for further details on k-rough paths, k ≥ 2):
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Definition 6.2 For any x ∈ Cγ1 (RN ) (γ > 1/3), we call Lévy area above x any

process x2 ∈ C2γ
2 (RN ⊗ R

N ) such that δx2 = δx ⊗ δx , or in other words

(δx2,i j )tus = (δxi )tu(δx j )us, i, j = 1, . . . , N . (96)

The couple (x, x2) is referred to as a 2-rough path above x .

Once endowed with a Lévy area above x , we are in position to extend the three
expressions (92)–(95). Together with Theorem 4.7, the following statement completes
the proof of Theorem 1.1.

Proposition 6.3 Let γ > 1/3. If x ∈ Cγ1 (RN ) allows the construction of a Lévy area
x2, the operators X x,i , Xax,i , X xa,i , X xx,i j defined by (92)–(95), can be extended to
a path X which satisfies Hypothesis 2. Moreover, if (x̃, x̃2) is another 2-rough path,
to which we associate a path X̃, the following control holds:

N [X−X̃; CLγ,κ,p]≤cx,x̃

{
N [x − x̃; Cγ1 (RN )] + N [x2 − x̃2; C2γ

2 (RN ⊗ R
N )]
}
,

(97)

with cx,x̃ = C
(N [x; Cγ1 (RN )],N [x̃; Cγ1 (RN )]), for some growing function C.

Remember that the normed space CLγ,κ,p has been introduced in Hypothesis 2 and
plays a part in the continuity statement (73).

Proof We have to check both the algebraic and analytic assumptions.
Algebraic conditions. The verification of (56)–(59) is a matter of elementary calcu-
lations. For instance, let us have a look at relation (59). For all s < u < t , one
has

(δ̂X xx,i j )tus = x2,i j
ts − x2,i j

tu − Stux2,i j
us +

t∫

u

�Stv(x
2,i j
vs − x2,i j

vu ) dv.

Then, by (96), this expression reduces to

(δ̂X xx,i j )tus

= (Id −Stu)x
2,i j
us + (δxi )tu(δx j )us +

t∫

u

�Stv(x
2,i j
us + (δxi )vu(δx j )us) dv

=
⎡

⎣(δxi )tu +
t∫

u

�Stv(δxi )vu dv

⎤

⎦ (δx j )us = X x,i
tu (δx j )us .

Analytical conditions. Let us examine the regularity of each operator individually.
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Case of X x,i . The norms at stake here are

N [X x,i ; Cγ2 (L(Bp,Bp))] (98)

N [X x,i ; Cγ2 (L(Bκ,p,Bκ,p))] (99)

N [X x,i ; Cγ−n/2p
2 (L(Bp/2,Bp))]. (100)

In order to establish those regularity results, let us first rewrite (92) as

X x,i
ts = Sts(δxi )ts −

t∫

s

�Stu(δxi )tu du.

Then one has, for any κ ∈ [0, 1),

‖X x,i
ts (ϕ)‖Bκ,p ≤ ‖Sts(ϕ)‖Bκ,p |(δxi )ts | +

t∫

s

‖�Stu(ϕ)‖Bκ,p |(δxi )tu |du

� ‖ϕ‖Bκ,p‖xi‖γ
⎛

⎝|t − s|γ +
t∫

s

|t − u|−1+γ du

⎞

⎠ � ‖ϕ‖Bκ,p‖xi‖γ |t − s|γ ,

which gives both (98) and (99). Along the same lines, in order to prove (100), we use
the fact that ‖Sts(ϕ)‖Bp � ‖ϕ‖Bp/2 |t − s|−n/2p and that ‖�Sts(ϕ)‖Bp � ‖ϕ‖Bp/2 |t −
s|−1−n/2p. Then we obtain

‖X x,i
ts (ϕ)‖Bp � ‖ϕ‖Bp/2‖xi‖γ |t − s|γ−n/2p

for all p such that γ − n/2p > 0. Those estimations give the required bound (100).
Case of Xax,i . We should now check that (61) is verified in our setting. To this aim,
write Xax,i as

Xax,i
ts = ats(δxi )ts −

t∫

s

�Stu(δxi )tu du.

