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FIRST-ORDER EULER SCHEME FOR SDES DRIVEN BY
FRACTIONAL BROWNIAN MOTIONS: THE ROUGH CASE

BY YANGHUI LIU AND SAMY TINDEL1

Purdue University

In this article, we consider the so-called modified Euler scheme for
stochastic differential equations (SDEs) driven by fractional Brownian mo-
tions (fBm) with Hurst parameter 1

3 < H < 1
2 . This is a first-order time-

discrete numerical approximation scheme, and has been introduced in [Ann.
Appl. Probab. 26 (2016) 1147–1207] recently in order to generalize the clas-
sical Euler scheme for Itô SDEs to the case H > 1

2 . The current contribu-
tion generalizes the modified Euler scheme to the rough case 1

3 < H < 1
2 .

Namely, we show a convergence rate of order n
1
2 −2H for the scheme, and

we argue that this rate is exact. We also derive a central limit theorem for the
renormalized error of the scheme, thanks to some new techniques for asymp-
totics of weighted random sums. Our main idea is based on the following ob-
servation: the triple of processes obtained by considering the fBm, the scheme
process and the normalized error process, can be lifted to a new rough path.
In addition, the Hölder norm of this new rough path has an estimate which is
independent of the step-size of the scheme.
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1. Introduction. This note is concerned with the following differential equa-
tion driven by a m-dimensional fractional Brownian motion (fBm in the sequel) B

with Hurst parameter 1
3 < H < 1

2 :

dyt = b(yt ) dt + V (yt ) dBt , t ∈ [0, T ],
y0 = y ∈ R

d .
(1.1)

Assuming that the collection of vector fields b = (bi)1≤i≤d belongs to the space
C2

b(Rd,Rd) and V = (V i
j )1≤i≤d,1≤j≤m sits in C3

b(Rd,L(Rm,Rd)), the theory of
rough paths gives a framework allowing to get existence and uniqueness results
for equation (1.1). In addition, the unique solution y in the rough paths sense has
γ -Hölder continuity for all γ < H . The reader is referred to [13, 14, 17] for further
details.

In this paper, we are interested in the numerical approximation of equation (1.1)
based on a discretization of the time parameter t . For simplicity, we are considering
a finite time interval [0, T ] and we take the uniform partition π : 0 = t0 < t1 <

· · · < tn = T on [0, T ]. Specifically, for k = 0, . . . , n we have tk = kh, where we
denote h = T

n
. Our generic approximation is called yn, and it starts from the initial

condition yn
0 = y. In order to introduce our numerical schemes, we shall also use

the following notation.

NOTATION 1.1. Let U = (U1, . . . ,Ud) and V = (V 1, . . . , V d) be two smooth
vector fields defined on R

d . We denote by ∂ the operator vector ∂ = (∂x1, . . . , ∂xd
),

that is, for x ∈ R
d we have [∂U(x)]kl = ∂xl

Uk(x). With the same matrix conven-
tion, the vector field ∂UV is defined as [∂UV (x)]k =∑d

l=1 ∂xl
Uk(x)V l(x).

With those preliminaries in mind, the most classical numerical scheme for
stochastic equations is the so-called Euler scheme (or first-order Taylor scheme),
which is recursively defined as follows on the uniform partition:

yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δBtktk+1,
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where δfst is defined as ft − fs for a function f . However, it is easily seen (see,
e.g., [8] for details) that the Euler scheme is divergent when the Hurst parameter
H is less than 1

2 . To obtain a convergent numerical approximation in this rough
situation, higher-order terms from the Taylor expansion need to be included in the
scheme. Having the rough paths construction in mind, the simplest method of this
kind is the Milstein scheme, or second-order Taylor scheme. It can be expressed
recursively as

(1.2) yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δBtktk+1 +

m∑
i,j=1

∂ViVj

(
yn
tk

)
B

ij
tktk+1

,

where we have used Notation 1.1 and where B designates the second-order iterated
integral of B (see Section 3.1 for a proper definition). This numerical approxima-
tion has first been considered in [7], and has been shown to be convergent as long
as H > 1

3 , with an almost sure convergence rate n−(3H−1)+κ . Here and in the fol-
lowing, κ > 0 represents an arbitrarily small constant. An extension of the result
to nth-order Taylor schemes and to an abstract rough path with arbitrary regularity
is contained in [14]; see also [19] for the optimized nth-order Taylor scheme when
H > 1

2 .
The nth-order Taylor schemes of the form (1.2) are, however, not implementable

in general. This is due to the fact that when i �= j the terms B
ij
tktk+1

cannot be
simulated exactly and have to be approximated on their own. We now mention
some contributions giving implementable versions of (1.2) for stochastic differen-
tial equation (1.1). They all rely on some cancellation of the randomness in the
error process y − yn related to our standing equation.

(i) The first second-order implementable scheme for (1.1) has been introduced
in [8]. It can be expressed in the following form:

(1.3) yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δBtktk+1 + 1

2

m∑
i,j=1

∂ViVj

(
yn
tk

)
δBi

tktk+1
δB

j
tktk+1

.

This scheme has been shown to have convergence rate of order n−(H− 1
3 )+κ , and

the proof relies on the fact that (1.3) is the second-order Taylor scheme for the
Wong–Zakai approximation of equation (1.1). The approximation (1.3) has been
extended in [1, 11] to a third-order scheme defined as follows:

yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δBtktk+1 + 1

2

m∑
i,j=1

∂ViVj

(
yn
tk

)
δBi

tktk+1
δB

j
tktk+1

+ 1

6

m∑
i,j=1

∂(∂ViVj )Vk

(
yn
tk

)
δBi

tktk+1
δB

j
tktk+1

δBk
tktk+1

.

(1.4)

Thanks to a thorough analysis of differences of iterated integrals between two

Gaussian processes, a convergence rate n−(2H− 1
2 )+κ has been achieved for the
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scheme (1.4). One should also notice that [11] handles in fact very general Gaus-
sian processes, as long as their covariance function is regular enough in the p-
variation sense.

(ii) A different direction has been considered in [18], where the following first-
order (meaning first-order with respect to the increments of B) scheme has been
introduced:

(1.5) yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δBtktk+1 + 1

2

m∑
j=1

∂VjVj

(
yn
tk

)
h2H .

This approximation is called modified Euler scheme in [18]. As has been explained
in [18], the modified Euler scheme is a natural generalization of the classical Eu-
ler scheme of the Stratonovich SDE to the rough SDE (1.1). For this reason, we
will call (1.5) the Euler scheme from now on. As the reader might also see from
relation (1.5), one gets the Euler scheme from the second-order Taylor scheme
(1.2) by changing the terms Bij

tktk+1
into their respective expected values. Note that

since the Euler scheme does not involve products of increments of the underlying
fBm, its computation cost is much lower than those of (1.3) and (1.4). In spite of

this cost reduction, an exact rate of convergence n−(2H− 1
2 ) has been achieved in

[18]. The asymptotic error distributions and the weak convergence of the scheme
have also been considered, and those results heavily hinge on Malliavin calculus
considerations. Notice however that the results in [18] are restricted to the case
H > 1

2 .

Having recalled those previous results, the aim of the current paper is quite sim-
ple: we wish to extend the results concerning the Euler scheme (1.5) to a truly
rough situation. Namely, we will consider equation (1.1) driven by a fractional
Brownian motion B with 1

3 < H < 1
2 . For this equation, we show that the Eu-

ler scheme maintains the rate of convergence n−(2H− 1
2 ), which is the same as the

third-order implementable scheme in (1.4). We also obtain some asymptotic results
for the error distribution of the numerical scheme (1.5), which generalize the cor-
responding results in [18, 22] to the case H < 1

2 . More specifically, we will prove
the following results (see Theorems 8.7 and 9.4 for more precise statements).

THEOREM 1.2. Let y be the solution of equation (1.1), and consider the Euler
approximation scheme yn defined in (1.5). Then:

(i) For any arbitrarily small κ > 0, the following almost sure convergence
holds true:

n2H− 1
2 −κ sup

t∈[0,T ]
∣∣yt − yn

t

∣∣→ 0 as n → ∞.
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(ii) The sequence of processes n2H− 1
2 (y − yn) converges weakly in D([0, T ])

to a process U which solves the following equation:

(1.6) Ut =
∫ t

0
∂b(ys)Us ds+

m∑
j=1

∫ t

0
∂Vj (ys)Us dBj

s +
m∑

i,j=1

∫ t

0
∂ViVj (ys) dWij

s ,

where W = (Wij ) is a R
m×m-valued Brownian motion with correlated compo-

nents, independent of B .

We wish to mention again that our scheme (1.5) is numerically more efficient
than the implementable schemes (1.3) and (1.4). Indeed:

(i) In (1.4), one has to consider third-order implementable schemes in order to

reach the rate of convergence n−(2H− 1
2 ). This has to be compared to the modified

Euler scheme, which is only first-order. As far as (1.3) is concerned, it yields a
convergence rate which is slower than the one provided in the current contribution.

(ii) The implementable scheme (1.4) involves some products of increments
of B . Since these are approximated quantities, the computation of their product
yields an inconvenient propagation of numerical errors. This is in sharp contrast
with the modified Euler scheme, for which the quantity h2H in (1.5) has to be
evaluated only once.

(iii) The high order derivatives involved in (1.4) is another source of computa-
tional cost that we can avoid in (1.5).

(iv) The algorithm complexity in order to simulate a fBm increment vector of
the form (δBt0t1, . . . , δBtn−1tn) is of order n logn (see, e.g., [10]). Therefore, all the
aforementioned schemes will also inherit a complexity of order n logn. However,
it should be clear from our previous discussion that the modified Euler scheme
leads to better constants.

Let us also highlight the fact that our approach does not rely on the special struc-
ture of the numerical scheme and does not require the analysis of the Wong–Zakai
approximation. In fact, it provides a general procedure for studying time-discrete
numerical approximations of RDEs, including the implementable schemes (1.3)
and (1.4) we just mentioned, the backward Euler scheme, the Crank–Nicolson
scheme and its modifications, Taylor schemes and their modifications introduced
in [19] and so on.

Since the proof of our main Theorem 1.2 relies on long computations, we will
explain briefly our strategy:

(1) Uniform bounds on the scheme process. Our first step in order to establish
our main results is to get uniform boundedness in n for the numerical scheme yn

and its related processes as rough paths. This is done by considering yn as the
solution of a rough differential equation driven by (B, q) where q is the second
chaos process given by (5.4), instead of just B . Then the uniform estimates are
obtained thanks to some rough path techniques.
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(2) Linearization of the error process. The starting point of our proof of the
convergence for the scheme (1.5) is a linearization of the error process. Namely,
let � be the Jacobian of equation (1.1), that is, the derivative of the solution with
respect to the initial condition y [see equation (7.1)], and let � designates the in-
verse matrix of �. Then we shall establish [see relation (8.10)] that the difference
y − yn can be expressed as

(1.7)
3∑

e=1

�t

∫ t

s
�u dAe

u,

where the terms Ae are given as iterated integrals of the processes yn, y, B and t2H .
Notice that this step is called linearization of the equation because the dynamics
of � and � are governed by a linear system.

(3) Determination of a main contribution. Next, we derive a decomposition of
ε = �n(y − yn) based on (1.7) [see relations (7.2) and (7.3)]:

(1.8) δε = δε̃ + δε̂ with δε̂st =
m∑

i,j=1

t∑
tk=s

G
ij
k

[
B

ij
tktk+1

− h2H

2
1(i=j)

]
,

where δε̃ is proved to be a remainder term and where G is a weight process which
is specified later on. It should be noticed at this point that our rate of convergence
n−(2H−1/2) in Theorem 1.2 comes from the main term ε̂. Namely, it is a well-
known fact (see [3]) that the unweighted sum

n2H−1/2
t∑

tk=0

[
B

ii
tktk+1

− h2H

2

]

converges in distribution to a Brownian motion. We shall prove that the weighted
sum defining ε̂ obeys the same law, which is one of our main technical steps.

In order to prove that ε̃ in (1.8) is a remainder term, a thorough estimation of
the lift of (B, yn, ε) and some related linear equations is required. This effort will
be carried out in Section 7. Also observe that we implement a recursive procedure
which has an interest in its own right. More specifically, we start from the basic
estimate y − yn ∼ n−α for some α > 0, and we can show that δε̃ ∼ n1−3H−α

thanks to some rough paths type expansions. Now combining the estimates for
δε̃ and δε̂ we arrive at a new estimate for ε, and thus y − yn, namely y − yn ∼
n(1−3H−α)∧(1/2−2H). Iterating this argument, we are able to improve the estimate
of y − yn to the desired convergence rate of n1/2−2H . Notice that the number of
iterations is determined by the value of H .

(4) Limit theorems. As mentioned above, the limit theorems for our scheme
are obtained by considering the asymptotic behavior of a rough linear equation
describing the evolution of the error y − yn, the center of which is a weighted-
variation term in the second chaos. In our point of view, this weighted sum is a



764 Y. LIU AND S. TINDEL

“discrete” rough integral. Another substantial part of our efforts, summarized in
Section 9, consists in deriving a central limit theorem for this kind of quantity.

Among the ingredients we have alluded to above, the asymptotic behavior of
weighted variations has received a lot of attention in recent works; see, for exam-
ple, [23, 25–28, 30]. Our approach to this problem relies on a combination of rough
paths and Malliavin calculus tools, and might have an interest in its own right; see
Theorem 4.10 for the precise statement. Indeed, with respect to the aforemen-
tioned results, it seems that we can reach a more general class of weights. We are
also able to consider the variations for multidimensional fBms, thanks to a simple
approximation argument on the simplex.

Eventually, let us stress the fact that, though we have restricted our analysis to
equations driven by a fractional Brownian motion here for sake of simplicity, we
believe that our results can be extended to a general class of Gaussian processes
whose covariance function satisfies reasonable assumptions (such as the ones ex-
hibited in [4, 12]). In this case, if X denotes the centered Gaussian process at stake,
we expect the numerical scheme (1.5) to become

yn
tk+1

= yn
tk

+ b
(
yn
tk

)
h + V

(
yn
tk

)
δXtktk+1 + 1

2

m∑
j=1

∂VjVj

(
yn
tk

)
R(h),

where R(h) is a deterministic constant defined by E(|Xh|2) and where we have
assumed that X has stationary increments.

REMARK 1.3. In spite of the fact that our Theorem 1.2 exhibits a rate of
convergence n−(2H−1/2) for the numerical scheme (1.5), it should be noticed that
in general the Euler scheme is divergent when one considers an equation driven
by a fractional Brownian motion with Hurst parameter 1

4 < H ≤ 1
3 . As an intuitive

illustration, consider (similar to what is done in [8]) the one-dimensional linear
equation:

(1.9) dyt = yt dBt , y0 = 1.

In this simple situation, the exact solution to (1.9) is given by

(1.10) yt = exp(Bt ), t ∈ [0, T ].
We can now compare the exact expression (1.10) to the modified Euler approxi-
mation. Indeed, for t = T the modified Euler approximation can be written as

yn
T =

n−1∏
k=0

(
1 + δBtktk+1 + 1

2
�t2H

)
.
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Hence for n ∈N sufficiently large, a simple Taylor expansion argument shows that

yn
T = exp

(
n−1∑
k=0

log
(

1 + δBtktk+1 + 1

2
�t2H

))

= exp

(
BT − 1

2

n−1∑
k=0

(
δB2

tk tk+1
− �t2H + O

(
δB3

tk tk+1

)))
.

(1.11)

For H > 1/3, the right-hand side of (1.11) is easily seen to be convergent. Namely,
in this case both terms

∑n−1
k=0 O(δB3

tktk+1
) and

∑n−1
k=0(δB

2
tk tk+1

−�t2H ) are converg-
ing to 0. This is in sharp contrast with the situation H ≤ 1/3, for which it is well
known that

∑n−1
k=0 |δBtktk+1 |3 a.s.−→ ∞ as n → ∞, which implies that yn

T is not uni-
formly bounded in n.

Here is how our paper is structured: In Section 2, we recall some results from
the theory of rough paths, and prove a discrete version of the sewing map lemma.
In Section 3, we consider the fractional Brownian motion as a rough path and
derive some elementary results. In Section 4, we first develop some useful upper-
bound estimates, and then we introduce a general limit theorem on the asymptotic
behavior of weighted random sums. In Section 5, we consider the couple (yn,B)

as a rough path and show that it is uniformly bounded in n. In Section 6, we show
that the Euler scheme yn is convergent, and we derive our first result on the rate
of strong convergence of yn. We also derive some estimates on the error process
y − yn. Section 7 is devoted to an elaboration of the estimates for the error process
under some new conditions. This leads, in Section 8, to consider the rate of strong
convergence of the Euler scheme again, improving the results obtained in Section 6
up to an optimal rate. In Section 9, we prove our main result on the asymptotic error
distribution of yn. In the Appendix, we prove some auxiliary results.

Notation. Let π : 0 = t0 < t1 < · · · < tn = T be a partition on [0, T ]. Take
s, t ∈ [0, T ]. We write �s, t � for the discrete interval that consists of tk’s such that
tk ∈ [s, t]. We denote by Sk([s, t]) the simplex {(t1, . . . , tk) ∈ [s, t]k; t1 ≤ · · · ≤
tk}. In contrast, whenever we deal with a discrete interval, we set Sk(�s, t �) =
{(t1, . . . , tk) ∈ �s, t �k; t1 < · · · < tk}. For t = tk , we denote t− := tk−1, t+ := tk+1.

Throughout the paper, we work on a probability space (�,F ,P ). If X is a
random variable, we denote by ‖X‖p the Lp-norm of X. The letter K stands for a
constant which can change from line to line, and 
a� denotes the integer part of a.

2. Elements of rough paths theory. This section is devoted to introducing
the main rough paths notation which will be used in the sequel. We refer to [13,
14] for further details. We shall also state and prove a discrete sewing lemma which
is a simplified version of an analogous result contained in [9].
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2.1. Hölder continuous rough paths and rough differential equations. In this
subsection, we introduce some basic concepts of the rough paths theory. Let 1

3 <

γ ≤ 1
2 , and call T > 0 a fixed finite time horizon. The following notation will

prevail until the end of the paper: for a finite dimensional vector space V and two
functions f ∈ C([0, T ],V) and g ∈ C(S2([0, T ]),V) we set

(2.1) δfst = ft − fs, and δgsut = gst − gsu − gut .

We start with the definition of some Hölder seminorms: consider here two paths
x ∈ C([0, T ],Rm) and X ∈ C(S2([0, T ]), (Rm)⊗2). Then we denote

(2.2)

‖x‖[s,t],γ := sup
(u,v)∈S2([s,t])

|δxuv|
|v − u|γ ,

‖X‖[s,t],2γ := sup
(u,v)∈S2([s,t])

|Xuv|
|v − u|2γ

,

where we stress the fact that the regularity of X is measured in terms of |t − s|.
When the seminorms in (2.2) are finite, we say that x and X are respectively
in Cγ ([0, T ],Rm) and C2γ (S2([0, T ]), (Rm)⊗2). For convenience, we denote
‖x‖γ := ‖x‖[0,T ],γ and ‖X‖2γ := ‖X‖[0,T ],2γ .

With this preliminary notation in hand, we can now turn to the definition of
rough path.

DEFINITION 2.1. Let x ∈ C([0, T ],Rm), X ∈ C(S2([0, T ]), (Rm)⊗2), and
1
3 < γ ≤ 1

2 . We call S2(x) := (x,X) a (second-order) γ -rough path if ‖x‖γ < ∞
and ‖X‖2γ < ∞, and the following algebraic relation holds true:

δXsut = Xst −Xsu −Xut = xsu ⊗ xut ,

where we have invoked (2.1) for the definition of δX. For a γ -rough path S2(x),
we define a γ -Hölder seminorm as follows:

(2.3)
∥∥S2(x)

∥∥
γ := ‖x‖γ + ‖X‖

1
2
2γ .

An important subclass of rough paths are the so-called geometric γ -Hölder rough
paths. A geometric γ -Hölder rough path is a rough path (x,X) such that there
exists a sequence of smooth R

d -valued paths (xn,Xn) verifying

(2.4)
∥∥x − xn

∥∥
γ + ∥∥X−X

n
∥∥

2γ → 0 as n → ∞.

We will mainly consider geometric rough paths in the remainder of the article.