Then

‖Xax,i
ts (ϕ)‖Bp = ‖ats(ϕ)‖Bp |(δxi )ts | +

t∫

s

‖�Stu(ϕ)‖Bp |(δxi )tu |du

and using the semigroup estimates

‖ats(ϕ)‖Bp � ‖ϕ‖Bκ,p |t − s|κ ‖�Stu(ϕ)‖Bp � ‖ϕ‖Bκ,p |t − u|−1+κ
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we easily conclude that

N [Xax,i ;L(Bκ,p,Bp)] ≤ cx |t − s|γ+κ , (101)

which is the expected regularity result.
Case of X xa,i . Going back to (62), one must prove that the following norms are finite:

N [X xa,i ; Cγ+κ−n/(2p)
2 (L(Bκ,p × Bp,Bp))], and

N [X xa,i ; Cγ2 (L(Bκ,p × Bκ,p,Bκ,p))]. (102)

To do so, write X xa,i
ts as

X xa,i
ts = X x,i

ts B(ats, Id)−
t∫

s

Stu X x,i
us B(�Sus, Id) du.

We deduce

N [X xa,i
ts (ϕ, ψ);Bp] � N [X x,i ; Cγ−n/(2p)

2 (L(Bp/2,Bp))]N [(atsϕ) · ψ;Bp/2]

+N [X x,i ; Cγ−n/(2p)
2 (L(Bp/2,Bp))]

t∫

s

|u − s|γN [(�Susϕ) · ψ;Bp/2]du

where

N [(atsϕ) · ψ;Bp/2] � N [atsϕ;Bp]N [ψ;Bp] � |t − s|κN [ϕ;Bκ,p]N [ψ;Bp]

and

N [(�Susϕ) · ψ;Bp/2] � N [�Susϕ;Bp]N [ψ;Bp]
� |u − s|−1+κN [ϕ;Bκ,p]N [ψ;Bp].

This allows to conclude that

N [X xa,i
ts (ϕ, ψ);Bp]

� N [X x,i ; Cγ−n/(2p)
2 (L(Bp/2,Bp))]N [ϕ;Bκ,p]N [ψ;Bp]|t − s|γ+κ−n/(2p),

and the first of the required bounds in (102) follows. For the second one, we have

N [X xa,i
ts (ϕ, ψ);Bκ,p] � N [X x,i ; Cγ2 (L(Bκ,p,Bκ,p))]N [(atsϕ) · ψ;Bκ,p]

+N [X x,i ; Cγ2 (L(Bκ,p,Bκ,p))]
t∫

s

|u − s|γN [(�Susϕ) · ψ;Bκ,p]du,
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and using the algebra property of Bκ,p, we get

N [(atsϕ) · ψ;Bκ,p] � N [ϕ;Bκ,p]N [ψ;Bκ,p]

and

N [(�Susϕ) · ψ;Bκ,p] � N [�Susϕ;Bκ,p]N [ψ;Bκ,p]
� |u − s|−1N [ϕ;Bκ,p]N [ψ;Bκ,p]

so that

N [X xa,i
ts (ϕ, ψ);Bp]

� N [X x,i ; Cγ2 (L(Bκ,p,Bκ,p))]N [ϕ;Bκ,p]N [ψ;Bκ,p]

×
⎛

⎝|t − s|γ +
t∫

s

|u − s|γ−1du

⎞

⎠ .

The second estimate follows.
Case of X xx,i j . We must estimate the norm

N [X xx,i j ; C2γ
2 (L(Bp,Bp))], (103)

and also N [X xx,i j ; C2γ
2 (L(Bα,p,Bα,p))] and N [X xx,i j ; C2γ

2 (L(Bα,p,Bp))]. We focus
on (103), the others terms having similar behavior using the algebra property of Bα,p
and the Sobolev embedding Bα,p ⊂ B∞.

First, write X xx,i j
ts as

X xx,i j
ts = Stsx2,i j

ts −
t∫

s

�Stu

[
x2,i j

tu + (δxi )tu(δx j )us

]
du.

From this expression, we immediately get

N [X xx,i j
ts (ϕ);Bp]

≤ cx

⎧
⎨

⎩
N [Sts(ϕ);Bp]||t − s|2γ +

t∫

s

N [�Stu(ϕ);Bp][|t − u|2γ + |t − u|γ |u − s|γ |]du

⎫
⎬

⎭

≤ cx

⎧
⎨

⎩
N [ϕ;Bp]||t − s|2γ + N [ϕ;Bp]

t∫

s

|t − u|−1 [|t − u|2γ + |t − u|γ |u − s|γ |]du

⎫
⎬

⎭

≤ cx N [ϕ;Bp] |t − s|2γ .

This gives the expected conclusion N [X xx,i j ; C2γ
2 (L(Bp,Bp))] < ∞.

The continuity statement (97) is easily proved with the same arguments. ��
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Remark 6.4 As recalled in the introduction, it is a well-known fact that one can con-
struct a 2-rough path (in the sense of Definition 6.2) above a N -dimensional fractional
Brownian motion B with Hurst parameter H > 1/3 (see e.g. [7,18,36,49]). Theo-
rem 1.1 can thus be applied in order to handle the heat equation (71) driven by such a
process. To the best of the authors’ knowledge, this is presently the only method that
provides an interpretation and a solution to the equation when H ∈ (1/3, 1/2). We
are actually able to extend the strategy to the case H > 1/4 by injecting third-order
developments of the vector fields in the procedure described at Sect. 4. For sake of
conciseness, we have preferred not to include all the technical details behind this slight
improvement. What is really lacking now is a more general formulation that would
allow to cope with rough paths of any order.

6.2 The Brownian case

When x = B is a standard N -dimensional Brownian motion, the mild equation (4)
can also be understood in the Itô sense, and the existence and uniqueness of a (global)
solution is in this situation already well-established, even for small p (the main ref-
erence we have in mind here is [4], but similar results can be found in [3,27,53]). In
what follows, we mean to show that under the hypotheses of Theorem 4.7, the two
notions of solution (rough paths and Itô sense) actually coincide. To this end, we shall
lean on the two following lemmas, borrowed respectively from [25] and [4].

Lemma 6.5 Fix a time T > 0. For every α, β ≥ 0, p, q ≥ 1, there exists a constant
c such that for any R ∈ C2([0, T ];Bα,p),

N [R; Cβ2 ([0, T ];Bα,p)] ≤ c
{

Uβ+ 2
q ,q,α,p

(R)+ N [δ̂R; Cβ3 ([0, T ];Bα,p]
}
,

where

Uβ,q,α,p(R) =
⎡

⎢
⎣

∫

0≤u<v≤T

(‖Rvu‖Bα,p
|v − u|β

)q

dudv

⎤

⎥
⎦

1/q

.

Lemma 6.6 For every p ≥ 2, the Burkholder–Davies–Gundy inequality holds in Bp.
In other words, for any T > 0, if B is a one-dimensional Brownian motion and H is
an adapted process with values in L2([0, T ];Bp), then for any q ≥ 2, there exists a
constant c independent of H such that

E

⎡

⎢
⎣ sup

0≤t≤T

∥
∥
∥
∥
∥
∥

t∫

0

Hu d Bu

∥
∥
∥
∥
∥
∥

q

Bp

⎤

⎥
⎦ ≤ c E

⎡

⎢
⎣

⎛

⎝

T∫

0

‖Hu‖2
Bp

du

⎞

⎠

q/2⎤

⎥
⎦ . (104)
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Remark 6.7 It is readily checked from the very Definition (17) of ‖.‖Bκ,p that Bp can
be replaced with any Bκ,p in (104).

From now on, we fix three parameters (γ, κ, p) that satisfy the assumptions of
Theorem 4.7, namely

1/3 < κ < γ < 1/2, γ − κ >
n

2p
.