In relation to (2.4), notice that when x is a smooth R
m-valued path, we can

choose

(2.5) Xst =
∫ t

s

∫ u

s
dxv ⊗ dxu.
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It is then easily verified that S2(x) = (x,X), with X defined in (2.5), is a γ -rough
path with γ = 1. In fact, this is also the unique way to lift a smooth path to a
γ -rough path.

Recall now that we interpret equation (1.1) in the rough paths sense. That is, we
shall consider the following general rough differential equation (RDE):

dyt = b(yt ) dt + V (yt ) dxt ,

y0 = y,
(2.6)

where b and V are smooth enough coefficients and x is a rough path as given in
Definition 2.1. We shall interpret equation (2.6) in a way introduced by Davie in
[7], which is conveniently compatible with numerical approximations.

DEFINITION 2.2. We say that y is a solution of (2.6) on [0, T ] if y0 = y and
there exists a constant K > 0 and μ > 1 such that

(2.7)

∣∣∣∣∣δyst −
∫ t

s
b(yu) du − V (ys)δxst −

m∑
i,j=1

∂ViVj (ys)X
ij
st

∣∣∣∣∣≤ K|t − s|μ

for all (s, t) ∈ S2([0, T ]), where we recall that δy is defined by (2.1).

Notice that if y solves (2.6) according to Definition 2.2, then it is also a con-
trolled process as defined in [13, 17]. Namely, if y satisfies relation (2.7), then we
also have

(2.8) δyst = V (ys)δxst + r
y
st ,

where ry ∈ C2γ (S2([0, T ])). We can thus define iterated integrals of y with re-
spect to itself thanks to the sewing map; see Proposition 1 in [17]. This yields the
following decomposition:∣∣∣∣∣

∫ t

s
yi
u dyj

u − yi
sδy

j
st −

m∑
i′,j ′=1

V i
i′V

j

j ′(ys)X
i′j ′
st

∣∣∣∣∣≤ K(t − s)3γ ,

for all (s, t) ∈ S2([0, T ]) and i, j = 1, . . . , d . In other words, the signature type
path S2(y) = (y,Y) defines a rough path according to Definition 2.1, where Y

denotes the iterated integral of y.
We can now state an existence and uniqueness result for rough differential equa-

tions. The reader is referred to, for example, [14], Theorem 10.36 for further de-
tails.

THEOREM 2.3. Assume that V = (Vj )1≤j≤m is a collection of C

1/γ �+1
b -

vector fields on R
d . Then there exists a unique RDE solution to equation (2.6),

understood as in Definition 2.2. In addition, the unique solution y satisfies the
following estimate: ∣∣S2(y)st

∣∣≤ K
(
1 ∨ ∥∥S2(x)

∥∥1/γ
γ,[s,t]

)
(t − s)γ .
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Whenever V = (Vj )1≤j≤m is a collection of linear vector fields, the existence and
uniqueness results still hold, and we have the estimate:∣∣S2(y)st

∣∣≤ K1
∥∥S2(x)

∥∥
γ,[s,t] exp

(
K2
∥∥S2(x)

∥∥1/γ
γ

)
(t − s)γ .

2.2. A discrete-time sewing map lemma. In this subsection, we derive a dis-
crete version of the sewing map lemma which will play a prominent role in the
analysis of our numerical scheme. Let π : 0 = t0 < t1 < · · · < tn−1 < tn = T be a
generic partition of the interval [0, T ] for n ∈ N. For 0 ≤ s < t ≤ T , we denote by
�s, t � the discrete interval {tk : s ≤ tk ≤ t}. We also label the following definition
for further use.

DEFINITION 2.4. We denote by C2(π,X ) the collection of functions R on
S2(�0, T �) with values in a Banach space (X , | · |) such that Rtktk+1 = 0 for k =
0,1, . . . , n−1. Similar to the continuous case [relations (2.1) and (2.2)], we define
the operator δ and some Hölder seminorms on C2(π,X ) as follows:

δRsut = Rst − Rsu − Rut , and ‖R‖μ = sup
(u,v)∈S2(�0,T �)

|Ruv|
|u − v|μ .

For R ∈ C2(π,X ) and μ > 0, we also set

(2.9) ‖δR‖μ = sup
(s,u,t)∈S3(�0,T �)

|δRsut |
|t − s|μ .

The space of functions R ∈ C2(π,X ) equipped with the seminorm ‖ ·‖μ is denoted
by Cμ

2 (π,X ).

We can now turn to our discrete version of the sewing map lemma. This result
is inspired by [9], but is included here since our situation is simpler and leads to a
straightforward proof.

LEMMA 2.5. For a Banach space X , an exponent μ > 1 and R ∈ Cμ
2 (π,X )

as in Definition 2.4, the following relation holds true:

‖R‖μ ≤ Kμ‖δR‖μ where Kμ = 2μ
∞∑
l=1

l−μ.

PROOF. Take ti , tj ∈ π . Let πl , l = 1, . . . , j − i be partitions on �0, T � defined
recursively as follows: Set π1 = {ti , tj } and πj−i = �ti , tj � ∩ π . Given a partition
πl = {ti = t l0 < · · · < tll = tj } on �ti , tj �, l = 2, . . . , j − i, we can find t lkl

∈ πl \
{ti , tj } such that

(2.10) t lkl+1 − t lkl−1 ≤ 2(tj − ti)

l − 1
.
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We denote by πl−1 the partition πl \ {t lkl
}. For l = 1, . . . , j − i, we also set

Rπl =
l−1∑
k=0

Rtlkt
l
k+1

,

and we observe that Rπ1 = Rtitj , and Rπj−i = ∑j−1
k=i Rtktk+1 = 0, where the last

relation is due to the fact that R ∈ C2(π,X ).
With those preliminaries in hand, we can decompose Rti tj as follows: we write

(2.11) Rti tj = Rti tj −
j−1∑
k=i

Rtktk+1 =
j−i∑
l=2

(
Rπl−1 − Rπl

)
.

Now, according to the definition of πl , we have∣∣Rπl−1 − Rπl
∣∣= |δRtlkl−1t

l
kl

t lkl+1
| ≤ ‖δR‖μ

(
t lkl+1 − t lkl−1

)μ
≤ ‖δR‖μ

2μ(tj − ti)
μ

(l − 1)μ
,

where the first inequality follows from (2.9) and the second from (2.10). Applying
the above estimate of |Rπl−1 − Rπl | to (2.11), we obtain

|Rtitj | ≤ 2μ(tj − ti)
μ‖δR‖μ

j−i−1∑
l=1

1

lμ
≤ Kμ(tj − ti)

μ‖δR‖μ.

Dividing both sides of the above inequality by (tj − ti)
μ and taking supremum

over (ti , tj ) in S2(�0, T �), we obtain the desired estimate. �

3. Elements of fractional Brownian motions. In this section, we briefly re-
call the construction of a rough path above our fBm B . The reader is referred to
[14] for further details. In the second part of the section, we turn to some estimates
for the Lévy area of B on a discrete grid, which are essential in the analysis of our
scheme.

3.1. Enhanced fractional Brownian motion. Let B = (B1, . . . ,Bm) be a stan-
dard m-dimensional fBm on [0, T ] with Hurst parameter H ∈ (1

3 , 1
2). Recall that

the covariance function of each coordinate of B is defined on S2([0, T ]) by

(3.1) R(s, t) = 1

2

[|s|2H + |t |2H − |t − s|2H ].
We start by reviewing some properties of the covariance function of B considered
as a function on (S2([0, T ]))2. Namely, take u, v, s, t in [0, T ] and set

(3.2) R

(
u v

s t

)
= E

[
δBj

uvδB
j
st

]
.
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Then, whenever H > 1/4, it can be shown that the integral
∫

R dR is well de-
fined as a Young integral in the plane (see, e.g., [14], Section 6.4). Furthermore, if
intervals [u, v] and [s, t] are disjoint, we have

(3.3) R

(
u v

s t

)
=
∫ v

u

∫ t

s
μ
(
dr ′ dr

)
.

Here and in the following, we denote

(3.4) μ
(
dr ′ dr

)= −H(1 − 2H)
∣∣r − r ′∣∣2H−2

dr ′ dr.

Using the elementary properties above, it is shown in [14], Chapter 15 that for
any piecewise linear or mollifier approximation Bn to B , the geometric rough path
S2(B

n) converges in the γ -Hölder seminorm (2.3) to a γ -geometric rough path
S2(B) := (B,B) (given as in Definition 2.1) for 1

3 < γ < H . In addition, for i �=
j the covariance of B

ij can be expressed in terms of a two-dimensional Young
integral:

(3.5) E
(
B

ij
uvB

ij
st

)= ∫ v

u

∫ t

s
R

(
u r

s r ′
)

dR
(
r ′, r

)
.

It is also established in [14], Chapter 15 that S2(B) enjoys the following integra-
bility property.

PROPOSITION 3.1. Let S2(B) := (B,B) be the rough path above B , and
γ ∈ (1

3 ,H). Then there exists a random variable Lγ ∈ ⋂
p≥1 Lp(�) such that

‖S2(B)‖γ ≤ Lγ , where ‖ · ‖γ is defined by (2.3).

We now specialize (3.5) to a situation where (u, v) and (s, t) are disjoint inter-
vals such that u < v < s < t . In this case relation (3.3) enables us to write

(3.6) E
(
B

ij
uvB

ij
st

)= ∫ v

u

∫ t

s

∫ r

u

∫ r ′

s
μ
(
dw′ dw

)
μ
(
dr ′ dr

)
,

where μ is the measure given by (3.4). Note that the left-hand side of (3.6) con-
verges to E(B

ij
usB

ij
st ) as v → s. Therefore, the quadruple integral in (3.6) converges

as v → s. This implies that the quadruple integral exists and identity (3.6) still
holds when s = v.

Having relation (3.6) in mind, let us label the following definition for further
use.

DEFINITION 3.2. Denote by E[a,b] the set of step functions on an interval
[a, b] ⊂ [0, T ]. We call H[a,b] the Hilbert space defined as the closure of E[a,b]
with respect to the scalar product

〈1[u,v],1[s,t]〉H[a,b] = R

(
u v

s t

)
.
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In order to alleviate notation, we will still write H = H[a,b] when [a, b] = [0, T ].
Notice that the mapping 1[s,t] → δBst can be extended to an isometry between
H[a,b] and the Gaussian space associated with {Bt, t ∈ [a, b]}. We denote this
isometry by h → ∫ b

a hδB . The random variable
∫ b
a hδB is called the (first-order)

Wiener integral and is also denoted by I1(h).

Owing to the fact that H < 1/2 throughout this article, we have the following
identity:

(3.7) ‖h‖H[a,b] = ∥∥dH s
1
2 −H (D 1

2 −H

T − uH− 1
2 h(u)

)
(s)
∥∥
L2([a,b]),

where dH is a constant depending on H and D
1
2 −H

T − is the right-sided fractional
differentiation operator; see (5.31) in [31]. With the help of (3.7), it is easy to
derive the following relation for 1 > κ > 0 and γ > 1

2 − H :

(3.8) K1‖h‖L2−κ ([a,b]) ≤ ‖h‖H[a,b] ≤ K2

(
sup

t∈[a,b]
h(t) + ‖h‖Cγ ([a,b])

)
.

Indeed, the lower-bound inequality can be obtained by the Hardy–Littlewood in-
equality, while the upper-bound estimate follows from the definition of the frac-
tional derivative.

In order to generalize relations (3.3) to a more general situation, recall that for
h ∈ H[a,b] we have hn ∈ E[a,b] such that hn → h in H[a,b]. We denote by he

n the
extension of hn on [0, T ] such that he

n = hn on [a, b] and he
n = 0 on [0, T ] \ [a, b].

Then
∫ T

0 he
n dB = ∫

[a,b] hn dB is a Cauchy sequence in L2(�), and thus so is he
n

in H. We denote the limit of he
n by he. It is easy to see that he ∈ H satisfies

he|[a,b] = h, he|[a,b]c = 0, and ‖he‖H = ‖h‖H[a,b] .

LEMMA 3.3. Take f ∈ H[a,b] and g ∈ H[c,d], where [a, b] and [c, d] are dis-
joint subintervals of [0, T ] such that a < b < c < d . Then the following identity
holds true:

(3.9)
E

(∫
[a,b]

f δB

∫
[c,d]

gδB

)
= E

(∫ T

0
f eδB

∫ T

0
geδB

)

=
∫
[a,b]

∫
[c,d]

ftgsμ(ds dt),

where μ is the measure defined by (3.4).

PROOF. Take fn ∈ E[a,b] and gn ∈ E[c,d] such that fn → f in H[a,b] and gn →
g in H[c,d]. Then we have

(3.10)
〈
f e

n , ge
n

〉
H → 〈

f e, ge〉
H as n → ∞.
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On the other hand, take c − b > κ > 0, then owing to (3.4) we have

(3.11)
−
∫
[a,b]

∫
[c,d]

|ft | · |gs |μ(ds dt)

≤ H(1 − 2H)κ2H−2∥∥f e
∥∥
L1([0,T ])

∥∥ge
∥∥
L1([0,T ]).

In particular, the left-hand side of (3.11) is finite. Since〈
f e

n , ge
n

〉
H =

∫
[a,b]

∫
[c,d]

fn(t)gn(s)μ(ds dt),

we can write 〈
f e

n , ge
n

〉
H −

∫
[a,b]

∫
[c,d]

f (t)g(s)μ(ds dt)

=
∫
[a,b]

∫
[c,d]

(fn − f )(t)gn(s)μ(ds dt)

+
∫
[a,b]

∫
[c,d]

f (t)(gn − g)(s)μ(ds dt).

(3.12)

Applying (3.11) to the right-hand side of (3.12) and taking into account that ‖fn −
f ‖L1([a,b]) → 0 and ‖gn − g‖L1([c,d]) → 0 as n → ∞, which follow from (3.8),
we obtain

(3.13)
〈
f e

n , ge
n

〉
H →

∫
[a,b]

∫
[c,d]

ftgsμ(ds dt) as n → ∞.

The identity (3.9) then follows from (3.10) and (3.13) and the uniqueness of the
limit of 〈f e

n , ge
n〉H. �

3.2. Upper-bound estimates for a Lévy area type process. Let (B,B) be an
enhanced fractional Brownian motion as in the previous subsection. We now go
back to the discrete interval �0, T � considered in Section 2.2. We denote by F

ij
t

the process on �0, T � such that

(3.14) F
ij
0 = 0, F

ij
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t−∑
tk=0

B
ij
tk,tk+1

, i �= j,

t−∑
tk=0

(
B

ii
tktk+1

− 1

2
h2H

)
, i = j,

for t > 0, where t− = tj−1 if t = tj and where we recall that h = tj − tj−1 = T
n

.

LEMMA 3.4. For F ij defined as in (3.14), we have the following estimate:

(3.15)
∥∥δF ij

st

∥∥
p ≤ Kpn

1
2 −2H(t − s)

1
2 , (s, t) ∈ S2

(
�0, T �

)
,

where Kp is a constant depending on p, H and T , and ‖ · ‖p denotes the Lp(�)-
norm.
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PROOF. We only consider the case i = j . The case i �= j can be considered
similarly. Since δF

ij
st is a random variable in the second chaos of B , some hyper-

contractivity arguments (see, e.g., [31]) show that it suffices to consider the case
p = 2 in (3.15). On the other hand, it is clear that Bii

tktk+1
− 1

2h2H is equal to
1
2h2HH2(Bk,k+1) in distribution, where H2(x) = x2 − 1. So we are reduced to
estimate the following quantity:

(3.16)
∥∥F ij

t

∥∥
2 = 1

2
h2H

∥∥∥∥∥
t−∑

tk=0

H2(Bk,k+1)

∥∥∥∥∥
2

.

A direct computation of second moments shows that ‖∑t−
tk=0 H2(Bk,k+1)‖2 ≤

K(t − s)
1
2
√

n; see, for example, the proof of Theorem 7.4.1 in [29]. Applying
this relation to (3.16), we obtain the estimate (3.15). �

The following result provides a way to find a uniform almost sure upper-bound
estimate for a sequence of stochastic processes.

LEMMA 3.5. Let {Xn;n ∈ N} be a sequence of stochastic processes such that

(3.17)
∥∥δXn

st

∥∥
p ≤ Kpn−α(t − s)β

for all p ≥ 1, where Kp is a constant depending on p. Then for 0 < γ < β and
κ > 0, we can find an integrable random variable Gγ,κ independent of n such that∥∥Xn

∥∥
γ ≤ Gγ,κn−α+κ .

PROOF. Take p ≥ 1 such that 0 < γ < β − 1/p. The Garsia–Rodemich–
Rumsey lemma (see [15]) implies that

∥∥Xn
∥∥p
γ ≤ Kp

∫ T

0

∫ T

0

|Xn
u − Xn

v |p
|u − v|2+pγ

dudv.

Taking expectation on both sides and taking into account the inequality (3.17), we
obtain

E
[∥∥Xn

∥∥p
γ

]≤ Kp

∫ T

0

∫ T

0

E[|Xn
u − Xn

v |p]
|u − v|2+pγ

dudv

≤ Kpn−pα,

and the last inequality can be recast as

E
[∥∥nα−κXn

∥∥p
γ

]≤ Kpn−pκ .

We now choose p such that p > 1/κ . Therefore, the above estimate implies that

E

[
sup
n∈N

∥∥nα−κXn
∥∥p
γ

]
≤ E

[∑
n∈N

∥∥nα−κXn
∥∥p
γ

]
≤ Kp

∑
n∈N

n−pκ < ∞.
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In particular, we obtain that supn∈N ‖nα−κXn‖p
γ is an integrable random variable.

By taking Gγ,κ = supn∈N ‖nα−κXn‖γ , we obtain the desired estimate for ‖Xn‖γ .
�

REMARK 3.6. One can improve the regularity of F in the following way. Let
γ be a parameter such that 1

3 < γ < H . Starting from relation (3.15) and taking
into account the fact that |t −s| ≥ T

n
for all (s, t) ∈ S2(�0, T �), it is readily checked

that the increment F introduced in Lemma 3.4 satisfies

(3.18) ‖δFst‖p ≤ Kpnβ−2H (t − s)β,

for all 2γ < β < 2H and (s, t) ∈ S2(�0, T �). By considering the linear interpola-
tion of F on [0, T ], inequality (3.18) also holds for all (s, t) ∈ S2([0, T ]). Owing
to Lemma 3.5, we can thus find an integrable random variable Gγ such that for
any γ : 1

3 < γ < H we have

(3.19)
∣∣δF ij

st

∣∣≤ Gγ (t − s)2γ a.s.

4. Weighted random sums via the rough path approach. In this section,
we derive some useful upper-bound estimates for weighted random sums related
to B . In the second part of the section, we prove a general limit theorem, which is
our main result of this section.

4.1. Upper-bound estimates for weighted random sums. We now derive some
estimates for weighted random sums. As has been mentioned in the Introduction,
these results only require the weight function to satisfy some proper regularity
conditions.

PROPOSITION 4.1. Let f and g be paths on �0, T � such that |δfst | ≤ G(t −
s)α and |δgst | ≤ G(t − s)β , where α + β > 1. We define an increment R on
S2(�0, T �) by

Rst =
t−∑

tk=s

δfstk δgtktk+1 .

Then the following estimate holds true:

|Rst | ≤ G2(t − s)α+β for all (s, t) ∈ S2
(

�0, T �
)
.

PROOF. It is clear that Rtktk+1 = δftktk δgtktk+1 = 0. In addition, the following
relation is readily checked, where we recall that δR is defined by (2.1):

δRsut = δfsuδgut for all (s, u, t) ∈ S3
(

�0, T �
)
.
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Therefore, we have |δRsut | ≤ G|t − s|α+β . Since we have assumed α + β > 1, we
can invoke the discrete sewing map Lemma 2.5, which yields

‖R‖α+β ≤ K‖δR‖α+β ≤ G2.

The proposition then follows immediately. �

REMARK 4.2. The Riemann–Stieltjes sum
∑t−

tk=s δfstk δgtktk+1 in Proposi-
tion 4.1 can be thought of as a R-valued “discrete” Young integral. One can
also consider Lp-valued “discrete” Young integrals in a similar way by viewing
f and g as functions with values in Lp . This will lead us to an Lp-estimate
of

∑t−
tk=s δfstk δgtktk+1 . Precisely, suppose that f and g are processes such that

‖δfst‖p ≤ K(t − s)α and ‖δgst‖p ≤ K(t − s)β for all p ≥ 1. Then we have∥∥∥∥∥
t−∑

tk=s

δfstk δgtktk+1

∥∥∥∥∥
p

≤ K(t − s)α+β.

In the sequel, we consider an application of Proposition 4.1 to third-order terms
in our Taylor expansion for equation (1.1). Toward this aim, we first need the
following estimate in Lp(�). They are somehow reminiscent of the estimates for
triple integrals in [11], though our main focus here is on cumulative sums of triple
integrals.

LEMMA 4.3. Let B be an R
m-valued fractional Brownian motion with Hurst

parameter H > 1
4 . For a fixed set of coordinates i, j, l ∈ {1, . . . ,m}, we define two

increments ζ = ζ ij l and δg = δgij l on S2(�0, T �) as follows:

(4.1) ζ
ij l
st =

∫ t

s

∫ u

s

∫ v

s
dBi

r dBj
v dBl

u, and δgst =
t−∑

tk=s

ζtktk+1 .

Then the following estimate is valid for (s, t) ∈ S2(�0, T �):

(4.2) ‖δgst‖p ≤ Kn
1
2 −3H(t − s)

1
2 .

PROOF. When i = j = l, we have ζst = 1
6(δBi

st )
3 and (4.2) follows from the

classical moment estimates results contained in [3, 16]. In the following, we con-
sider the case when i, j , l are not all equal.

Let us further reduce our problem. First, since the fBm has stationary increment
it suffices to prove the lemma for s = 0. Furthermore, by self-similarity of the fBm,
we have the following equation in distribution:

δg0t = T 3Hn−3H

nt
T

−1∑
k=0

ζk,k+1.
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As a last preliminary step, note that ζ takes values in the third chaos of B , on
which all Lp-norms are equivalent. Hence, our claim (4.2) boils down to prove

(4.3)

∥∥∥∥∥
nt
T

−1∑
k=0

ζk,k+1

∥∥∥∥∥
2

2

≤ Knt.

We now focus on this inequality.
We first consider the case when i, j and l are different from each other. In order

to prove relation (4.3), write

(4.4)

∥∥∥∥∥
nt
T

−1∑
k=0

ζk,k+1

∥∥∥∥∥
2

2

= ∑
|k−k′|≤1

E(ζk,k+1ζk′,k′+1) + ∑
|k−k′|>1

E(ζk,k+1ζk′,k′+1).

For the sum
∑

|k−k′|>1 above, thanks to the independence of Bi , Bj and Bl , one
can apply Lemma 3.3 twice in order to get

E(ζk,k+1ζk′,k′+1) =
∫ k+1

k

∫ k′+1

k′

∫ u

k

∫ u′

k′

∫ v

k

∫ v′

k′
μ
(
dr ′ dr

)
μ
(
dv′ dv

)
μ
(
du′ du

)
.

In particular, since (3.4) reveals that μ is a negative measure whenever H < 1/2,
we have

(4.5)
∑

|k−k′|>1

E(ζk,k+1ζk′,k′+1) ≤ 0.

Moreover, since ‖ζk,k+1‖2 = ‖ζ0,1‖2 and E(ζk,k+1ζk+1,k+2) = E(ζ0,1ζ1,2), the fol-
lowing bound is easily checked:

(4.6)
∑

|k−k′|≤1

∣∣E(ζk,k+1ζk′,k′+1)
∣∣≤ Knt.

Applying (4.5) and (4.6) to the right-hand side of (4.4), we obtain (4.3).
Assume now that i = j �= l. Then

ζk,k+1 = 1

2

∫ k+1

k

(
δBi

ku

)2
dBl

u = 1

2

(
ζ

1,il
k,k+1 + ζ

2,l
k,k+1

)
,

where we have set

(4.7)
ζ

1,il
k,k+1 =

∫ k+1

k

[(
δBi

ku

)2 − (u − k)2H ]dBl
u, and

ζ
2,l
k,k+1 =

∫ k+1

k
(u − k)2H dBl

u.

We now treat the terms ζ 1,il and ζ 2,l similar to the case of different indices i, j , l.

Namely, we decompose ‖∑ nt
T

−1
k=0 ζ

2,l
k,k+1‖2

2 as in (4.4). Then in the same way as for
(4.5) and (4.6), we can show that∑

|k−k′|>1

E
(
ζ

2,l
k,k+1ζ

2,l
k′,k′+1

)≤ 0, and
∑

|k−k′|≤1

E
(
ζ

2,l
k,k+1ζ

2,l
k′,k′+1

)≤ Knt.
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One can thus easily show that ζ
2,l
k,k+1 satisfies the inequality (4.3). The same ar-

gument can be applied to ζ
1,il
k,k+1, which yields (4.3) for the case i = j �= l. We let

the patient reader check that the same inequality holds true in the case i �= j , i = l

and the case i �= l = j , resorting to the fact that the multiple integrals of ζ ij l are
exchangeable which follows from the way an enhanced fBm is constructed; see,
for example, [14], Theorem 15.42. This completes the proof. �

REMARK 4.4. The estimate of ζ
2,l
k,k+1 obtained in the proof of Lemma 4.3

implies that ∥∥∥∥∥
t−∑

tk=s

∫ tk+1

tk

(u − tk)
2H dBu

∥∥∥∥∥
p

≤ Kn
1
2 −3H (t − s)

1
2 .

This inequality will be used below in order to prove Lemma 4.6.

We can now deliver a path-wise bound on weighted sums of the process ζ .

LEMMA 4.5. Consider the increment ζ defined by (4.1). Let f be a process
on [0, T ] such that, for any γ < H , there exists a random variable G such that
‖f ‖γ ≤ G. Then for any κ > 0 we have the estimate

(4.8)

∣∣∣∣∣
t−∑

tk=s

ftk ζtktk+1

∣∣∣∣∣≤ Gn1−4γ+2κ(t − s)1−γ for all (s, t) ∈ S2
(

�0, T �
)
,

where G is an integrable random variable independent of n.

PROOF. Consider (s, t) ∈ S2(�0, T �), and observe that the following decom-
position holds true:

(4.9)

∣∣∣∣∣
t−∑

tk=s

ftk ζtktk+1

∣∣∣∣∣≤
∣∣∣∣∣

t−∑
tk=s

δfstk ζtktk+1

∣∣∣∣∣+ |fs | · |δgst |,

where the increment of g has been defined by (4.1). In addition, thanks to
Lemma 4.3, we obtain

‖δgst‖p ≤ Kn
1
2 −3H (t − s)

1
2 ≤ Kn1−4γ+κ(t − s)1−γ+κ ,

where the last inequality is due to the fact that T
n

≤ t − s. Here, γ < H and κ > 0.
Applying Lemma 3.5 to a proper interpolation of g, we thus get

(4.10) |δgst | ≤ G1n
1−4γ+2κ(t − s)1−γ ,

where G1 is a random variable independent of n. Now observe that a direct ap-
plication of Proposition 4.1 (notice that ζtktk+1 = δgtktk+1 in the relation below)
enables us to write

(4.11)

∣∣∣∣∣
t−∑

tk=s

δfstk ζtktk+1

∣∣∣∣∣≤ G2n
1−4γ+2κ(t − s),
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where G2 is another integrable random variable independent of n. Plugging (4.10)
and (4.11) into the right-hand side of (4.9), we obtain the desired estimate (4.8).

�

We now consider the case of a weighted sum involving a Wiener integral with
respect to B .

LEMMA 4.6. Let f be as in Lemma 4.5 and γ < H . Then the following esti-
mate holds true:∥∥∥∥∥

t−∑
tk=s

δfstk ⊗
∫ tk+1

tk

(u− tk)
2H dBu

∥∥∥∥∥
p

≤ Kn1−4γ−2κ(t −s), (s, t) ∈ S2
(

�0, T �
)
.

PROOF. The corollary is a direct application of Proposition 4.1 and is similar
to the proof of Lemma 4.5. The details are omitted. �

We turn to controls of weighted sums in cases involving rougher processes.
They provide our first instances where we apply rough path methods for weighted
sums, as announced in the Introduction. In the following, V and V ′ stands for some
finite dimensional vector spaces.

PROPOSITION 4.7. Let f , g be two processes defined on [0, T ] with val-
ues in V and L(Rm,V), respectively, and h be a two-parameter path defined on
S2([0, T ]) with values in V ′ such that hst = hsu + hut for (s, u, t) ∈ S3([0, T ]).
Assume that there is a constant K and an exponent γ > 0 such that the following
conditions are met for (s, t) ∈ S2([0, T ]) and all p ≥ 1:

(4.12)
‖ft‖p + ‖gt‖p ≤ K, ‖δfst − gsδBst‖p ≤ K(t − s)2γ ,

‖δgst‖p ≤ K(t − s)γ .

We also suppose that h satisfies

(4.13) ‖hst‖p ≤ K(t − s)α, and

∥∥∥∥∥
t−∑

tk=s

δBstk ⊗ htktk+1

∥∥∥∥∥
p

≤ K(t − s)γ+α,

for (s, t) ∈ S2(�0, T �) and any p ≥ 1, where α is such that α + 2γ > 1. Then we
have

(4.14)

∥∥∥∥∥
t−∑

tk=s

δfstk ⊗ htktk+1

∥∥∥∥∥
p

≤ K(t − s)γ+α

and

(4.15)

∥∥∥∥∥
t−∑

tk=s+

tk−1∑
tk′=s

ftk′ ⊗ htk′ tk′+1
⊗ δBtktk+1

∥∥∥∥∥
p

≤ K(t − s)γ+α,
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which are valid for (s, t) ∈ S2(�0, T �) and all p ≥ 1. Furthermore, set

(4.16) Rst =
t−∑

tk=s

(δfstk − gsδBstk ) ⊗ htktk+1,

then we have the estimate

(4.17) ‖Rst‖p ≤ K(t − s)2γ+α.

PROOF. We start by proving inequality (4.14). To this aim, set Ast =∑t−
tk=s δfstk ⊗ htktk+1 for (s, t) ∈ S2(�0, T �), and consider p ≥ 1. We decompose

the increment A into A = M + R, where R is the increment defined in (4.16) and
M is defined by

Mst = gs

t−∑
tk=s

δBstk ⊗ htktk+1 .

Then it is immediate from (4.12) and (4.13) that

(4.18) ‖Mst‖p ≤ K(t − s)γ+α.

In order to bound the increment R, we note that Rtktk+1 = 0. Let us now calculate
δR: for (s, u, t) ∈ S3(�0, T �), it is readily checked that

δRsut = δfsu ⊗ hut −
(
gsδBsu ⊗ hut − δgsu

t−∑
tk=u

δButk ⊗ htktk+1

)

= (δfsu − gsδBsu) ⊗ hut + δgsu

t−∑
tk=u

δButk ⊗ htktk+1 .

Therefore, invoking (4.12) and (4.13) again, we get

‖δRsut‖p ≤ K(u − s)2γ (t − u)α + K(u − s)γ (t − u)γ+α ≤ K(t − s)μ,

where μ = 2γ + α, and where by assumption we have μ > 1. Hence, owing to the
discrete sewing Lemma 2.5 [applied to the Banach space X = Lp(�)] we have

(4.19) ‖R‖p,μ ≤ K‖δR‖p,μ ≤ K,

where ‖ · ‖p,μ designates the μ-Hölder norm for Lp(�)-valued functions. Putting
together our estimates (4.18) and (4.19) on M and R, inequality (4.14) is proved.

In the following, we derive our second claim (4.15). The method is similar to
the proof of (4.14), so that it will only be sketched for sake of conciseness. We
resort to the following decomposition:

Ãst ≡
t−∑

tk=s+

tk−1∑
tk′=s

ftk′ ⊗ htk′ tk′+1
⊗ δBtktk+1 = M̃st + R̃st ,
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where

M̃st =
t−∑

tk=s+

tk−1∑
tk′=s

fs ⊗ htk′ tk′+1
⊗ δBtktk+1

and R̃st =
t−∑

tk=s+

tk−1∑
tk′=s

δfstk′ ⊗ htk′ tk′+1
⊗ δBtktk+1 .

In order to bound M̃st , we change the order of summation, which allows to exhibit
some terms of the form δBstk . Then we let the reader check that inequality (4.13)
can be applied directly. As far as R̃ is concerned, notice again that R̃tktk+1 = 0. It is
then readily seen, as in the previous step, that our estimate boils down to a bound
on δR̃. Furthermore, δR̃ can be computed as follows:

δR̃sut =
(

u−∑
tk′=s

δfstk′ ⊗ htk′ tk′+1

)
⊗ δBut + δfsu ⊗

t−∑
tk=u+

tk−1∑
tk′=u

htk′ tk′+1
⊗ δBtktk+1 .

We can thus resort to (4.12), (4.14) and (4.13) in order to get

‖δR̃sut‖p ≤ K(t − s)2γ+α.

The proof is now complete as for relation (4.14). �

REMARK 4.8. In Proposition 4.7, the weighted sum
∑t−

tk=s δfstk ⊗ htktk+1 is
viewed as a Lp-valued “discrete” rough integral. Similarly as in Remark 4.2, a
R-valued “discrete” rough path can also be considered.

Proposition 4.7 can be applied to the sum F of Lévy area increments of B . This
is the contents of the corollary below.

COROLLARY 4.9. Let 1
4 < γ < H , f and g be as in Proposition 4.7. Let F

be the process defined by (3.14), considered as a path taking values in V ′ = R
d×d .

Then the following estimates hold true for (s, t) ∈ S2(�0, T �):∥∥∥∥∥
t−∑

tk=s

ftk ⊗ δFtktk+1

∥∥∥∥∥
p

≤ Kn
1
2 −2H (t − s)

1
2

and ∥∥∥∥∥
t−∑

tk=s+

tk−1∑
tk′=s

ftk′ ⊗ δFtk′ tk′+1
⊗ δBtktk+1

∥∥∥∥∥
p

≤ Kn
1
2 −2H (t − s)H+ 1

2 .

Furthermore, set Rst =∑t−
tk=s(δfstk − gsδBstk ) ⊗ Ftktk+1 , then we have

(4.20) ‖Rst‖p ≤ Kn
1
2 −2H (t − s)2γ+ 1

2 .



EULER SCHEME FOR FBM DRIVEN SDES 781

PROOF. Take h = n2H− 1
2 F and α = 1

2 . It follows from Lemma 3.4 and
Lemma A.5 that h satisfies the conditions in Proposition 4.7. In addition, if
γ > 1

4 , the condition 2γ + 1
2 > 1 is trivially satisfied. The corollary then fol-

lows immediately from Proposition 4.7 and taking into account the decomposition
ftk = fs + δfstk . The estimate of Rst follows directly from relation (4.17). �

4.2. Limiting theorem results via rough path approach. Take two uniform par-
titions on [0, T ]: tk = T

n
k and ul = T

ν
l, n, ν ∈ N for k = 0, . . . , n and l = 0, . . . , ν.

Let kl be such that tkl+1 > ul ≥ tkl
. In the following, we set for each t ∈ [0, T ]:

(4.21)
Dl = {tk : ul+1 > tk ≥ ul, t ≥ tk} and

D̃l = {tk : tkl+1 > tk ≥ tkl
, t ≥ tk}.

Our main result in this section is a central limit theorem for sums weighted by a
controlled process f .

THEOREM 4.10. Let the assumptions in Proposition 4.7 prevail, and suppose
that

(4.22) (h,B)
f.d.d.−−−→ (W,B), n → ∞,

where “
f.d.d.−−−→” stands for convergence of finite dimensional distributions and W

is a Brownian motion independent of B . Set

(4.23) ζ n
l = ∑

tk∈D̃l

δBtkl tk
⊗ htktk+1,

and suppose that

(4.24)

∥∥∥∥∥
νr′
T

−1∑
l= νr

T

ζ n
l

∥∥∥∥∥
p

≤ Kν−κ(r ′ − r
)α+γ−κ

for r, r ′ ∈ {u1, . . . , uν} and for an arbitrary κ > 0. Set �n
t = ∑
 nt

T
�

k=0 ftk ⊗ htktk+1

and �t = ∫ t
0 fs ⊗ dWs , where �t should be understood as a Wiener integral con-

ditionally on the process f . Then the following relation holds true:
(
�n,B

) f.d.d.−−−→ (�,B) as n → ∞.

REMARK 4.11. There are several possible generalizations of the statement of
Theorem 4.10. If one has the convergence of (h,B) in Lp instead of the weak
convergence (4.22), then by a similar proof one can show that �n converges to �

in Lp . On the other hand, similar to what has been mentioned in Remark 4.8, if
conditions (4.12), (4.13) and (4.24) are replaced by the corresponding almost sure
upper-bound conditions, then one can show that Theorem 4.10 still holds true.
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REMARK 4.12. In the case γ > 1
2 and α ≥ 1

2 , conditions (4.12), (4.13) and
(4.24) are reduced to ‖δfst‖p ≤ K(t −s)γ and ‖δhst‖p ≤ K(t −s)α . Theorem 4.10
then recovers the central and noncentral limit theorem results in [6] and [19].

REMARK 4.13. According to our proof of Theorem 4.10, in general the limit
of the “Riemann sum” �n is independent of the choices of the representative
points. In the situation of Remark 4.12, this fact can be proved directly from the
expression of �n.

PROOF OF THEOREM 4.10. By definition of the f.d.d. convergence, it suffices
to show the following weak convergence for r1, . . . , rl ∈ [0, T ]:(

�n
r1

, . . . ,�n
rl
,Br1, . . . ,Brl

) (d)−→ (�r1, . . . ,�rl ,Br1, . . . ,Brl ), n → ∞.

Step 1: A coarse graining argument. Consider an extra parameter ν << n and
take {u0, . . . , uν} to be the uniform ν-step partition of [0, T ]. We make the follow-
ing decomposition:

�n
t = �̃n

t + �̂n
t ,

where

�̃n
t =

ν−1∑
l=0

∑
tk∈Dl

δfultk ⊗ htktk+1, �̂n
t =

ν−1∑
l=0

∑
tk∈Dl

ful
⊗ htktk+1 .

Let us first handle the convergence of �̂n: by letting n → ∞ and taking into
account the convergence (4.22), and then letting ν → ∞, we easily obtain the
weak convergence:(

�̂n
r1

, . . . , �̂n
rl
,Br1, . . . ,Brl

) (d)−→ (�r1, . . . ,�rl ,Br1, . . . ,Brl ).

Therefore, in order to prove our claim, we are reduced to show that for t ∈ [0, T ]:
(4.25) lim

ν→∞ lim sup
n→∞

E
(∣∣�̃n

t

∣∣2)= 0.

Step 2: First-order approximation of f . Let kl be such that tkl+1 > ul ≥ tkl
. We

compare the two sets: Dl defined by (4.21) and D̃l = {tk : tkl+1 > tk ≥ tkl
, t ≥ tk}. It

is easy to see that Dl�D̃l ⊂ {tkl
, tkl+1}. It is also readily checked from conditions

(4.12) and (4.13) that ‖δfultk‖L4 ≤ Kν−γ and ‖htktk+1‖L4 ≤ Kn−α . A simple use
of the Cauchy–Schwarz inequality thus yields

(4.26) ‖δfultk ⊗ htktk+1‖2 ≤ Kν−γ n−α,

for any k = 0,1, . . . , n − 1. In particular, (4.26) holds for tk ∈ Dl�D̃l . Therefore,
in order to show (4.25), it is sufficient to show that

(4.27) lim
ν→∞ lim sup

n→∞
E

(∣∣∣∣∣
ν−1∑
l=0

Rtkl tkl+1

∣∣∣∣∣
2)

= 0,
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where

Rtkl tkl+1
= ∑

tk∈D̃l

δful tk ⊗ htktk+1 .

Now in order to get relation (4.27), consider the following decomposition for R:

(4.28) Rtkl tkl+1
= R̄tkl tkl+1

+ R̃tkl tkl+1
+ Řtkl tkl+1

+ R̂tkl tkl+1
,

where the increments R̄tkl tkl+1
, R̃tkl tkl+1

, Řtkl tkl+1
and R̂tkl tkl+1

are defined by

R̃tkl tkl+1
= ∑

tk∈D̃l

δful tkl
⊗ htktk+1,

R̄tkl tkl+1
= ∑

tk∈D̃l

(δftkl tk
− gtkl

⊗ δBtkl tk
) ⊗ htktk+1

and

Řtkl tkl+1
= δgultkl

⊗ ∑
tk∈D̃l

δBtkl tk
⊗ htktk+1,

R̂tkl tkl+1
= gul

⊗ ∑
tk∈D̃l

δBtkl tk
⊗ htktk+1 .