We also fix fi ∈ X3 (i = 1, . . . , N ) and we denote by Y the (continuous, Bκ,p-valued)
solution to the equation

Y0 = ψ ∈ Bκ,p, Yt = Stψ +
N∑

i=1

t∫

0

St−u d Bi
u fi (Yu), t ∈ [0, T ], (105)

where the integral is understood in the Itô sense and the initial conditionψ is assumed to
be deterministic, for more simplicity. As announced earlier, the existence and unique-
ness of Y is for instance proven in [4].

Proposition 6.8 With the notations of Sect. 4, Y almost surely belongs to Qκ
κ,p([0, T ]),

where, in the definition of the latter space, the operator-valued process X B,i
ts =∫ t

s St−u d Bi
u is understood in the Itô sense.

The proof of this proposition relies on two preliminary results.

Lemma 6.9 For every q ≥ 2, s < t ∈ [0, T ],

E
[
‖(δ̂Y )ts‖q

Bκ,p
]

≤ cψ,q, f,T |t − s|q/2 . (106)

Proof From the Eq. (105) itself, we first deduce

E
[
‖Yt‖q

Bκ,p
]

≤ cq

⎧
⎪⎨

⎪⎩
‖ψ‖q

Bκ,p + E

⎡

⎢
⎣

⎛

⎝

t∫

0

‖St−u fi (Yu)‖2
Bκ,p du

⎞

⎠

q/2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

≤ cq, f,ψ

⎧
⎪⎨

⎪⎩
1 +

⎛

⎝

t∫

0

|t − u|−2κ du

⎞

⎠

q/2
⎫
⎪⎬

⎪⎭
≤ cq, f,ψ,T .
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Then, since (δ̂Y )ts = ∫ t
s St−u fi (Yu) dW i

u , one has

E
[
‖(δ̂Y )ts‖q

Bκ,p
]

≤ c E

⎡

⎢
⎣

⎛

⎝

t∫

s

‖ fi (Yu)‖2
Bκ,p du

⎞

⎠

q/2
⎤

⎥
⎦

≤ c

⎧
⎪⎨

⎪⎩
|t − s|q/2 + E

⎡

⎢
⎣

⎛

⎝

t∫

s

‖Yu‖2
Bκ,p du

⎞

⎠

q/2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

≤ c

⎧
⎨

⎩
|t − s|q/2 + |t − s|q/2−1

t∫

s

E
[
‖Yu‖q

Bκ,p
]

du

⎫
⎬

⎭
≤ c |t − s|q/2 ,

where, to get the second inequality, we have used the estimate given by Corollary 2.7.
��

Lemma 6.10 The operators X B , Xa B, X Ba, X B B defined in the Itô sense by formulas
(89)–(91), satisfy the conditions of Hypothesis 2.

Proof Observe first that formulas (92)–(95) remain true for those operators, thanks to
Itô’s formula. (95) is for instance obtained by applying Itô’s formula to the product
St.B

2,i j
.s , where B2,i j

.s stands for the semimartingale B2,i j
us = ∫ u

s d Bi
u (δB j )us , which

gives

Stt B
2,i j
ts − StsB2,i j

ss =
t∫

s

Stu dB2,i j
us +

t∫

s

d

du
(Stu)B2,i j

us du,

or otherwise stated X B B,i j
ts = B2,i j

ts + ∫ t
s �Stu B2,i j

us du. Once endowed with those
expressions, it suffices to follow the lines of the proof of Proposition 6.3. ��
Proof of Proposition 6.8 One can of course write (δ̂Y )ts = X B,i

ts Y B,i
s + Y �ts , with

Y B,i
s = fi (Ys) and Y �ts = ∫ t

s Stu d Bi
u δ( fi (Y ))us . By applying Lemma 6.5 to the pro-

cess δ̂Y , we easily deduce from (106) Y ∈ Ĉγ1 (Bκ,p) a.s., and accordingly Y B,i ∈
Cκ1 (Bp) ∩ C0

1 (Bκ,p) a.s. As for Y �, one has (δ̂Y �)tus = X B,i
tu δ( fi (Y ))us , which a.s.

entails N [δ̂Y �; C2κ
3 (Bp)] < ∞ and also N [δ̂Y �; Cγ3 (Bκ,p)] < ∞. Besides, some

estimates similar to those of the proof of Lemma 6.9 show that for any q ≥ 2,

E
[
‖Y �ts‖q

Bκ,p
]

≤ c |t − s|q/2 and E
[
‖Y �ts‖q

Bp

]
≤ c |t − s|q(1/2+κ) .