(4.29)

It follows from (4.17) that

(4.30) ‖R̄tkl tkl+1
‖2 ≤ Kν−2γ−α.

On the other hand, it follows from (4.12) and (4.13) that

(4.31) ‖R̃tkl tkl+1
‖2 = ‖δfultkl

⊗ htkl ,tkl+1∧t+‖2 ≤ Kn−γ ν−α,

where recall that we denote t+ = t + T
n

and tkl+1 ∧ t+ = min(tkl+1, t+). Similarly,
applying (4.12) and (4.13) we obtain

(4.32) ‖Řtkl tkl+1
‖2 ≤ Kn−γ ν−γ−α.

It follows immediately from (4.30), (4.31) and (4.32) that

(4.33) lim
ν→∞ lim sup

n→∞
E

(∣∣∣∣∣
ν−1∑
l=0

(R̄tkl tkl+1
+ R̃tkl tkl+1

+ Řtkl tkl+1
)

∣∣∣∣∣
2)

= 0.

In view of (4.33) and taking into account the decomposition (4.28), in order to
show (4.27) it suffices to show that

(4.34) lim
ν→∞ lim sup

n→∞
E

(∣∣∣∣∣
ν−1∑
l=0

R̂tkl tkl+1

∣∣∣∣∣
2)

= 0.
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Step 3: Study of R̂. We will see that
∑ν−1

l=0 R̂tkl tkl+1
can be considered as a dis-

crete “Young” integral in L2 in the sense of Remark 4.2 (see also Proposition 4.1),
which then leads to the convergence (4.34). Namely, starting from the expression
(4.29) of R̂, let us first consider the “weight-free” sum

ζ̂ n
r :=

νr
T

−1∑
l=0

ζ n
l ,

where r ∈ {u1, . . . , uν} and recall that ζ n
l is defined in (4.23). Observe that (4.29)

can be recast as

(4.35) R̂tkl tkl+1
= gul

⊗ ζ n
l = gul

δζ̂ n
ulul+1

,

for all l = 0, . . . , ν − 1. According to (4.35), we have

ν−1∑
l=0

R̂tkl tkl+1
=

ν−1∑
l=0

gul
⊗ δζ̂ n

ulul+1
=

ν−1∑
l=0

δg0ul
⊗ δζ̂ n

ulul+1
+

ν−1∑
l=0

g0 ⊗ δζ̂ n
ulul+1

.

Then our assumption (4.24) and the bound (4.12) ensures that we are in a po-
sition to apply Proposition 4.1. This immediately yields our claim (4.34), which
concludes the proof. �

5. Euler scheme process as a rough path. In this section, we consider a
continuous time interpolation of the Euler scheme yn given by (1.5). Namely, we
introduce a sequence of processes yn indexed by [0, T ] in the following way: for
t ∈ [tk, tk+1), we set

(5.1) yn
t = yn

tk
+ b

(
yn
tk

)
(t − tk) + V

(
yn
tk

)
δBtkt + 1

2

m∑
j=1

∂VjVj

(
yn
tk

)
(t − tk)

2H ,

where we recall that π : 0 = t0 < t1 < · · · < tn = T designates the uniform parti-
tion of the interval [0, T ]. The remainder of the section is devoted to getting some
uniform bounds on yn, and then to prove that the couple (yn,B) can be lifted as a
rough path. Throughout the section, we assume that b ∈ C2

b and V ∈ C4
b .

5.1. Hölder-type bounds for the Euler scheme. Our main results on the Hölder
regularity of the sequence yn is summarized in the following proposition.

PROPOSITION 5.1. Let yn be the process defined by Euler scheme (5.1). Take
1
3 < γ < H . Then for all (s, t) ∈ S2(�0, T �), the following relations are satisfied:

(5.2)
∣∣δyn

st

∣∣≤ G|t − s|γ ,
∣∣δyn

st − V
(
yn
s

)
δBst

∣∣≤ G(t − s)2γ ,

where G stands for an integrable random variable which is independent of the
parameter n.
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PROOF. We divide this proof into several steps. For the sake of conciseness,
we omit the drift b in the proof, so that we analyze a scheme defined successively
by

(5.3) yn
tk+1

= yn
tk

+ V
(
yn
tk

)
δBtktk+1 + 1

2

m∑
j=1

∂VjVj

(
yn
tk

)
h2H .

Step 1: Definition of the remainder. We first define some increments of inter-
est for the analysis of the scheme given by (5.1). Let us start with a 2nd-order
increment q defined by

(5.4) qst =
m∑

i,j=1

(∂ViVj )
(
yn
s

)
δF

ij
st , S2

(
�0, T �

)
,

where recall that F ij is defined in (3.14). Next, our remainder term for (5.1) is
given by

(5.5) Rst = δyn
st − V

(
yn
s

)
δBst −

m∑
i,j=1

(∂ViVj )
(
yn
s

)
B

ij
st + qst , S2

(
�0, T �

)
.

Since R is expected to be regular in |t − s| and Rtktk+1 = 0 by the very definition of
yn, we will analyze R through an application of the discrete sewing Lemma 2.5.
To this aim, we calculate δR, which is easily decomposed as follows:

(5.6) δRsut = A1 + A2 + A3 + A4,

where for (s, u, t) ∈ S3(�0, T �), the quantities A1, A2 are given by

A1 = δV
(
yn)

suδBut , A2 =
m∑

i,j=1

δ(∂ViVj )
(
yn)

suB
ij
ut ,

and where A3, A4 are defined by

A3 = −
m∑

i,j=1

(∂ViVj )
(
yn
s

)
δBj

suδB
i
ut , and A4 = −

m∑
i,j=1

δ(∂ViVj )
(
yn·
)
suδF

ij
ut .

Observe that in order to compute Ae, e = 1,2,3,4 we have used the fact that
δδB = 0, δδF = 0, and δB = δB⊗δB . Moreover, note that owing to an elementary
Taylor-type expansion we have

δV
(
yn)

suδBut =
m∑

i=1

[
∂Vi

(
yn)]

suδy
n
suδB

i
ut ,

where we denote [∂Vi(y
n)]su = ∫ 1

0 ∂Vi(y
n
s +λδyn

su) dλ. So invoking relation (5.5),
we can further decompose A1 as follows:

A1 = δV
(
yn)

suδBut = A11 + A12 + A13 + A14,
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where A11 and A12 are defined by

A11 =
m∑

i=1

[
∂Vi

(
yn)]

suV
(
yn
s

)
δBsuδB

i
ut ,

A12 =
m∑

i=1

[
∂Vi

(
yn)]

su

m∑
i′,j ′=1

(∂Vi′Vj ′)
(
yn
s

)
B

i′j ′
su δBi

ut ,

and where

A13 = −
m∑

i=1

[
∂Vi

(
yn)]

suqsuδB
i
ut , and A14 =

m∑
i=1

[
∂Vi

(
yn)]

suRsuδB
i
ut .

We will bound those terms separately.
Step 2: Upper-bound for y and R on small intervals. Consider the following

deterministic constant:

KV = (
1 + ‖V ‖∞ + ‖∂V ‖∞ + ∥∥∂2V

∥∥∞ + K3γ

)3
,

where K3γ is the constant appearing in Lemma 2.5, and ‖V ‖∞ for a vector-valued
field V denotes the supnorm of the function |V |. We also introduce the following
random variable:

(5.7) G = Gγ + Lγ + 1,

where Gγ is defined in (3.19) and Lγ is introduced in Proposition 3.1. Assume
that n is large enough so that

(5.8) Gn−γ ≤ (
8K2

V

)−1
.

In this step, we show by induction that for (s, t) ∈ S2(�0, T �) such that

(5.9) G(t − s)γ ≤ (
8K2

V

)−1
,

we have

(5.10)
∥∥yn

∥∥[s,t],γ,n ≤ 2KV G, ‖R‖[s,t],3γ,n ≤ 8K3
V G3.

Notice that here and in the following, we adopt the notation

∥∥yn
∥∥[s,t],α,n := sup

(u,v)∈S2(�s,t �)

|δyn
uv|

|v − u|α , ‖R‖[s,t],α,n := sup
(u,v)∈S2(�s,t �)

|Ruv|
|v − u|α

for α > 0. The relations (5.10) will be achieved by bounding successively the terms
in (5.6).

Specifically, we assume that relation (5.10) holds true when (s, u, t) ∈ S3(�0,

(N − 1)h�) and verify (5.9). Our aim is to extend this inequality to S3(�0,Nh�).
We thus start from our induction assumption, and we consider (s, u, t) ∈ S3(�0,
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Nh�) such that (5.9) is satisfied and t = Nh. Then we start by bounding the terms
A11 and A3 as follows:

A11 + A3 =
m∑

i=1

[
∂Vi

(
yn)]

suV
(
yn
s

)
δBsuδB

i
ut −

m∑
i,j=1

(∂ViVj )
(
yn
s

)
δBj

suδB
i
ut

=
m∑

i,j=1

([
∂Vi

(
yn)]

su − ∂Vi

(
yn
s

))
Vj

(
yn
s

)
δBj

suδB
i
ut

By the induction assumption (5.10) on ‖yn‖[s,t],γ,n and the definition (5.7) of our
random variable G, we thus have

‖A11 + A3‖[s,t],3γ,n ≤ 2K2
V G3.

Along the same lines, since ‖B‖γ ≤ G and invoking the induction assumption
again we obtain

‖A2‖[s,t],3γ,n ≤ 2K2
V G3 and ‖A12‖[s,t],3γ,n ≤ KV G3.

Similarly, the estimate (3.19) and the induction assumption implies that

‖A4‖[s,t],3γ,n ≤ 2K2
V G3 and ‖A13‖[s,t],3γ,n ≤ KV G3.

Finally, by the induction assumption (5.10) on R we obtain

‖A14‖[s,t],3γ,n ≤ 8K4
V G4(t − s)γ ≤ K2

V G3,

where we have used the assumption (5.9) for the second inequality. Applying the
above estimates on A1, . . . ,A4 to (5.6), we have thus obtained

‖δR‖[s,t],3γ,n ≤ 8K2
V G3.

Since Rtktk+1 = 0 and 3γ > 1, we are now in a position to apply the discrete sewing
Lemma 2.5. This yields

(5.11) ‖R‖[s,t],3γ,n ≤ 8K3
V G3.

Otherwise stated, our induction assumption (5.10) is propagated for the term R.
Let us turn to the propagation of the induction assumption (5.10) for the norm

of y. Plugging the bound (5.11) into relation (5.5), taking onto account the defi-
nition of the random variable G and recalling relation (5.9), it is readily checked
that ∣∣δyn

st − V
(
yn
s

)
δBst

∣∣
≤ KV G2(t − s)2γ + KV G2(t − s)2γ + 8K3

V G3(t − s)3γ

≤ 3KV G2(t − s)2γ .

(5.12)
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Therefore, since we have ‖B‖γ ≤ G, we obtain

(5.13)

∣∣δyn
st

∣∣≤ KV G(t − s)γ + 2KV G2(t − s)2γ + 8K3
V G3(t − s)3γ

≤ 2KV G(t − s)γ ,

where we have invoked our hypothesis (5.9) again. This achieves the propagation
of the induction (5.10) for the term ‖yn‖γ .

Step 3: Upper bound estimates on �0, T �. Recall that we have proved relation
(5.10) on small intervals �s, t � satisfying (5.9). In order to extend this result to the
whole interval �0, T �, we use a partition of the form �kT0, (k + 1)T0�. Namely,
consider T0 ∈ �0, T � such that

(5.14)
(
2γ 8K2

V

)−1 ≤ GT
γ
0 ≤ (

8K2
V

)−1
.

Also consider s, t ∈ [0, T ] such that t − s > T0, and denote k = 
 t−s
T0

� and si =
s + iT0, i = 0, . . . , k. Then we obviously have∣∣δyn

st

∣∣≤ ∣∣δyn
s0s1

∣∣+ ∣∣δyn
s1s2

∣∣+ · · · + ∣∣δyn
skt

∣∣
Furthermore, on each subinterval [sj , sj+1] one can apply (5.10) in order to get∣∣δyn

st

∣∣≤ 2KV GkT
γ

0 + 2KV G(t − s − kT0)
γ .

Now resort to the fact that k ≤ t−s
T0

and inequality (5.14). This yields, for an-
other K ,

(5.15)
∣∣δyn

st

∣∣≤ 4KV G
t − s

T
1−γ

0

≤ KG
1
γ (t − s).

Hence, gathering our estimates (5.13) and (5.15), we end up with

(5.16)
∣∣δyn

st

∣∣≤ KG
1
γ (t − s)γ ,

for (s, t) ∈ S2(�0, T �). That is, we have extended the first part of (5.10) to the
whole interval �0, T �, and thus we have proved the first relation in (5.2) when n

satisfies (5.8).
We now prove the second-order estimate in (5.2) when n satisfies (5.8). We start

by a new decomposition of the form

(5.17)
∣∣δyn

st − V
(
yn
s

)
δBst

∣∣≤ |r1| + |r2|,
where

r1 = δyn
st −

k∑
i=0

V
(
yn
si

)
δBsi,t∧si+1, r2 =

k∑
i=0

V
(
yn
si

)
δBsi,t∧si+1 − V

(
yn
s

)
δBst .

Now the term r1 can be bounded as follows:

|r1| ≤
k∑

i=0

∣∣δyn
si ,t∧si+1

− V
(
yn
si

)
δBsi,t∧si+1

∣∣.
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Therefore, by (5.12) we obtain

|r1| ≤ 3(k + 1)KV G2T
2γ
0 .

Moreover, since k ≤ t−s
T0

and 1
T0

≤ (2γ 8K2
V G)

1
γ owing to (5.14), we can recast the

previous equation as

(5.18) |r1| ≤ 4KV

(
2γ 8K2

V

) 1
γ

−2
G

1
γ (t − s).

In order to bound r2, observe that we have

|r2| ≤
k∑

i=0

∣∣V (yn
si

)− V
(
yn
s

)∣∣ · |δBsi,t∧si+1 |.

Thanks to (5.16), we thus have

|r2| ≤ 2kKV

(
KG

1
γ (t − s)γ

)
GT

γ
0 .

Invoking again the inequalities k ≤ t−s
T0

and 1
T0

≤ (2γ 8K2
V G)

1
γ , we thus get

(5.19) |r2| ≤ 2KV K
(
2γ 8K2

V

) 1
γ
−1(

G
2
γ
)
(t − s)1+γ .

Applying (5.18) and (5.19) to relation (5.17), this yields

(5.20)
∣∣δyn

st − V
(
yn
s

)
δBst

∣∣≤ KG
2
γ (t − s)2γ .

We have now proved (5.2) under the assumption (5.8).
Step 4: Upper-bound estimate for small n. We are now reduced to prove in-

equalities (5.2) when (5.8) is not satisfied. Namely, we assume in this step that

(5.21) Gn−γ >
(
8K2

V

)−1
, that is, n <

(
8K2

V G
) 1

γ .

For (s, t) ∈ S2(�0, T �), we will also resort to the same partition t0, . . . , tk+1 as in
the previous step. In this case, due to the very definition (5.1) of yn, it is readily
checked that

(5.22)
∣∣δyn

tktk+1

∣∣≤ KV G

(
T

n

)H

+ KV

(
T

n

)2H

.

Therefore, summing (5.22) between s and t for (s, t) ∈ S2(�0, T �) we get

∣∣δyn
st

∣∣=
∣∣∣∣∣

t−∑
tk=s

δyn
tktk+1

∣∣∣∣∣≤ n(t − s)T −1
[
KV G

(
T

n

)H

+ KV

(
T

n

)2H]
.

Taking into account the estimate of n in (5.21), this yields

(5.23)
∣∣δyn

st

∣∣≤ KG
1
γ |t − s|,
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for (s, t) ∈ S2(�0, T �). We have thus proved the first relation in (5.2) when (5.8) is
not met.

In order to handle the second relation in (5.2) for n small, just decompose the
increment at stake along our partition t0, . . . , tk+1:

∣∣V (yn
s

)
δBst

∣∣≤ ∣∣V (yn
s

)∣∣ t−∑
tk=s

|δBtktk+1 | ≤ KGn1−γ (t − s) ≤ KG
1
γ (t − s).

Taking into account inequality (5.23), we thus easily get

(5.24)
∣∣δyn

st − V
(
yn
s

)
δBst

∣∣≤ KG
1
γ (t − s),

which achieves the second relation in (5.2) for small n.
Step 5: Conclusion. Gathering the estimates (5.16), (5.23), we have obtained the

desired estimate for ‖yn‖γ on �0, T �, for all n. In the same way, putting (5.20) and
(5.24) together implies the second estimate in (5.2) on �0, T � and for any n. The
proof is complete. �

5.2. The couple (yn,B) as a rough path. Our next aim is to prove that (yn,B)

can be lifted as a rough path, which amounts to a proper definition of the signature
S2(y

n,B) as given in Definition 2.1. The result below, providing an estimate of the
integral

∫ t
s δyn

su ⊗ dBu, can be seen as an important step in this direction. Note that
on each interval [tk, tk+1], the process yn is a controlled process with respect to B ,
as alluded to in (2.8). For each n, the integral

∫ t
s δyn

su ⊗ dBu is thus defined as

(5.25)
∫ t

s
δyn

su ⊗ dBu =
t−∑

tk=s

∫ tk+1

tk

δyn
su ⊗ dBu,

thanks to classical rough paths considerations.

LEMMA 5.2. Let yn be the process defined by the Euler scheme (5.1), and
consider 1

3 < γ < H . Then we can find a random variable G ∈ ⋂
p≥1 Lp(�) in-

dependent of n, such that for the integral
∫ t
s δyn

su ⊗ dBu in the sense of (5.25), we
have the estimate

(5.26)
∣∣∣∣
∫ t

s
δyn

su ⊗ dBu

∣∣∣∣≤ G(t − s)2γ for (s, t) ∈ S2
(

�0, T �
)
.

PROOF. Similar to what we did for Proposition 5.1, we will assume that b = 0
for this proof, and analyze the scheme given by (5.3). Next, in order to bound the
integral

∫ t
s δyn

su ⊗ dBu, let us define two increments: first, just as in the definition
(4.7), we set

ζ 2
st =

∫ t

s
(u − s)2H dBu.
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Then we define a remainder type increment R̃ on S2(�0, T �) by

(5.27) R̃st =
∫ t

s
δyn

su ⊗ dBu − V
(
yn
s

)
Bst − 1

2

m∑
j=1

∂VjVj

(
yn
s

)⊗ ζ 2
st .

According to the definition (5.1) of our scheme, it is clear that R̃tktk+1 = 0, for all
k = 0,1, . . . , n − 1. Moreover, applying δ to R̃ and recalling the elementary rule
δ(
∫

dy ⊗ dB) = δy ⊗ δB , we obtain

δR̃srt = (
δyn

sr − V
(
yn
s

)
δBsr

)⊗ δBrt + δV
(
yn·
)
srBrt

− 1

2

m∑
j=1

∂VjVj

(
yn
s

)⊗ δζ 2
srt + 1

2

m∑
j=1

δ
(
∂VjVj

(
yn))

sr ⊗ ζ 2
rt ,

where we remark that δζ 2
srt = ∫ t

r [(u − s)2H − (u − r)2H ]dBu. Starting from the
above expression, one can thus apply Proposition 3.1 and Proposition 5.1 in order
to get

‖δR̃‖3γ ≤ G.

Note that for the Young integral δζ 2 we used the following estimate, valid for
(s, r, t) ∈ S3([0, T ]),

δζ 2
srt ≤

∣∣∣∣
∫ t

r
(u − s)2H dBu

∣∣∣∣+
∣∣∣∣
∫ t

r
(u − r)2H dBu

∣∣∣∣≤ ‖B‖γ (t − s)2H+γ .

Therefore, since ‖δR̃‖3γ ≤ G, it follows from the sewing Lemma 2.5 that

|R̃st | ≤ G(t − s)3γ .

Our claim (5.26) is now easily deduced from the above estimate of R̃ and expres-
sion (5.27). �

Now we provide some estimates for the iterated integral
∫ t
s δyn

su ⊗ dyn
u , which

is also part of the rough path above (yn,B). Note that
∫ t
s δyn

su ⊗ dyn
u is defined as

∫ t

s
δyn

su ⊗ dyn
u =

t−∑
tk=s

∫ tk+1

tk

δyn
su ⊗ dyn

u,

in the same way as for the integral
∫ t
s δyn

su ⊗ dBu.

LEMMA 5.3. Let the assumptions be as in Lemma 5.2. Then the following
estimate holds true:∣∣∣∣

∫ t

s
δyn

su ⊗ dyn
u

∣∣∣∣≤ G(t − s)2γ for (s, t) ∈ S2
(

�0, T �
)
,

where G is a random variable in
⋂

p≥1 Lp(�), independent of n.
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PROOF. We proceed similarly as in the proof of Lemma 5.2. Namely, we
still assume b = 0 for the sake of conciseness, and the existence of the integral∫ t
s δyn

su ⊗dyn
u is justified as for (5.25). Next, we define a remainder type increment

R̄ on S2(�0, T �) by

R̄st =
∫ t

s
δyn

su ⊗ dyn
u − V

(
yn
s

) ∫ t

s
δBsu ⊗ dyn

u

− 1

2

m∑
j=1

∂VjVj

(
yn
s

)⊗ ∫ t

s
(u − s)2H dyn

u.

(5.28)

As previously, it is clear that R̄tktk+1 = 0. In the same way as in Lemma 5.2, we
can also show that ‖δR̄‖3γ ≤ G, so by Lemma 2.5 we obtain

|R̄st | ≤ G(t − s)3γ .

Applying this estimate to (5.28), we obtain the desired estimate for
∫ t
s δyn

su ⊗ dyn
u .
�

We can now conclude and get a uniform bound on (yn,B) as a rough path.

PROPOSITION 5.4. Let y be the solution of equation (1.1) and yn be the so-
lution of the Euler scheme (5.1). Consider 1

3 < γ < H < 1
2 , and set

S2
(
B,yn)

st =
((

δBst , δy
n
st

)
,

∫ t

s

(
δBsu, δy

n
su

)⊗ d
(
δBu, δy

n
u

))
.

Then S2(B, yn) can be considered as a γ -rough path according to Definition 2.1.
In addition, there exists a random variable G ∈ ⋂

p≥1 Lp(�) independent of n

such that
∥∥S2

(
B,yn)∥∥

γ ≤ G,

where ‖ · ‖γ is defined by (2.3).

PROOF. Putting together the results of Proposition 5.1, Lemma 5.2 and
Lemma 5.3, we easily get the definition of S2(B, yn), together with the bound:

∣∣S2
(
B,yn)

st

∣∣≤ G(t − s)γ for (s, t) ∈ S2
(

�0, T �
)
.

On the other hand, by the definition of yn it is clear the same estimate holds
for s, t ∈ [tk, tk+1], k = 0, . . . , n − 1. The proposition then follows by applying
Lemma A.1 to S2(B, yn). �
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6. Almost sure convergence of the Euler scheme. We now take advantage
of the information gathered up to now, and show the almost sure convergence of
the Euler scheme (5.1). Notice however that the convergence rate obtained in this
section is not optimal, and has to be seen as a preliminary step; see Section 8.2 for
a more accurate result.

REMARK 6.1. The approximation process yn is discrete by nature, and the
reader might wonder why we have spent some effort trying to show that (yn,B)

is a rough path. The answer will be clearer within the landmark of the current
section. Indeed, our analysis of the numerical scheme mainly hinges on the fact
that the renormalized error satisfies a linear equation driven by both yn and B . The
best way we have found to properly define this equation is by showing that (yn,B)

can be seen as a rough path. Let us mention however two alternative ways to get
the same kind of result:

(i) We could have relied on the fact that yn is a controlled process with respect
to B; see (2.8) and [13, 17] for the notion of controlled process. However, due
to the fact that yn is defined on a discrete grid, we have not been able to find a
satisfactory way to see yn as a continuous time controlled process.

(ii) We could also have dealt with a discrete version of the linear equation,
which governs the error process on our discrete grid. Nevertheless, we believe that
the continuous time version exhibited below is more elegant, and this is why we
have stuck to the continuous time strategy.

With Remark 6.1 in mind, we will now introduce the linear equation which
will govern the error process, and then analyze the Euler scheme. Throughout the
section, we assume that b ∈ C2

b and V ∈ C4
b .

6.1. A linear rough differential equation. Recall that we are dealing with the
unique solution y to the following equation:

(6.1) dyt = b(yt ) dt + V (yt ) dBt , t ∈ [0, T ].
Its numerical approximation yn is given by the Euler scheme (5.1). As we shall
see later in the paper, the error process is governed by a kind of discrete equivalent
of the Jacobian for equation (6.1). Specifically, we consider the following linear
equation:

(6.2) �n
t = Id +

∫ t

0

{
∂b
(
yn)}

s�
n
s ds +

m∑
j=1

∫ t

0

{
∂Vj

(
yn)}

s�
n
s dBj

s ,

where Id is the d × d identity matrix, and where we have set

{
∂Vj

(
yn)}

s =
∫ 1

0
∂Vj

(
yn
s + λ

(
ys − yn

s

))
dλ,

{
∂b
(
yn)}

s =
∫ 1

0
∂b
(
yn
s + λ

(
ys − yn

s

))
dλ.
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In this subsection, we derive an upper-bound estimate of �n and its inverse �n

based on Proposition 5.4.

PROPOSITION 6.2. The linear equation (6.2) has a unique solution �n, and
there exists an integrable random variable G such that the following estimate holds
true:

(6.3)
∣∣S2

(
�n, zn)

st

∣∣≤ eG(t − s)γ ,

where we recall that zn = (yn,B) and the signature S2 is introduced in Defini-
tion 2.1. Furthermore, �n admits an inverse process �n ≡ (�n)−1, where (�n

t )
−1

stands for the inverse matrix of �n
t , and estimate (6.3) also holds for �n.

PROOF. Define two R
d×d -valued processes θ and ξ , respectively, by

θ il
t =

m∑
j=1

∫ t

0

{
∂iV

l
j

(
yn)}

s dBj
s and ξ il

t =
∫ t

0

{
∂ib

l(yn)}
s ds.

Then we can easily recast equation (6.2) as

(6.4) �
n,l
t = δl +

d∑
i=1

∫ t

0
�n,i

s dξ il
s +

d∑
i=1

∫ t

0
�n,i

s dθ il
s .

Here, δl is a vector in R
d with the lth entry equal to 1 and the other entries equal

to 0. In particular, �n satisfies a linear equation driven by ζ = {θil, ξ il; i, l =
1, . . . , d}. By the estimate of ‖S2(z

n)‖γ contained in Proposition 5.4, we can show
that for S2(ζ, zn) we have ‖S2(ζ, zn)‖γ ≤ G, where G is an integrable random
variable independent of n. So applying Theorem 2.3 to equation (6.4), we obtain∣∣S2

(
�n, zn)

st

∣∣≤ K1
∥∥S2

(
ζ, zn)∥∥

γ (t − s)γ exp
(
K2
∥∥S2

(
ζ, zn)∥∥1/γ

γ

)
,

and the estimate (6.3) then follows. Note that by Lemma A.6 the inverse �n of
�n satisfies a linear equation similar to (6.4), and the estimate of the �n can be
obtained in the same way. �

REMARK 6.3. Note that from the proof of Proposition 6.2, it is not clear that
the random variable eG in (6.3) is integrable. However, the almost sure bound (6.3)
will be enough for our use in deriving the almost sure convergence rate of the Euler
scheme (5.1). Let us mention that the methodology adopted in [5] in order to get
the integrability of the Jacobian of a RDE driven by Gaussian processes does not
apply to equation (6.2). This is due to the fact that (6.2) involves the process yn,
which is the solution of a “discrete” RDE driven by both B and F [recall that
F is defined in (3.14)]. We believe that a discrete strategy in order to bound �n

would lead to the integrability of |S2(�
n)st |, but we have not delved deeper into

this direction for sake of conciseness.
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6.2. Error process as a rough path. In this subsection, we derive some esti-
mates on the error process of the Euler scheme. To this aim, we will first write the
process yn as the solution of a differential equation in continuous time. Namely, it
is readily checked that one can recast equation (5.1) as follows:

(6.5) yn
t = y0 +

∫ t

0
b
(
yn
η(s)

)
ds +

∫ t

0
V
(
yn
η(s)

)
dBs − A1

t ,

where we have set

(6.6) η(s) = t
 ns
T

�, and A1
t = −1

2


 nt
T

�∑
k=0

m∑
j=1

∂VjVj

(
yn
tk

)
(t ∧ tk+1 − tk)

2H .

Note that the dependence of A1 on n is omitted for simplicity. With this simple
algebraic decomposition in hand, we can state the following bound on the error
process.

LEMMA 6.4. Let y, yn and �n be the solution of equations (6.1), (5.1) and
(6.2), respectively, and �n be the inverse process of �n. Consider the path ε de-
fined by

(6.7) εt = �n
t

(
yt − yn

t

)
.

Then for all 1
3 < γ < H < 1

2 , we can find an almost surely finite random variable
G independent of n such that

(6.8) |δεst | ≤ G(t − s)1−γ n1−3γ , (s, t) ∈ S2
(

�0, T �
)
.

PROOF. Putting together equations (6.1) and (6.5), it is easily seen that

yt − yn
t =

∫ t

0

(
b(ys) − b

(
yn
η(s)

))
ds +

∫ t

0

(
V (ys) − V

(
yn
η(s)

))
dBs + A1

t .

In addition, the chain rule for rough integrals enables us to write

ϕ
(
yn
s

)− ϕ
(
yn
η(s)

)= ∫ s

η(s)
∂ϕ
(
yn
u

)
dyn

u,

for any ϕ ∈ C1/γ (Rd;Rd) and s ∈ [0, T ], and where ∂ϕ designates the gradient
of ϕ. Owing to this relation, applied successively to b and V , we get

yt − yn
t =

∫ t

0

(
b(ys) − b

(
yn
s

))
ds +

∫ t

0

(
V (ys) − V

(
yn
s

))
dBs +

3∑
e=1

Ae
t ,

where we recall that A1 is defined by (6.6), and where we have set

(6.9) A2
t =

∫ t

0

∫ s

η(s)
∂b
(
yn
u

)
dyn

u ds, and A3
t =

m∑
j=1

∫ t

0

∫ s

η(s)
∂Vj

(
yn
u

)
dyn

u dBj
s .
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Notice that A2
t and A3

t above can be considered as a rough integral, thanks to
Proposition 5.4. Taking into account the identity

(6.10)
b(ys) − b

(
yn
s

)= {
∂b
(
yn)}

s

(
ys − yn

s

)
,

Vj (ys) − Vj

(
yn
s

)= {
∂Vj

(
yn)}

s

(
ys − yn

s

)
,

we have

(6.11)

yt − yn
t =

∫ t

0

{
∂b
(
yn)}

s

(
ys − yn

s

)
ds

+
∫ t

0

{
∂Vj

(
yn)}

s

(
ys − yn

s

)
dBs +

3∑
e=1

Ae
t .

Now starting from expression (6.11) and applying the variation of parameter
method to the equation (6.2) governing �n, it is easy to verify that

(6.12) yt − yn
t =

3∑
e=1

�n
t

∫ t

0
�n

s dAe
s .

Therefore, we can also write

(6.13) εt = �n
t

(
yt − yn

t

)=
3∑

e=1

∫ t

0
�n

s dAe
s, t ∈ [0, T ].

Our claim (6.8) thus follows from Proposition 6.2, together with Lemma 6.5 below.
�

LEMMA 6.5. Let Ae, e = 1,2,3, be as in (6.6) and (6.9). Let f be a con-
tinuous function with values in a finite dimensional vector space V such that the
path

S2(f,B) :=
(
(ft ,Bt ),

∫ t

0
(fs,Bs) ⊗ d(fs,Bs)

)

is well defined and assume that f0 = 0. We also assume that there exists an a.s
finite random variable G satisfying the upper bound ‖S2(f,B)‖γ ≤ G for any
1
3 < γ < H < 1

2 . Then for all (s, t) ∈ S2(�0, T �) we have∣∣∣∣∣
3∑

e=1

∫ t

s
fu ⊗ dAe

u

∣∣∣∣∣≤ G(t − s)1−γ n1−3γ .

PROOF. We divide this proof in several steps.
Step 1: Decomposition of Ae. Applying the chain rule to A3, we obtain

A3
t = A31

t + R2
t ,
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where the paths A31
t and R2

t are respectively defined by

A31
t =

m∑
j=1

∫ t

0

∫ s

η(s)
∂Vj

(
yn
η(s)

)
dyn

u dBj
s ,

R2
t =

m∑
j,j ′=1

∫ t

0

∫ s

η(s)

∫ u

η(s)
∂j ′∂Vj

(
yn
v

)
dyn,j ′

v dyn
u dBj

s .

Moreover, recalling the equation (6.5) governing yn, we obtain

A31
t = A310

t + R3
t + R4

t ,

where we have set

A310
t =

m∑
i,j=1

∫ t

0

∫ s

η(s)
∂Vj

(
yn
η(s)

)
Vi

(
yn
η(s)

)
dBi

u dBj
s ,

R3
t =

m∑
j=1

∫ t

0

∫ s

η(s)
∂Vj

(
yn
η(s)

)
b
(
yn
η(s)

)
dudBj

s ,

and where

R4
t = 1

2

m∑
j,j ′=1

∫ t

0

∫ s

η(s)
∂Vj

(
yn
η(s)

)
∂Vj ′Vj ′

(
yn
η(s)

)
d
(
u − η(s)

)2H
dBj

s .

Summarizing our decomposition up to now, we have found that A3
t = A310

t +R2
t +

R3
t +R4

t . Denoting R5
t = A310

t +A1
t , and R1

t = A2
t , we can now express our driving

process
∑3

e=1 Ae as a sum of remainder type terms:

(6.14)
3∑

e=1

Ae
t =

5∑
e=1

Re
t .

Step 2: Estimation procedure. We will now upper bound the terms Re given in
our decomposition (6.14). For the term R2, observe that (due to Proposition 5.4)
the couple (B, yn) can be seen as a γ -Hölder rough path. Taking into account
all the time increments defining R2, we obtain |δR2

tk tk+1
| ≤ Gn−3γ for all tk =

s, . . . , t−. Therefore,

(6.15)
∣∣δR2

st

∣∣≤ t−∑
tk=s

∣∣δR2
tktk+1

∣∣≤ G(t − s)n1−3γ , (s, t) ∈ S2
(

�0, T �
)
.

In the same way we can show that estimate (6.15) holds for R4. In order to bound
R5, note that for t ∈ �0, T � we have

R5
t =

m∑
i,j=1

nt
T

−1∑
k=0

(∂VjVi)
(
yn
tk

)
δF

ij
tktk+1

.
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Furthermore, by the two inequalities of Proposition 5.1 one can show that the pro-
cess f = [∂VjVi](yn) and g = ∂(∂VjVi)V (yn) satisfies the conditions of Propo-
sition 4.7. Hence, combining Corollary 4.9 and Lemma 3.5, we end up with the
following inequality for κ > 0 arbitrarily:

(6.16)

∣∣δR5
st

∣∣≤ G(t − s)
1
2 −κn

1
2 −2H+κ

≤ G(t − s)1−γ−2κn1−3γ , (s, t) ∈ S2
(

�0, T �
)
,

where we have used the fact that t − s ≥ T
n

for the last step. The terms R1 and R3

are bounded along the same lines, in a slightly easier way due to the presence of
Lebesgue type integrals. We get

(6.17)
∣∣δRe

st

∣∣≤ G(t − s)n−γ , (s, t) ∈ S2
(

�0, T �
)

for e = 1,3. In summary of the estimates (6.15), (6.16) and (6.17), we have ob-
tained

(6.18)
5∑

e=1

∣∣δRe
st

∣∣≤ G(t − s)1−γ−2κn1−3γ , (s, t) ∈ S2
(

�0, T �
)
.

Step 3: Conclusion. Thanks to our decomposition (6.14), we can write

(6.19)

3∑
e=1

∫ t

s
fu ⊗ dAe

u =
3∑

e=1

∫ t

s
δfη(u),u ⊗ dAe

u +
5∑

e=1

∫ t

s
fη(u) ⊗ dRe

u

≡ B1
st + B2

st .

Let us start by bounding the term B2. Similar to relation (4.9), we can decompose
B2 as

B2
st =

5∑
e=1

t−∑
tk=s

fs ⊗ δRe
tktk+1

+
5∑

e=1

t−∑
tk=s

δfstk ⊗ δRe
tktk+1

.

Then recall the assumption f ∈ Cγ ′
for any 1

3 < γ ′ < H . By choosing γ ′ and κ

such that γ ′ + 1 − γ − 2κ > 1, we can apply Proposition 4.1. Taking into account
(6.18) this yields

(6.20)
∣∣B2

st

∣∣≤ G(t − s)1−γ n1−3γ ,

for (s, t) ∈ S2(�0, T �). As far as the term B1 above is concerned, we get

(6.21)
∣∣B1

st

∣∣≤ t−∑
tk=s

∣∣∣∣∣
3∑

e=1

∫ tk+1

tk

δftku ⊗ dAe
u

∣∣∣∣∣.
Moreover, note that

∫ tk+1
tk

δftku ⊗ dAe
u is a third-order integral of the process

(f,B) on the interval [tk, tk+1], for all k. Therefore, since we have assumed
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‖S2(f,B)‖γ ≤ G, we easily obtain the estimate | ∫ tk+1
tk

δftku ⊗dAe
u| ≤ Gn−3γ . Ap-

plying this inequality to (6.21) yields

(6.22)
∣∣B1

st

∣∣≤ G(t − s)n1−3γ .

The lemma follows by applying (6.20) and (6.22) to (6.19). �

We now wish, as in the case of yn, to consider the error process ε as a rough
path. As a first step, let us label the following regularity assumption for further use.

HYPOTHESIS 6.6. Let ε be the process defined by (6.7). We suppose that
there exists an exponent α < 2H − 1

2 and an almost surely finite random variable
G such that the error process ε satisfies

(6.23) |δεst | ≤ G

nα
(t − s)

1
2 , (s, t) ∈ S2

(
�0, T �

)
.

REMARK 6.7. It follows from Lemma 6.4 that Hypothesis 6.6 holds true for
α = 3γ − 1. We will see later on how to improve it to larger values of α.

We are now ready to define and estimate the double iterated integrals of ε, which
are a fundamental part of the rough path above ε.

LEMMA 6.8. Let ε be the process defined by (6.7) and assume that Hypothe-
sis 6.6 is satisfied for some α < 2H − 1

2 . Then for any κ > 0 we have

(6.24)
∣∣∣∣
∫ t

s
δεsu ⊗ dεu

∣∣∣∣≤ Gn−2α+2κ(t − s), (s, t) ∈ S2
(

�0, T �
)
,

where G is a random variable such that G ∈⋂p≥1 Lp(�).

PROOF. Observe that the double integral
∫ t
s δεsu ⊗ dεu is well defined, since

(y, yn,B) admits a rough path lift. Next, take (s, t) ∈ S2(�0, T �). We can write

(6.25)
∫ t

s
δεsu ⊗ dεu =

∫ t

s
δεsη(u) ⊗ dεu +

∫ t

s
δεη(u)u ⊗ dεu ≡ D1

st + D2
st ,

where recall that η(u) is defined in (6.6). Let us bound those two terms separately.
The term D1 above can be expressed in a more elementary way as D1

st =∑t−
tk=s δεstk ⊗ δεtktk+1 . Moreover, thanks to (6.23) we have for any κ < α and

(s, t) ∈ S2(�0, T �):

|δεst | ≤ Gn−α+κ(t − s)
1
2 +κ .

Taking this estimate into account and applying Proposition 4.1, we get

(6.26)
∣∣D1

st

∣∣≤ G2n−2α+2κ(t − s)1+2κ .
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On the other hand, owing to identity (6.13) for ε, we have

(6.27) D2
st =

3∑
e,e′=1

∫ t

s

∫ u

η(u)
�n

v dAe′
v ⊗ �n

u dAe
u.