We are thus in position to apply Lemma 6.5 to Y �, which yields Y � ∈ C2κ
2 (Bp) ∩

Cγ2 (Bκ,p). This completes the proof of the proposition. ��
Proposition 6.11 The Itô integral

∫ t
s Stu d Bi

u fi (Yu) coincides with the rough path

integral Jts(d̂ Bi fi (Y )) built via Proposition 4.6 from the processes X B, Xa B , X Ba,

X B B. Consequently, Y is also solution to the equation in the rough path sense.
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Proof Decomposition (49) remains clearly true for
∫ t

s Stu d Bi
u fi (Yu), that is to say

(with the notations of Sect. 4)
∫ t

s Stu d Bi
u fi (Yu) = Mts + R1

ts , where

Mts = X B,i
ts fi (Ys)+ X Ba,i

ts (y, f ′
i (Y ))s + X B B,i j

ts (Y x, j · f ′
i (Y ))s,

R1
ts =

t∫

s

St−u d Bi
u fi (Y )

�
us .

It is also easily seen, with the help of Lemma 4.5, that for any q ≥ 2, E
[
‖R1

ts‖q
Bp

]
≤

c |t − s|μq with μ > 3κ . This allows to apply Lemma 6.5 to R1 and assert that
R1 ∈ C3κ

2 (Bp) a.s., the control of N [δ̂R1; C3κ
3 (Bp)] = N [δ̂M; C3κ

3 (Bp)] being estab-
lished in Proposition 4.6.

On the other hand, we know (see Proposition 4.6 again) that Jts(d̂ Bi fi (Y )) =
Mts +R2

ts , with R2
ts = �̂ts(J ) ∈ C3κ

2 (Bp). As a consequence, R1−R2 ∈ Ker δ̂|C2(Bp)∩
C3κ

2 (Bp) and since 3κ > 1, this readily entails R1 = R2 a.s. ��
As a spin-off of this identification procedure, we can apply Proposition 4.8 to Eq.

(105) and retrieve the following continuity statement:

Corollary 6.12 Assume that (κ, p) ∈ (1/3, 1/2) × N
∗ are such that 1

2 − κ > n
2p .

Then the Itô map ψ 
→ Y associated to Eq. (105) is locally Lipschitz: if Y (resp. Ỹ )
stands for the solution to the equation with initial condition ψ (resp. ψ̃), then

N [Y − Ỹ ; Cκ1 ([0, T ];Bκ,p)] ≤ cψ,ψ̃‖ψ − ψ̃‖Bκ,p ,

where cψ,ψ̃ = C(‖ψ‖Bκ,p , ‖ψ̃‖Bκ,p ), for some growing function C(R+)2 → R
+.

6.3 Extension to more general elliptic operators

The strategy we have developed all through the paper for the heat equation can actu-
ally be applied to a more general class of operators on R

n for which the properties
exhibited in Sect. 2.2 remain (almost) true. More precisely, those properties hold for
any operator of the form

A =
n∑

i, j=1

∂ξi (ai j (ξ) ∂ξ j )− Id,

where the coefficients ai j satisfy the following conditions:

(H1) For any ξ ∈ R
n , ai j (ξ) is a real symmetric matrix,

(H2) For all i, j = 1, . . . , n, ai j is smooth, bounded, with bounded derivatives,
(H3) There exists a0 > 0 such that for any ξ ∈ R

n and any |v| = 1, a(ξ)v · v ≥ a0,
(H4) For all i, j = 1, . . . , n, there exists a∞

i j and α ∈ (0, 1) such that

lim|ξ |→∞ ai j (ξ) = a∞
i j and

∣
∣
∣ai j (ξ)− a∞

i j

∣
∣
∣ ≤ c |ξ |−α for any |ξ | ≥ 1.
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Let us only sketch out the arguments that indeed lead to statements similar to those of
Propositions 2.4–2.6 and (18)–(19):

• According to [10, Theorem 1.8.1], A is the generator of a symmetric Markov semi-
group and consequently [10, Theorems 1.4.1, 1.4.2] the generator of an analytic
semigroup of contraction S, which allows to adapt Proposition 2.4 to this context.

• The domains of the fractional powers of Ap coincide with the spaces L2α,p =
[L p,W 2,p]α obtained by complex interpolation of L p with the usual (integer) Sobo-
lev space W 2,p. This can be easily deduced from the association of [34, Theorem
11.6.1] and [41, Theorem C], both theorems holding true under (H1)–(H4). The pre-
cise definition and properties of L2α,p can be found in [1, Chap. 7]. It is in particular
proven that (18) and (19) remain valid for those spaces.

• The regularizing properties (23) and (24) of the semigroup from L p/k to L p can
be shown with the same arguments as in the proof of Proposition 2.5, thanks
to the Gaussian estimates for the fundamental solution associated to A (see [17,
Chap. 9,Theorem 8]).

• Finally, the control (25) is immediate once we have noticed the identification (see
[1, Sections 7.63]) of L2α,p with the space W 2α,p defined by the norm

‖ϕ‖p
W 2α,p = ‖ϕ‖p

Bp
+
∫

Rn

dξ
∫

Rn

dη
|ϕ(ξ)− ϕ(η)|p

|ξ − η|n+2αp .

Now, observe that if one wishes to study the following extension of (3)

y0 = ψ, dyt = Ãyt dt +
N∑

i=1

dxi
t fi (yt ), Ã =

n∑

i, j=1

∂ξi (ai j (ξ) ∂ξ j ), (107)

one must first write the system as

y0 = ψ, dyt = Ayt dt +
[

yt dt +
N∑

i=1

dxi
t fi (yt )

]

,

and then apply the strategy displayed in Sects. 4–5, taking the whole term into brackets
as the perturbation term. For sake of clarity, we have preferred not to include those
considerations in the development of our method. However, it is easy to realize that
the additional term yt dt doesn’t raise any new technical difficulty in the reasoning,
so that our main Theorem 1.1 remains true when replacing � with the above Ã.

Theorem 6.13 Assume that x is a γ -Hölder process with γ > 1/3, which in addition
allows the construction of a 2-rough path x. Assume also that the coefficients ai j satisfy
(H1)–(H4), and that the vector field σi satisfies both conditions (C1) and (C2)3. Then
for any couple (κ, p) ∈ ( 1

3 , γ )× N
∗ such that γ − κ > n

2p , and any initial condition
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ψ ∈ Bκ,p, the equation

y0 = ψ, dyt (ξ) =
n∑

i, j=1

∂ξi (ai j · ∂ξ j yt )(ξ)+
N∑

k=1

σk(ξ, yt (ξ)) dxk
t , ξ ∈ R

n,

(108)

understood in the mild sense via Propositions 4.6 and 6.3, admits a unique solution
y ∈ Cκ(Bκ,p) on an interval [0, T ], for a strictly positive time T which depends on
x, x2 and ψ . Moreover, the continuity property (11) remains true for the solution
of (108).

To conclude with, it may be worth mentioning that the rough paths approach often
gives rise to (time-)discretization schemes for the solution without much additional
effort. In the infinite-dimensional background at stake here, some space-discretization
has to be performed, too, so as to retrieve an efficient scheme, following Galerkin’s
method for instance. The interested reader is referred to [11] for a detailed examination
of some possible schemes derived from the constructions of this paper.

Acknowledgments The authors would like to thank the referees for the accurate review of the paper and
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