Take γ such that α < 2γ − 1/2 < 2H − 1/2. By the definition of Ae, e = 1,2,3 in
(6.6) and (6.9), it is easy to see that each of the nine terms on the right-hand side is
bounded by Gn1−4γ (t − s). Indeed, for the term corresponding to e = e′ = 3, we
use (6.9) to write∫ t

s

∫ u

η(u)
�n

v dA3
v ⊗ �n

u dA3
u =

m∑
j,j ′=1

t−∑
tk=s

A
33,jj ′
tk tk+1

,

where

A
33,jj ′
tktk+1

=
∫ tk+1

tk

∫ u

tk

�n
v

∫ v

tk

∂Vj

(
yn
r

)
dyn

r dBj
v ⊗ �n

u

∫ u

tk

∂Vj ′
(
yn
r ′
)
dyn

r ′ dBj ′
u .

It follows from Proposition 6.2 and the Lyon’s lift map theorem (see, e.g., [14])
that ∣∣S4

(
B,yn,�n)

tk,tk+1

∣∣≤ G

(
T

n

)γ

,

so for all j, j ′ ≤ m and (s, t) ∈ S2(�0, T �) we have

∣∣A33,jj ′
tk tk+1

∣∣≤ G

(
T

n

)4γ

.

Therefore, summing this bound over j , j ′ and tk we end up with

(6.28)
∣∣∣∣
∫ t

s

∫ u

η(u)
�n

v dA3
v ⊗ �n

u dA3
u

∣∣∣∣≤
m∑

j,j ′=1

t−∑
tk=s

∣∣A33,jj ′
tk tk+1

∣∣≤ G

(
T

n

)4γ−1
(t − s).

The other terms of the form
∫ t
s

∫ u
η(u) �

n
v dAe

v ⊗ �n
u dAe′

u on the right-hand side
of (6.27) can be estimated in the same way. Therefore, we obtain the estimate

(6.29)
∣∣D2

st

∣∣≤ Gn1−4γ (t − s).

In conclusion, plugging (6.26) and (6.29) into (6.25), we obtain the desired esti-
mate (6.24). �

Recall that we wish to construct a rough path above (ε,B, yn). In the previous
lemma, we have analyzed the double integral

∫ t
s δεsu ⊗ δεu. We now consider the

integral
∫ t
s δεsu ⊗ d(Bu, y

n
u).

LEMMA 6.9. Denote zn = (B, yn), and let the assumptions of Lemma 6.4
prevail. The following estimate holds true:∣∣∣∣

∫ t

s
δεsu ⊗ dzn

u

∣∣∣∣≤ G(t − s)n1−3γ , (s, t) ∈ S2
(

�0, T �
)
.
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PROOF. We use the same kind of decomposition as in Lemma 6.8:

(6.30)
∫ t

s
δεsu ⊗ dzn

u =
∫ t

s
δεsη(u) ⊗ dzn

u +
∫ t

s
δεη(u)u ⊗ dzn

u := D̂1
st + D̂2

st .

For the first term on the right-hand side of (6.30), we have the following expres-
sion:

D̂1
st =

t−∑
tk=s

δεstk ⊗ δzn
tktk+1

, (s, t) ∈ S2
(

�0, T �
)
.

Moreover, it follows from Lemma 6.4 and Proposition 5.4 that for all (s, t) ∈
S2(�0, T �) the following bounds holds true:

|δεst | ≤ G(t − s)1−γ n1−3γ and |δzst | ≤ G(t − s)γ+κ ,

where κ < H − γ , so by Proposition 4.1 we have∣∣D̂1
st

∣∣≤ G(t − s)n1−3γ .

On the other hand, in the same way as the estimate of D2
st in (6.29), we can show

that ∣∣D̂2
st

∣∣≤ G(t − s)n1−3γ .

The lemma follows from applying the above two inequalities for D̂1
st and D̂2

st to
(6.30). �

The next result provides further estimates of the rough path above the path
(ε,B, yn) for (s, t) ∈ S2([tk, tk+1]).

LEMMA 6.10. Let ε be the process defined by (6.7) and recall that we have
set zn = (B, yn). Take γ < H , (s, t) ∈ S2([tk, tk+1]) and k = 0,1, . . . , n − 1. Then
the following estimate for the first-order increments of ε holds true:

(6.31) |δεst | ≤ G(t − s)γ n−γ .

In addition, the second-order iterated integrals of ε and zn satisfy

(6.32)

∣∣∣∣
∫ t

s
δzn

su ⊗ dεu

∣∣∣∣≤ G(t − s)2γ n−γ ,

∣∣∣∣
∫ t

s
δεsu ⊗ dεu

∣∣∣∣≤ G(t − s)2γ n−2γ .

PROOF. The estimate (6.31) follows by showing that the three terms on the
right-hand side of (6.13) are all bounded by G(t − s)γ n−γ . As before, we will
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focus on a bound for the increment
∫ t
s �n

s dA3
s . In fact, owing to (6.9) it is easily

seen that
∫

�n dA3 can be decomposed as a sum of double iterated integrals:∫ t

s
�n

s dA3
s =

m∑
j=1

∫ t

s
�n

u

∫ u

tk

∂Vj

(
yn
v

)
dyn

v dBj
u

=
m∑

j=1

∫ t

s
�n

u

∫ u

s
∂Vj

(
yn
v

)
dyn

v dBj
u +

m∑
j=1

∫ s

tk

∂Vj

(
yn
v

)
dyn

v

∫ t

s
�n

u dBj
u.

One can easily bound the two terms above, thanks to the fact that (yn,B) is a rough
path. We obtain ∫ t

s
�n

s dA3
s ≤ G(t − s)γ n−γ .

In the same way, we can show that the same estimate holds for the term∑2
e=1

∫ t
s �n

s dAe
s on the right-hand side of (6.13). This proves our claim (6.31).

In order to prove (6.32), let us invoke (6.13) again, which yields

∫ t

s
δzn

su ⊗ dεu =
3∑

e=1

∫ t

s
δzn

su ⊗ �n
u dAe

u.

The estimate (6.32) then follows from a similar argument as for the estimate of
(6.31). The estimate of integral

∫ t
s εsu ⊗ dεu can be shown in a similar way. This

completes the proof. �

The following is the main result of this section. Recall that ε = �n
t (yt − yn

t )

is defined in (6.13) and zn = (yn,B), and S2(n
3γ−1ε, zn) denotes the lift of the

process (n3γ−1ε, zn), that is,

S2
(
n3γ−1ε, zn)

st =
((

n3γ−1δεst , δz
n
st

)
,

∫ t

s

(
n3γ−1δεsu, δz

n
su

)⊗ (
n3γ−1εu, z

n
u

))
,

PROPOSITION 6.11. Let y be the solution of equation (1.1) and yn be the so-
lution of the Euler scheme (5.1). Take 1

3 < γ < H < 1
2 . Then we have the estimate∥∥S2

(
n3γ−1ε, yn,B

)∥∥
γ ≤ G,

where G is a random variable independent of n.

PROOF. In summary of Lemmas 6.4, 6.8, 6.9 and Proposition 5.4, we have

(6.33)
∣∣S2

(
n3γ−1ε, yn,B

)
st

∣∣≤ G(t − s)γ

for (s, t) ∈ S2(�0, T �). On the other hand, Lemma 6.10 implies that relation
(6.33) still holds true for s, t ∈ [tk, tk+1]. The lemma then follows by applying
Lemma A.1 to S2(n

3γ−1ε, yn,B). �
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7. The error process as a rough path under new conditions. In this sec-
tion, we derive an improved upper-bound estimate of the error process under new
conditions. Our considerations relies on the following process, solution of a linear
RDE:

(7.1) �t = Id +
∫ t

0
∂b(ys)�s ds +

m∑
j=1

∫ t

0
∂Vj (ys)�s dBj

s .

Throughout the section, we assume that b ∈ C2
b and V ∈ C4

b . The reader might
have noticed that � is simply the Jacobian related to equation (1.1). The process
� is also the limit of the process �n defined in (6.2), in a sense which will be
made clear in the next section. We denote by �t the inverse matrix of �t . Let us
introduce the following process on S2(�0, T �):

(7.2) δε̃st = δεst − δε̂st ,

where ε is defined by (6.7) and

(7.3) δε̂st =
m∑

j,j ′=1

t−∑
tk=s

�tk∂VjVj ′(ytk )δF
jj ′
tktk+1

.

We shall now assume some a priori bounds on ε̃, similar to what we did in Hy-
pothesis 6.6.

HYPOTHESIS 7.1. The process ε̃ defined in (7.2) satisfies the following rela-
tion for some α > 0:

|δε̃st | ≤ Gn−α(t − s)1−γ , (s, t) ∈ S2
(

�0, T �
)
.

Our aim is to get a new bound on the rough path above (ε, zn) under Hypothe-
sis 7.1, similar to what has been obtained in Proposition 6.11. Let us first consider∫ t
s δεsu ⊗ dBu.

LEMMA 7.2. Suppose that Hypothesis 7.1 is met for some α : 0 < α < 2H −
1
2 . Then the following estimate holds true for all (s, t) ∈ S2(�0, T �):

(7.4)
∣∣∣∣
∫ t

s
δεsu ⊗ dBu

∣∣∣∣≤ G
(
n−α + n

1
2 −2γ )(t − s)2γ .

PROOF. As in Lemma 6.9, we first write

(7.5)
∫ t

s
δεsu ⊗ dBu =

∫ t

s
δεsη(u) ⊗ dBu +

∫ t

s
δεη(u)u ⊗ dBu := D̃1

st + D̃2
st .

Furthermore, invoking decomposition (6.13) we have

(7.6) D̃2
st =

3∑
e=1

∫ t

s

∫ u

η(u)
�n

v dAe
v ⊗ dBu :=

3∑
e=1

I e
st .
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Note that, recalling expression (6.9) for A2, I 2 can be seen as a triple iterated
integral which is interpreted in the Young sense. Then similar to (6.28) it is easy
to show that

(7.7)
∣∣I 2

st

∣∣≤ Gn−2γ (t − s).

As far as I1 is concerned, some elementary computations reveal that for (s, t) ∈
S2(�0, T �):

I 1
st = −1

2

m∑
j=1

t−∑
tk=s

∂V i
j Vj

(
yn
tk

) ∫ tk+1

tk

∫ u

tk

�n,i
v d(v − tk)

2H ⊗ dBu.

Then it follows from (A.2) in Lemma A.2 that

(7.8)
∣∣I 1

st

∣∣≤ Gn1−4γ (t − s)1−γ ≤ Gn−γ (t − s)2γ ,

where we use the fact that t − s ≥ T
n

for the second inequality. For I3, we start
from relation (6.9). Then due to the expression (5.1) for yn, we have

I 3
st = I 31

st + I 32
st + I 33

st ,

where

I 31
st =

t−∑
tk=s

∫ tk+1

tk

∫ u

tk

�n
v

m∑
j=1

∫ v

tk

∂Vj

(
yn
r

)
V
(
yn
tk

)
dBr dBj

v ⊗ dBu,

I 32
st =

t−∑
tk=s

∫ tk+1

tk

∫ u

tk

�n
v

m∑
j=1

∫ v

tk

∂Vj

(
yn
r

)1

2

m∑
j ′=1

∂Vj ′Vj ′
(
yn
tk

)

· d(r − tk)
2H dBj

v ⊗ dBu

I 33
st =

t−∑
tk=s

∫ tk+1

tk

∫ u

tk

�n
v

m∑
j=1

∫ v

tk

∂Vj

(
yn
r

)
b
(
yn
tk

)
dr dBj

v ⊗ dBu.

As for I 2, it is easy to show that |I 32
st | and |I 33

st | are bounded by Gn−2γ (t − s)

and Gn1−4γ (t − s), respectively. On the other hand, it follows from (A.8) in
Lemma A.2 that for any κ > 0 we can find a random variable G such that |I 31

st |
is less than Gn1−4γ+2κ(t − s)1−γ . We now choose κ > 0 small enough such that
1 − 4γ + 2κ < −γ . Then summarizing our estimates of I 31, I 32 and I 33, we have

(7.9)
∣∣I 3

st

∣∣≤ Gn1−4γ+2κ(t − s)1−γ ≤ Gn−γ (t − s)2γ .

Applying (7.7), (7.8) and (7.9) to (7.6), we have thus obtained

(7.10)
∣∣D̃2

st

∣∣≤ Gn−γ (t − s)2γ .

We now turn to the term D̃1
st on the right-hand side of (7.5). Write

D̃1
st =

∫ t

s
(δεsη(u) − δε̃sη(u)) ⊗ dBu +

∫ t

s
δε̃sη(u) ⊗ dBu := D̃11

st + D̃12
st ,
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where we recall that ε̃ is defined in (7.2). Applying Proposition 4.1 and taking into
account Hypothesis 7.1 and the fact that H > γ , we obtain

(7.11)
∣∣D̃12

st

∣∣≤ Gn−α(t − s).

On the other hand, by (7.2) and (7.3) we have

D̃11
st =

∫ t

s

m∑
j,j ′=1

∫ η(u)

s
�η(v)∂VjVj ′(yη(v)) dF

jj ′
η(v)v ⊗ dBu

=
m∑

j,j ′=1

t−∑
tk=s+

tk−1∑
tk′=s

�tk′ ∂VjVj ′(ytk′ )F
jj ′
tk′ tk′+1

⊗ δBtktk+1 .

So applying Corollary 4.9 to D̃11
st we obtain

∥∥D̃11
st

∥∥
p ≤ Kn

1
2 −2H(t − s)H+ 1

2 for all p ≥ 1.

Taking into account Lemma 3.5, we thus get

(7.12)
∣∣D̃11

st

∣∣≤ Gn
1
2 −2γ (t − s)2γ .

In summary of (7.10), (7.11) and (7.12), we end up with∣∣∣∣
∫ t

s
δεsu ⊗ dBu

∣∣∣∣≤ Gn−γ (t − s)2γ + Gn−α(t − s) + Gn
1
2 −2γ (t − s)2γ ,

from which our claim (7.4) is easily deduced. �

In order to complete the study of the rough path above (ε, yn,B), let us turn to
the integral

∫ t
s δyn

su ⊗ dεu.

LEMMA 7.3. Suppose that Hypotheses 6.6 and 7.1 are met for some α ∈
(0,2H − 1

2). Take γ < H . Then the integral
∫ t
s δyn

su ⊗ dεu satisfies the following
relation for all (s, t) ∈ S2(�0, T �):

(7.13)
∣∣∣∣
∫ t

s
δyn

su ⊗ dεu

∣∣∣∣≤ Gn−α(t − s)2γ .

PROOF. We consider a remainder term R defined for (s, t) ∈ S2(�0, T �) by

(7.14) Rst =
∫ t

s
δyn

su ⊗ dεu − V
(
yn
s

) ∫ t

s
δBsu ⊗ dεu.

According to the basic rules of action of δ on products of increments, we have

(7.15) δRsut = (
δyn

su − V
(
yn
s

)
δBsu

)⊗ δεut + δV
(
yn·
)
su

∫ t

u
δBuv ⊗ dεv,
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for all (s, u, t) ∈ S3(�0, T �). Applying the second inequality of (5.2) and Hypoth-
esis 6.6 to the first term on the right-hand side of (7.15) and invoking Lemma 7.2
for the the second term, we obtain

|δRsut | ≤ Gn−α(u − s)2γ (t − u)
1
2 + Gn−α(u − s)γ (t − u)2γ ≤ Gn−α(t − s)3γ .

Since 3γ > 1, we are in a position to apply the discrete sewing Lemma 2.5, which
yields

(7.16) ‖R‖3γ ≤ K‖δR‖3γ ≤ Gn−α.

We now recast (7.14) as follows:

(7.17)
∫ t

s
δyn

su ⊗ dεu = V
(
yn
s

) ∫ t

s
δBsu ⊗ dεu + Rst .

Then resorting to (7.16) and Lemma 7.2 for (7.17), our claim (7.13) easily follows.
�

We can now state the main result of this section, giving a full estimate of the
rough path above (zn, nα−κε). Recall that zn designates the couple (B, yn).

PROPOSITION 7.4. Let ε̃ be defined in (7.2) and suppose that Hypothesis 7.1
holds true for some 0 < α < 2H − 1

2 . Take γ < H . Then for any κ ∈ (0, α) and
(s, t) ∈ S2([0, T ]) we have

(7.18)
∣∣S2

(
zn, nα−κε

)
st

∣∣≤ G(t − s)γ .

PROOF. We start by analyzing the first-order increments of S2(z
n, nα−κε).

First, notice that δzn is controlled by Proposition 5.4. Furthermore, according to
relation (7.2), we have

(7.19) δε = δε̂ + δε̃.

As in the proof of Lemma 7.2, equation (7.3) also asserts that Corollary 4.9 can be
applied to δε̂, yielding an inequality of the form

(7.20) ‖δε̂st‖p ≤ Kn
1
2 −2H(t − s)

1
2

for (s, t) ∈ S2(�0, T �). Applying Lemma 3.5 to relation (7.20), plugging this in-
formation into (7.19) and invoking Hypothesis 7.1, we obtain

(7.21) |δεst | ≤ Gn−α(t − s)
1
2 ≤ Gn−α+κ(t − s)

1
2 +κ ,

for all (s, t) ∈ S2(�0, T �). This is compatible with our claim (7.18).
Let us now handle the second-order increments of S2(z

n, nα−κε). According to
Lemma 6.8,

(7.22)
∣∣∣∣
∫ t

s
δεsu ⊗ dεu

∣∣∣∣≤ Gn−2α+2κ(t − s), (s, t) ∈ S2
(

�0, T �
)
.
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In the same way, gathering Lemma 7.2, Lemma 7.3 together with (7.21), we get
that

(7.23)
∣∣∣∣
∫ t

s
δεsu ⊗ dzn

u

∣∣∣∣≤ Gn−α+κ(t − s)2γ , (s, t) ∈ S2
(

�0, T �
)
.

Hence, putting together inequalities (7.22) and (7.23) and adding the estimate of
S2(z

n) in Proposition 5.4, we obtain that on the grid S2(�0, T �):

(7.24)
∣∣S2

(
zn, nα−κε

)
st

∣∣≤ G(t − s)γ

On the other hand, Lemma 6.10 implies that (7.24) also holds true for s, t ∈
[tk, tk+1]. Therefore, applying Lemma A.1 to S2(z

n, nα−κε) we obtain the desired
estimate (7.18). �

8. Rate of convergence for the Euler scheme. In this section, we take an-
other look at the strong convergence of the Euler scheme. Thanks to the infor-
mation we have gathered on the error process, we shall reach optimality for the
convergence rate of the scheme. However, before we can state this optimal result,
let us give some preliminaries about the Jacobian � of equation (1.1).

8.1. Rate of convergence for the Jacobian. As mentioned in Section 7, the
Jacobian � of equation (1.1) should be seen as the limit of the process �n. In
the current section we shall quantify this convergence. We start by an algebraic
identity which is stated as a lemma.

LEMMA 8.1. Let � and �n be the solutions of equations (7.1) and (6.2),
respectively. Set

(8.1) Et = �t

(
�t − �n

t

)
for t ∈ [0, T ]. Then E satisfies the following equation on [0, T ]:

Et =
∫ t

0
�s

d∑
i=1

{
∂i∂b

(
yn)}

s

(
�n

s εs

)i
�n

s ds

+
m∑

j=1

∫ t

0
�s

d∑
i=1

{
∂i∂Vj

(
yn)}

s

(
�n

s εs

)i
�n

s dBj
s ,

(8.2)

where the processes {∂i∂b(yn)}s and {∂i∂Vj (y
n)}s are defined by

{
∂i∂b

(
yn)}

s =
∫ 1

0

∫ 1

0
∂i∂b

(
ys + (1 − μ)(1 − λ)

(
yn
s − ys

))
(8.3) × (1 − λ)dμdλ,

{
∂i∂Vj

(
yn)}

s =
∫ 1

0

∫ 1

0
∂i∂Vj

(
ys + (1 − μ)(1 − λ)

(
yn
s − ys

))
(8.4) × (1 − λ)dμdλ.

If we define Ẽt = �t(�t − �n
t ), then a similar expression can be derived for Ẽt .
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PROOF. Subtracting (6.2) from (7.1), it is easily seen that

�t − �n
t =

∫ t

0
∂b(ys)

(
�s − �n

s

)
ds +

m∑
j=1

∫ t

0
∂Vj (ys)

(
�s − �n

s

)
dBj

s + L1
t + L2

t ,

where

L1
t =

∫ t

0

(
∂b(ys) − {

∂b
(
yn)}

s

)
�n

s ds,

L2
t =

m∑
j=1

∫ t

0

(
∂Vj (ys) − {

∂Vj

(
yn)}

s

)
�n

s dBj
s .

Let now � = �−1 be the inverse of �. By means of the variation of the constant
method, one can verify that

�t − �n
t = ∑

e=1,2

�t

∫ t

0
�s dLe

s .

Hence, for E defined by (8.1), we have

(8.5) Et = ∑
e=1,2

∫ t

0
�s dLe

s .

In addition, observe that with (8.3) and (8.4) in mind, the following identities hold
true:

∂b(ys) − {
∂b
(
yn)}

s =
d∑

i=1

{
∂i∂b

(
yn)}

s

(
yi
s − yn,i

s

)=
d∑

i=1

{
∂i∂b

(
yn)}

s

(
�n

s εs

)i
,

and

∂Vj (ys) − {
∂Vj

(
yn)}

s =
d∑

i=1

{
∂i∂Vj

(
yn)}

s

(
�n

s εs

)i
.

Plugging these relations into definitions of L1 and L2, our claim (8.2) easily stems
from relation (8.5).

Note that according to Lemma A.6, (�,�n) and (�,�n) satisfies similar linear
equations, and a similar expression can thus be derived for Ẽt = �t(�t −�n

t ). �

We shall now assume some a priori bounds on the lift of (zn, nαε).

HYPOTHESIS 8.2. The processes zn = (yn,B) and ε defined in (6.7) satisfy
the following inequality for some α > 0 and γ < H :∣∣S2

(
zn, nαε

)
st

∣∣≤ G(t − s)γ , (s, t) ∈ S2
([0, T ]).
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Notice that Hypothesis 8.2 is a version of Hypothesis 6.6 for the lift of (zn, nαε).
Thanks to the previous lemma, we can now consider (yn,B,nαε,nαE, nαẼ) as

a single rough path. This is achieved in the following lemma.

LEMMA 8.3. Suppose that b ∈ C2
b , V ∈ C4

b , and Hypothesis 8.2 is met for
γ > 1

3 and α < 2H − 1
2 . We also consider the processes E and Ẽ as defined

in Lemma 8.1. Then the vector (zn, nαε,nαE, nαẼ) satisfies the following upper
bound:

(8.6)
∥∥S2

(
zn, nαε,nαE, nαẼ

)∥∥
γ ≤ G.

PROOF. Note that �, � , �n, �n are solutions of equations driven by zn. Fur-
thermore, owing to relation (8.2), it is easily seen that nαE and nαẼ as rough paths
are solutions of equations driven by (zn, nαε). Thus (8.6) is a direct consequence
of Theorem 2.3 (linear part) and of Hypothesis 8.2. �

REMARK 8.4. Roughly speaking, Lemma 8.3 shows that if the convergence
rate of the numerical scheme yn to y is n−α , then so is that of (�n,�n) to (�,�)

as n → ∞.

8.2. Optimal rate of convergence. Recall that ε is defined by (6.7) and δε̃st =
δεst − δε̂st is defined in (7.2). With the preliminary results obtained in Section 8.1,
we can now go further in our analysis of the error process ε.

PROPOSITION 8.5. Consider the process zn = (yn,B) and the error process
ε defined in (6.7). Assume that b ∈ C2

b , V ∈ C4
b . As in Lemma 8.3, suppose that

Hypothesis 8.2 is met for some exponents α, γ such that 1
3 < γ < H and α <

2H − 1
2 . Take κ > 0 arbitrarily small. Then the following estimate holds true for

(s, t) ∈ S2(�0, T �):

(8.7) |δε̃st | ≤ G
(
n1−3γ−α+2κ + n−γ )(t − s)1−γ .

In addition, for all (s, t) ∈ S2(�0, T �) we also have

(8.8) |δεst | ≤ G
(
n1−3γ−α+2κ + n

1
2 −2γ )(t − s)

1
2 −κ .

REMARK 8.6. In Proposition 8.5, we prove that Hypothesis 7.1 is satisfied for
ε̃, with α replaced by (3γ − 1 +α)∧ γ . We also prove that Hypothesis 6.6 for ε is
fulfilled with an improved exponent α1 = (α + 3γ − 1) ∧ 2γ − 1

2 , which satisfies
α1 > α.

PROOF OF PROPOSITION 8.5. This proof is divided into several steps.
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Step 1: Decomposition of δε. Starting from the decomposition (6.13) of ε, one
can write

(8.9) δεst = U1
st + U2

st ,

with

U1
st =

3∑
e=1

∫ t

s
�u dAe

u

U2
st =

3∑
e=1

∫ t

s

(
�n

u − �u

)
dAe

u = −
3∑

e=1

∫ t

s
�uẼu dAe

u,

(8.10)

where we recall that Ẽ has been introduced in Lemma 8.1. Moreover, the term U2

above is easily bounded. Indeed, applying Lemma 6.5 and taking into account the
estimate in Lemma 8.3 we obtain for all (s, t) ∈ S2(�0, T �) the estimate:

(8.11)
∣∣U2

st

∣∣≤ G(t − s)1−γ n1−3γ−α.

Step 2: Decomposition of U1. We turn to the quantity U1
st given by (8.10). First,

from the expression of A2 in (6.9) and a discrete-time decomposition similar to the
estimate of (6.19) it is clear that

(8.12)
∣∣∣∣
∫ t

s
�u dA2

u

∣∣∣∣≤ Gn−γ (t − s).

In the case e = 1, recall expression (6.6) for A1. Then one can decompose∫ t
s �u dA1

u into

(8.13)
∫ t

s
�u dA1

u = M1
st + M2

st ,

where M1 and M2 are defined by

M1
st = −1

2

m∑
j=1

∫ t

s
�η(u)∂VjVj

(
yn
η(u)

)
d
(
u − η(u)

)2H

M2
st = −1

2

m∑
j=1

∫ t

s
δ�η(u)u∂VjVj

(
yn
η(u)

)
d
(
u − η(u)

)2H
.

(8.14)

We defer the evaluation for M1 to the end of the proof, but M2 is easily controlled.
Indeed, by (A.1) in Lemma A.2 applied to f = ∂VjVj (y

n) and g = � , we have

(8.15)
∣∣M2

st

∣∣≤ Gn1−4γ (t − s)1−γ .

Note that according to Lemma A.6 � admits the decomposition: δ�st = − ∫ t
s �u ×

∂b(yu) du −∑m
j=1

∫ t
s �u∂Vj (yu) dB

j
u .
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We now decompose the term
∫ t
s �u dA3

u in (8.10): it is readily checked that
owing to (6.9), one can write

∫ t

s
�u dA3

u =
m∑

j=1

∫ t

s
�u

∫ u

η(u)
∂Vj

(
yn
v

)
dyn

v dBj
u .

Hence, plugging the equation (5.1) followed by yn into this relation we can write

(8.16)
∫ t

s
�u dA3

u = I 1
st + I 2

st + I 3
st ,

where I 1, I 2, I 3 are given by

I 1
st =

m∑
j=1

∫ t

s
�u

∫ u

η(u)
∂Vj

(
yn
v

)
b
(
yn
η(v)

)
dv dBj

u,

I 2
st =

m∑
j=1

∫ t

s
�u

∫ u

η(u)
∂Vj

(
yn
v

)
V
(
yn
η(v)

)
dBv dBj

u,(8.17)

I 3
st = 1

2

m∑
j,j ′=1

∫ t

s
�u

∫ u

η(u)
∂Vj

(
yn
v

)
∂Vj ′Vj ′

(
yn
η(v)

)
d
(
v − η(v)

)2H
dBj

u.

Step 3: Estimate of I 1, I 2, I 3. We will now evaluate I 1, I 2, I 3 separately. First,
invoking a discrete-time decomposition as in (6.19) again, we get

(8.18)
∣∣I 1

st

∣∣≤ G(t − s)n−γ .

On the other hand, applying (A.2) in Lemma A.2 to I 3
st we obtain

(8.19)
∣∣I 3

st

∣∣≤ Gn1−4γ (t − s)1−γ .

Let us now consider the term I 2 defined by (8.17). To this aim, set

(8.20) J 2
st =

m∑
j=1

∫ t

s
�η(u)

∫ u

η(u)
∂Vj

(
yn
η(v)

)
V
(
yn
η(v)

)
dBv dBj

u.

By (A.3) in Lemma A.2, the patient reader can check that for any κ > 0 we have

(8.21)
∣∣I 2

st − J 2
st

∣∣≤ Gn1−4γ+2κ(t − s)1−γ , (s, t) ∈ S2
([0, T ]).

In addition, we may consider κ > 0 such that 1 − 4γ + 2κ < −γ . In this case, the
previous bound becomes

(8.22)
∣∣I 2

st − J 2
st

∣∣≤ Gn−γ (t − s)1−γ .

Step 4: Conclusion. So far we have made a sequence of decompositions for ε in
(8.9), (8.10), (8.13), (8.16). Taking into account the estimates (8.11), (8.12), (8.15),
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(8.18), (8.19), (8.22), it is clear that to prove the estimate (8.7) for ε̃ it suffices to
show that

(8.23) |δε̄st | ≤ Gn1−3γ−α+2κ(t − s)1−γ

for any κ > 0, where the increment δε̄ is defined by

δε̄st = J 2
st + M1

st − δε̂st

with J 2 given by (8.20) and M1 given by (8.14). We also recall that ε̂ has been
introduced in (7.3) and is given by the following expression:

(8.24) δε̂st =
m∑

j,j ′=1

t−∑
tk=s

�tk∂VjVj ′(ytk )δF
jj ′
tk tk+1

.

In order to prove (8.23), let us now observe that

(8.25) δε̄st =
m∑

j,j ′=1

t−∑
tk=s

�tk

(
∂VjVj ′

(
yn
tk

)− ∂VjVj ′(ytk )
)
δF

jj ′
tktk+1

.

Further, we note that similarly to (6.10), the following identity holds true:

∂VjVj ′
(
yn
tk

)− ∂VjVj ′(ytk )

= −
d∑

i=1

∫ 1

0
(∂i∂VjVj ′)

(
λyn

tk
+ (1 − λ)ytk

)
) dλ · (�n

tk
εtk

)i
.

According to Hypothesis 8.2, yn, � and nαε are γ -Hölder continuous functions.
Hence,

(8.26) nα
∥∥�(∂VjVj ′

(
yn)− ∂VjVj ′(y)

)∥∥
γ ≤ G.

In order to bound the right-hand side of (8.25), let us apply a bound on weighted
sums of the process F as in relation (6.16). Taking into account (8.26), this yields

|δε̄st | ≤ Gn1−3γ−α(t − s)1−γ−2κ ≤ Gn1−3γ−α+2κ(t − s)1−γ

for an arbitrary κ > 0, which is our claim (8.23). The proof of (8.7) is now com-
plete.

In order to get (8.8) from (8.7), we recall once again relation (7.19) and we just
analyze the term δε̂. This can be done in a similar way as in (7.20) and (7.21). Our
proof is complete. �

THEOREM 8.7. Let ε be given by (6.7) and ε̃ be defined in (7.2). Suppose that
b ∈ C2

b , V ∈ C4
b . Then the following statements hold true:
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(i) There exists a constant κH > 0 depending on H such that

(8.27) n2H− 1
2 |δε̃st | ≤ Gn−κH |t − s|1−γ ,

for (s, t) ∈ S2(�0, T �). In particular, we have the following almost sure conver-
gence:

lim
n→∞n2H− 1

2 δε̃st = 0.

(ii) Take a constant κ > 0. The error process y − yn satisfies

(8.28) n2H− 1
2 −κ sup

t∈[0,T ]
∣∣yt − yn

t

∣∣→ 0 as n → ∞,

meaning that the Euler scheme has a rate of convergence n
1
2 −2H+κ for an arbitrary

κ > 0.

PROOF. Item (i): Take 1
3 < γ < H . According to Proposition 6.11 for

S2(n
3γ−1ε, zn), Hypothesis 8.2 holds with α = 3γ − 1. Hence, one can apply

Proposition 8.5 in order to get

(8.29) |δε̃st | ≤ G
(
n2(1−3γ )+2κ + n−γ )(t − s)1−γ .

In the case 3
8 < H < 1

2 , it is easy to see that 3H − 1 < 2H − 1
2 and 2(3H − 1) >

2H − 1
2 . Take 3

8 < γ < H such that 2(3γ − 1) − 2κ > 2H − 1
2 and γ > 2H − 1

2 .

Then (8.29) implies that for 3
8 < H < 1

2 we have n2H− 1
2 |δε̃st | ≤ Gn−κH |t − s|1−γ

for κH = ((6γ − 2 − 2κ) ∧ γ ) − (2H − 1
2). This proves our claim (8.27) for 3

8 <

H < 1
2 .

Let us now handle the case 1
3 < H ≤ 3

8 . To this aim, set Hk = 2k−1
6k−4 , k ≥ 2. We

choose k ≥ 2 such that Hk+1 < H ≤ Hk holds. It is easy to verify that k(3H −1) <

2H − 1
2 and (k + 1)(3H − 1) > 2H − 1

2 . We can thus choose Hk+1 < γ < H and
κ > 0 such that (k +1)(3γ −1)−3kκ > 2H − 1

2 and γ > 2H − 1
2 . It follows from

inequality (8.29) that

|δε̃st | ≤ Gn2(1−3γ )+2κ(t − s)1−γ .

We can now iterate this bound in the following way: apply Proposition 7.4 which
gives

(8.30)
∣∣S2

(
zn, n2(3γ−1)−3κε

)
st

∣∣≤ G(t − s)γ .

Then invoke Proposition 8.5 again. Taking into account the estimate (8.30), we
obtain

|δε̃st | ≤ G
(
n3(1−3γ )+5κ + n−γ )(t − s)1−γ .
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We can now repeat the application of Proposition 7.4 and 8.5 in order to get

|δε̃st | ≤ G
(
n(k+1)(1−3γ )+3kκ + n−γ )(t − s)1−γ .

This implies that n2H− 1
2 |δε̃st | ≤ Gn−κH |t − s|1−γ for

κH = (
(k + 1)(3γ − 1) − 3kκ

)∧ γ −
(

2H − 1

2

)
.

Item (ii): Recall δε = δε̂ + δε̃ given by relation (7.2). With item (i) in hand and
the fact that �n is uniformly bounded thanks to Proposition 6.2, our claim (8.28)
is reduced to prove that

(8.31) lim
n→∞n2H− 1

2 −κ sup
(s,t)∈S2(�0,T �)

|δε̂st | = 0.

In order to prove (8.31), recall the expression (8.24) for δε̂st as a weighted sum of
the increment δF . We can thus apply Corollary 4.9 with f equal to �∂VjVj ′(y).
Indeed, one can easily see that f satisfies the assumptions of Proposition 4.7: both
� and ∂VjVj ′(y) are controlled processes admitting moments of any order (see
[5] for the integrability of �). Applying Corollary 4.9 we thus get

‖δε̂st‖p ≤ Kn
1
2 −2H (t − s)

1
2 .

Then, invoking Lemma 3.5, we end up with

|δε̂st | ≤ Gn
1
2 −2H+ κ

2 ,

which completes the proof. �

9. Asymptotic error distributions. In this section, we first review a central
limit theorem from [24] (see also [19]), then in the second part, we prove the
asymptotic error distribution of the Euler scheme.

9.1. A central limit theorem for the Lévy area process. In this subsection, we
recall a central limit theorem for the process F . Let us first define some parameters
that will appear in the limit distribution of F . Namely, for k ∈ Z, we set

Q(k) =
∫
[0,1]2

R

(
0 s′
k k + s

)
dR

(
s, s′),

P (k) =
∫
[0,1]2

R

(
0 s′

k + s k + 1

)
dR

(
s, s′),

(9.1)

where we recall that R is the covariance function defined by (3.1), whose rectan-
gular increments are given by formula (3.2). We now state a slight elaboration of
[24], Theorem 3 and [19], Proposition 5.1.
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FIG. 1. Q and R.

PROPOSITION 9.1. Let B = (B1, . . . ,Bm) be a m-dimensional standard fBm
with Hurst parameter 1

4 < H < 1
2 . Let F̄t = Fη(t) for t ∈ [0, T ], where we recall

that the process F is defined by (3.14) and η is given by (6.6). Then the finite

dimensional distributions of {n2H− 1
2 F̄ ,B} converge weakly to those of (W,B),

where W = (Wij ) is an m × m-dimensional Brownian motion, independent of B ,
such that

(9.2) E
[
W

ij
t W i′j ′

s

]= T 4H−1(Qδii′δjj ′ + Pδij ′δji′)(t ∧ s).

In formula (9.2), we have set δij = 1 if i = j and δij = 0 if i �= j , and Q =∑
k∈Z Q(k), P =∑

k∈Z P(k).

REMARK 9.2. Proposition 9.1 shows that the process n2H− 1
2 F̄ converges sta-

bly to W when 1
4 < H < 1

2 . We refer the reader to Chapter 8 in [21] for the defini-
tion of stable convergence and its equivalent conditions.

REMARK 9.3. The following plot of constants Q and P shows that Q is
strictly larger than P for H ∈ (1

4 , 3
4). In particular, this implies that the m × m

random matrix W defined in Proposition 9.1 is not symmetric. Let us also mention
that as has been observed in [20], the fact that Q > P results in different features
of the Crank–Nicolson scheme and the numerical schemes (1.3) and (1.4) between
the scalar case and the multidimensional cases.
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9.2. Asymptotic error distributions. We can now prove the convergence of a
renormalized version of the error process y − yn related to the Euler-type scheme
yn. Namely, we prove the following central limit theorem.

THEOREM 9.4. Let yn be the Euler scheme defined in (1.5). Suppose b ∈
C2

b and V ∈ C4
b . Then the sequence of processes (n2H− 1

2 (y − yn),B) converges
weakly in D([0, T ]) to the couple (U,B) as n → ∞, where U is the solution of
the linear SDE

(9.3) Ut =
∫ t

0
∂b(ys)Us ds +

m∑
j=1

∫ t

0
∂Vj (ys)Us dBj

s +
m∑

i,j=1

∫ t

0
∂ViVj (ys) dWij

s ,

and where W is the Wiener process obtained in Proposition 9.1.

PROOF. Recall that y − yn = �nε, we consider the following decomposition:

(9.4)
yt − yn

t = �n
η(t)ε̃η(t) + (

�n
η(t) − �η(t)

)
ε̂η(t) + �η(t)ε̂η(t)

+ (yt − yη(t)) − (
yn
t − yn

η(t)

)
,

where recall that ε is defined by (6.7), and ε̃, ε̂ are respectively introduced in (7.2)
and (7.3).

Note that, thanks to Theorem 8.7, Lemma 8.3 and Corollary 4.9 and taking into
account the relation �t − �n

t = �tEt , we have almost surely

(9.5) lim
n→∞ sup

t∈[0,T ]
n2H− 1

2
(
�n

η(t)ε̃η(t) + (
�n

η(t) − �η(t)

)
ε̂η(t)

)= 0.

On the other hand, thanks to Theorem 2.3 and equation (5.1), governing yn it is
clear that

(9.6) |yt − yη(t)| +
∣∣yn

t − yn
η(t)

∣∣≤ Gn−γ ≤ Gn
1
2 −2H−κ

for G = K(1 + ‖B‖1/γ
γ ) and for any γ < H , where we use the fact that H >

2H − 1
2 for the last inequality and we take κ = γ − 2H + 1

2 > 0. Therefore, going

back to (9.4) the convergence of the finite dimensional distributions of (n2H− 1
2 (y−

yn),B) can be reduced to the convergence of (n2H− 1
2 �η(t)ε̂η(t),Bt , t ∈ [0, T ]).

Furthermore, Proposition 9.5 delivers a central limit theorem for general weighted
sums of the process F . Taking into account the expression (7.3) for ε̂, it can be
applied in order to get the convergence of the finite dimensional distributions of

(n2H− 1
2 �η(·)ε̂η(·),B) to (U,B), where

(9.7) Ut =
m∑

jj ′=1

�t

∫ t

0
�u∂VjVj ′(yu) dWjj ′

, t ∈ [0, T ]
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as n → ∞. Similar to (6.12), an easy variation of parameter argument shows
that U defined by (9.7) solves the linear SDE (9.3). Summarizing our consider-
ations so far, we have obtained the finite dimensional distribution convergence of

(n2H− 1
2 (y − yn),B) to (U,B).

It remains to show the tightness of the error n2H− 1
2 (y − yn). To this end, we

apply Lemma 3.31 in Chapter 6 [21] to our decomposition (9.4). It then suffices to

show the tightness of n2H− 1
2 �η(·)ε̂η(·), and that the supremum of the other terms of

(9.4) in [0, t] converges in probability to zero. The convergence of the first two and
the last two terms on the right-hand side of (9.4) follows from relations (9.5) and

(9.6), respectively. The tightness of n2H− 1
2 �η(·)ε̂η(·) follows from Corollary 4.9,

the fact that � admits moments of all orders thanks to the integrability results in
[5], and a tightness criterion in (13.14) of [2]. The proof is now complete. �

We now state the limit theorem on which Theorem 9.4 relies.

PROPOSITION 9.5. Let f , g be processes defined as in Proposition 4.7 and
W be the Brownian motion defined in Proposition 9.1. Set

�n
t = n2H− 1

2


 nt
T

�∑
k=0

ftk ⊗ δFtktk+1 and �t =
∫ t

0
fs ⊗ dWs.

Then the following relation holds true as n → ∞:

(
�n,B

) f.d.d.−−−→ (�,B) as n → ∞.

PROOF. The proposition is an application of Theorem 4.10. As in Corol-

lary 4.9, we take γ > 1
3 , h = n2H− 1

2 F and α = 1
2 . It suffices to verify the con-

ditions (4.13), (4.22) and (4.24). According to Corollary 4.9 and Proposition 9.1,
conditions (4.13) and (4.22) hold true for our h. Applying Lemma A.4 and taking
κ : 1

2 + H − κ + γ > 1 we obtain the relation (4.24), which concludes our proof.
�

APPENDIX

A.1. Estimates for the Hölder seminorm of a rough path. The following
lemma is convenient while deriving upper bound estimates for the Hölder semi-
norm of a rough path.

LEMMA A.1. Let X and Y be functions on [0, T ] and Z be a two param-
eter path on S2([0, T ]) such that δZsut = δXsu ⊗ δYut . We recall the notation
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(t0, t1, . . . , tn) for a partition of [0, T ] and �s, t � for discrete intervals given in the
Introduction. Suppose that

|δXst | + |δYst | + |Zst | 1
2 ≤

{
K|t − s|β, (s, t) ∈ S2

(
�0, T �

)
,

K|t − s|β, s, t ∈ [tk, tk+1], k = 0,1, . . . , n − 1

for some β > 0 and K > 0. Then the following relations hold for all (s, t) ∈
S2([0, T ]):

|δXst | + |δYst | ≤ K(t − s)β, |Zst | ≤ K(t − s)2β.

PROOF. We first consider δX and δY . Take tk−1 ≤ s ≤ tk ≤ tk′ ≤ t ≤ tk′+1. We
have

|δXst | ≤ |δXtk′ t | + |δXtktk′ | + |δXstk |
≤ K

(
(t − tk′)β + (tk′ − tk)

β + (tk − s)β
)

≤ K(t − s)β.

The same estimate holds for δY . We now turn to the estimate for Zst . We consider
tk−1 ≤ s ≤ tk ≤ tk′ ≤ t ≤ tk′+1 again, and we have

|Zst | = |Zstk +Ztk tk′ +Ztk′ t + δXtktk′ ⊗ δYtk′ t + δXstk ⊗ δYtkt |
≤ K

(
(tk − s)2β + (t − tk′)2β + (tk′ − tk)

2β)
+ K2((tk′ − tk)

β(t − tk′)β + (tk − s)β(t − tk)
β)

≤ K(t − s)2β.

The proof is complete. �

A.2. Estimates for some iterated integrals. This section summarizes some
estimates for weighted sums involving double or triple iterated integrals.

LEMMA A.2. Let B be our m-dimensional fBm with Hurst parameter H > 1
3 .

Let f be a real-valued path on [0, T ] such that ‖f ‖γ ≤ K for 1
3 < γ < H . Suppose

that g is another real-valued path and g̃ = (g̃1, g̃2, g̃3) is a continuous path in
L(Rm,R) × R × R, such that S2(g, g̃,B) is well defined as a γ -rough path, and
that δg can be decomposed as

δgst =
∫ t

s
g̃1

u dBu +
∫ t

s
g̃2

u du +
∫ t

s
g̃3

u d
(
u − η(u)

)2H

for all (s, t) ∈ S2(�0, T �). Consider an arbitrarily small parameter κ > 0. Then
the following inequalities hold true for (s, t) ∈ S2(�0, T �):∣∣∣∣∣

t−∑
tk=s

ftk

∫ tk+1

tk

δgtku d(u − tk)
2H

∣∣∣∣∣≤ Gn1−4γ+2κ(t − s)1−γ ,(A.1)
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∣∣∣∣∣
t−∑

tk=s

ftk

∫ tk+1

tk

∫ u

tk

gv d(v − tk)
2H dBu

∣∣∣∣∣≤ Gn1−4γ+2κ(t − s)1−γ ,(A.2)

∣∣∣∣∣
t−∑

tk=s

ftk

∫ tk+1

tk

δgtku

∫ u

tk

dBv ⊗ dBu

∣∣∣∣∣≤ Gn1−4γ+2κ(t − s)1−γ .(A.3)

PROOF. For the sake of clarity, we will only prove our claims for g whose
increments can be written as δgst = ∫ t

s g̃s dBs , where S2(g, g̃,B) defines a rough
path. We also focus on the inequality (A.1). For convenience, we denote by D the
following increment:

Dst =
t−∑

tk=s

ftk

∫ tk+1

tk

δgtku d(u − tk)
2H

defined on S2(�0, T �). Since we have assumed that δgst = ∫ t
s g̃ dB , we can write

Dst =
t−∑

tk=s

ftk

∫ tk+1

tk

∫ u

tk

g̃v dBv d(u − tk)
2H .

We now consider the following decomposition of Dst :

(A.4) Dst =
t∑

tk=s

(
D1

k + D2
k

)
,

where D1
k and D2

k are given by

D1
k = ftk g̃tk

∫ tk+1

tk

∫ u

tk

dBv d(u − tk)
2H ,

D2
k = ftk

∫ tk+1

tk

(∫ u

tk

∫ v

tk

dg̃r dBv

)
d(u − tk)

2H .

Both D1
k and D2

k are easily bounded. Indeed, one can note that D2
k is a Young

integral, and since (g̃,B) admits a lift as a γ -rough path it is easy to show that

(A.5)
∣∣D2

k

∣∣≤ Gn−2H−2γ .

Therefore, summing up both sides of (A.5) from s to t we obtain

(A.6)

∣∣∣∣∣
t−∑

tk=s

D2
k

∣∣∣∣∣≤ Gn1−4γ (t − s).

In order to bound D1
k , we apply a change of variable formula for Young integrals,

which yields

D1
k = ftk g̃tk δBtktk+1(tk+1 − tk)

2H − ftk g̃tk

∫ tk+1

tk

(u − tk)
2H dBu ≡ D11

k + D12
k .
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Then
∑t−

tk=s D11
k is bounded by elementary considerations. The terms D12

k are
handled by decomposing ftk g̃tk as δ(f g̃)stk + fsg̃s and by a direct application
of Lemma 4.6. It is thus readily seen that

(A.7)

∣∣∣∣∣
t−∑

tk=s

D1
k

∣∣∣∣∣≤ Gn1−4γ+2κ(t − s)1−γ .

The estimate (A.1) follows by applying (A.6) and (A.7) to (A.4).
Inequalities (A.2) and (A.3) can be shown in a similar way by invoking

Lemma 4.6 and Lemma 4.3, respectively. The proof is omitted. �

The following lemma considers almost sure bounds of a triple integral. It can
be shown along the same lines as for Lemma A.2. The proof, which hinges on
Lemma 4.3, is omitted for sake of conciseness.

LEMMA A.3. Let f , κ be as in Lemma A.2. Let h = (h1, h2, h3) and h̃ =
(h̃1, h̃2, h̃3) be continuous paths such that he takes values in R and h̃e takes values
in L(Rm,R). We also assume that S2(h, h̃,B) is a γ -rough path for H > γ > 1

3 ,
and that δhe

st = ∫ t
s h̃e dB for (s, t) ∈ S2([0, T ]) and e = 1,2,3. Then we have the

following estimate for all (s, t) ∈ S2(�0, T �):

(A.8)

∣∣∣∣∣
t−∑

tk=s

ftk

∫ tk+1

tk

∫ u

tk

∫ v

tk

h1
r dBr ⊗ h2

v dBv ⊗ h3
u dBu

∣∣∣∣∣
≤ Gn1−4γ+2κ(t − s)1−γ .

The following results provide some upper-bound estimates for the Lp-norm of
a “discrete” rough double integral. Recall that 0 = t0 < · · · < tn = T and 0 = u0 <

· · · < uν = T are two uniform partitions on [0, T ].
LEMMA A.4. Let F be defined in (3.14) and H > 1

4 . We set

ζ̂ n
r :=

νr
T

−1∑
l=0

ζ n
l with ζ n

l := ζ
n,ijj ′
l = n2H− 1

2
∑

tk∈D̃l

δBi
tkl tk

δF
jj ′
tktk+1

,

where r ∈ {u1, . . . , uν}. Then the following estimate holds true for all p ≥ 1:

(A.9)
∥∥δζ̂ n

r,r ′
∥∥
p ≤ Kν−Hn

1
2 −2H (r ′ − r

) 1
2 , r, r ′ ∈ {u0, . . . , uν}.

PROOF. Let us treat the special case i = j �= j ′. Then we can expand the
variance of ζ n

l as

(A.10) E

(∣∣∣∣∣
νr
T

−1∑
l=0

ζ n
l

∣∣∣∣∣
2)

= n4H−1

νr
T

−1∑
l,l′=0

∑
tk∈D̃l

∑
tk′∈D̃l′

J
(
k, k′, tkl

, tkl′
)
,
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where for all k, k′, u and v we have set

(A.11) J
(
k, k′, u, v

)= E
(
δBi

utk
δF

jj ′
tktk+1

δBi
vtk′ δF

jj ′
tk′ tk′+1

)
.

In order to evaluate (A.11), we first condition the expected value on Bj ′
. We are

thus left with the expected value of a product of four centered Gaussian random
variables, for which we can use the Gaussian identity, and the isometry property
stated in Definition 3.2. We use the same isometry again in order to integrate with
respect to Bj ′

, which yields

(A.12) J
(
k, k′, u, v

)= 3∑
e=1

Je

(
k, k′, u, v

)
,

where we have

J1
(
k, k′, u, v

)= 〈1[u,tk],1[v,tk′ ]〉H〈βk,βk′ 〉H⊗2,(A.13)

J2
(
k, k′, u, v

)= 〈〈1[u,tk], βk〉H, 〈1[v,tk′ ], βk′ 〉H〉H,(A.14)

J3
(
k, k′, u, v

)= 〈〈1[v,tk′ ], βk〉H, 〈1[u,tk], βk′ 〉H〉H,(A.15)

and where the function β is defined by βk(u, v) = 1tk<u<v<tk+1 .
Next, observe that we have 〈βk,βk′ 〉H⊗2 ≥ 0 for all k and k′. Indeed, when k =

k′, this stems from the fact that 〈βk,βk′ 〉H⊗2 can be identified with E[|δF jj ′
tktk+1

|2],
while for k �= k′ the expression for 〈βk,βk′ 〉H⊗2 is given by (3.6), and the product
of the measures μ therein gives a positive contribution. So the Cauchy–Schwarz
inequality implies that

(A.16)
∣∣J1
(
k, k′, u, v

)∣∣≤ K|tk − u|H |tk′ − v|H 〈βk,βk′ 〉H⊗2,

and we easily get the following bound:∣∣∣∣∣
νr
T

−1∑
l,l′=0

∑
tk∈D̃l

∑
tk′∈D̃l′

J1
(
k, k′, tkl

, tkl′
)∣∣∣∣∣ ≤ Kν−2H


 nr
T

�−1∑
k,k′=0

〈βk,βk′ 〉H⊗2

= Kν−2H


 nr
T

�−1∑
k,k′=0

E
[
δF

jj ′
tktk+1

δF
jj ′
tk′ tk′+1

]

= Kν−2H
E
[∣∣Fjj ′

η(r)

∣∣2].
It then follows from Lemma 3.4 that∣∣∣∣∣

νr
T

−1∑
l,l′=0

∑
tk∈D̃l

∑
tk′∈D̃l′

J1
(
k, k′, tkl

, tkl′
)∣∣∣∣∣

≤ Kν−2Hn1−4Hη(r) ≤ Kν−2Hn1−4Hr.

(A.17)
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Let us now handle the terms J2 and J3 in (A.12). First, by self-similarity of B

we obtain

J2
(
k, k′, u, v

)
= n−6HT 6H 〈〈1[ nu

T
,k](a),φk(b, a)

〉
H,
〈
1[ nv

T
,k′](c), φk′(b, c)

〉
H
〉
H,

(A.18)

where we have denoted φk(u, v) = 1k<u<v<k+1, and the letters a, b, c designate
the pairing for our inner product in H. In order to estimate the quantity (A.18), we
assume first that k, k′ satisfies |k − k′| > 2. In this case, we can approximate the
functions 1k<u<v<k+1 in the definition of φk by sums of indicators of rectangles.
Namely, for k ≤ 
nt

T
� we set

(A.19) φ�
k(u, v) =

�−1∑
i=0

1[k+ i
�
,k+ i+1

�
](u) × 1[k+ i+1

�
,k+1](v),

then the convergence lim�→∞ ‖φk −φ�
k‖H⊗2 = 0 holds true whenever H > 1

4 . Ap-
plying the convergence of φ�

k to (A.18) and taking into account expression (A.19),
we obtain

J2
(
k, k′, u, v

)
= n−6HT 6H lim

�→∞
〈〈
1[ nu

T
,k](a),φ�

k(b, a)
〉
H,
〈
1[ nv

T
,k′](c), φ�

k′(b, c)
〉
H
〉
H

≤ n−6HT 6H lim
�→∞

�−1∑
i,j=1

dij d̃ij ,

where we denote

dij = 〈1[k+ i
�
,k+ i+1

�
],1[k′+ j

�
,k′+ j+1

�
]〉H,

d̃ij = 〈1[ nu
T

,k],1[k+ i+1
�

,k+1]〉H〈1[ nv
T

,k′],1[k′+ j+1
�

,k′+1]〉H.

It is easy to see that, for all i, j ≤ � − 1, we have |d̃ij | ≤ K . Therefore, taking into
account the fact that dij < 0 for k, k′ : |k − k′| > 2, we obtain

J2
(
k, k′, u, v

)≤ K

n6H
lim

�→∞

�−1∑
i,j=1

|dij | = K

n6H
lim

�→∞

�−1∑
i,j=1

dij

= K

n6H
〈1[k,k+1],1[k′,k′+1]〉H ≤ Kn−6H

∣∣k − k′∣∣2H−2
.

(A.20)

The estimate (A.20) also holds true for J3, and the proof is similar. In addition, for
|k − k′| ≤ 2 the relation (A.18) shows that

(A.21)
∣∣Je

(
k, k′, u, v

)∣∣≤ Kn−6H .
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We now invoke relations (A.20) and (A.21), together with the fact that the summa-
tion

∑
k>1 |k|2H−2 is finite and

#

( νr
T

−1⋃
l=0

D̃l

)
= #{k : tk ≤ t and tk < r} ≤ nr

T
,

which yields for e = 2,3:

(A.22)

∣∣∣∣∣
νr
T

−1∑
l,l′=0

∑
tk∈D̃l

∑
tk′∈D̃l′

Je

(
k, k′, tkl

, tkl′
)∣∣∣∣∣≤ Kn1−6Hr.

Gathering our bounds (A.17) and (A.22) for J1, J2 and J3, it is readily checked
from our decompositions (A.10) and (A.12) that for i = j �= j ′ we have

(A.23) E

(∣∣∣∣∣
νr
T

−1∑
l=0

ζ n
l

∣∣∣∣∣
2)

≤ Kν−2Hn1−4Hr.

Furthermore, using the stationarity of the increments of F and B , plus the equiv-
alence of Lp-norms in finite chaos, we obtain from (A.23) the desired estimate
(A.9). Moreover, the estimate (A.23) holds true for other i, j , j ′. The proof is
similar and is omitted. �

LEMMA A.5. Let F be defined in (3.14). Then the following estimate holds
true for H > 1

4 :

E

(∣∣∣∣∣
t−∑

tk=s

δBstk ⊗ Ftktk+1

∣∣∣∣∣
2)

≤ Kn1−4H (t − s)2H+1, (s, t) ∈ S2
(

�0, T �
)
.

PROOF. Since B has stationary increment, it suffices to prove the lemma for
s = 0. As in the proof of Proposition 4.10, we consider the sum

M
ijj ′
t =

t−∑
tk=0

Bi
tk
F

jj ′
tktk+1

,

for i = j �= j ′. The other cases can be considered similarly. Let Je, e = 1,2,3 be
the quantities defined in (A.13), (A.14), (A.15). By (A.11), we have

(A.24) E

(∣∣∣∣∣
t−∑

tk=0

Bi
tk
F

jj ′
tk tk+1

∣∣∣∣∣
2)

=
t−∑

tk1 ,tk2=0

3∑
e=1

Je(k1, k2,0,0).

Applying (A.16) and taking into account Lemma 3.4 yields

(A.25)
t−∑

tk1 ,tk2=0

J1(k1, k2,0,0) ≤ n1−4H t1+2H .
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On the other hand, it follows from (A.20) and (A.21) that for e = 2,3 we have

(A.26)
t−∑

tk1 ,tk2=0

Je(k1, k2,0,0) ≤ n1−6H t ≤ n1−4H t1+2H .

The lemma then follows by applying (A.25) and (A.26) to (A.24). �

A.3. Inverse of a linear equation. Let us consider two linear rough differen-
tial equations:

Pt = Id +
m∑

l=1

∫ t

0
Ml

sPs dBl
s,(A.27)

Qt = Id −
m∑

l=1

∫ t

0
QsM

l
s dBl

s,(A.28)

where for l = 1, . . . ,m, Id is the identity matrix, and Ml = (Ml(i, j))i,j=1,...,d

is a R
d×d -valued process on [0, T ]. Note that the solutions P = (P (i, j)) and

Q = (Q(i, j)) are also R
d×d -valued. The following lemma shows that for fixed

t ∈ [0, T ] the matrices Pt and Qt are inverse of each other.

LEMMA A.6. Suppose that P and Q are respectively the unique solutions of
(A.27) and (A.28). Then PQ = QP ≡ I .

PROOF. Denote δij = 0 for i �= j and δij = 1 for i = j . Rewrite (A.27) and
(A.28) as

Pt(r, j) = δrj +
m∑

l=1

d∑
v=1

∫ t

0
Ml

s(r, v)Ps(v, j) dBl
s,

Qt(i, r) = δir −
m∑

l=1

d∑
v=1

∫ t

0
Qs(i, v)Ml

s(v, r) dBl
s.

By the Itô–Stratonovich formula for rough paths integrals, we obtain

Qt(i, r)Pt (r, j) = δirδrj +
∫ t

0
Qs(i, r) dPs(r, j) +

∫ t

0
Ps(r, j) dQs(i, r)

= δirδrj +
∫ t

0
Qs(i, r)

m∑
l=1

d∑
v=1

Ml
s(r, v)Ps(v, j) dBl

s(A.29)

−
∫ t

0
Ps(r, j)

m∑
l=1

d∑
v=1

Qs(i, v)Ml
s(v, r) dBl

s.
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Now summing up the two sides of (A.29) in r we obtain

d∑
r=1

Qt(i, r)Pt (r, j) =
d∑

r=1

δirδrj = δij .

This completes the proof. �
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